ELECTROMAGNETISM. at a point whose position vector with respect to a current element i d l is r. According to this law :

Size: px
Start display at page:

Download "ELECTROMAGNETISM. at a point whose position vector with respect to a current element i d l is r. According to this law :"

Transcription

1 ELECTROMAGNETISM ot-svt Lw: Ths w s used to fnd the gnetc fed d t pont whose poston vecto wth espect to cuent eeent d s. Accodng to ths w : µ d ˆ d = 4π d d The tot fed = d θ P whee ˆ s unt vecto n the decton of vecto. Mgnetc fed due to cuent cyng conducto: µ = {sn α + sn β} 4π The decton of gnetc fed cn be obtned fo the ght hnd thub ue. µ qv ˆ Mgnetc fed of ovng chge =. 4π A α β P ot-svt s w s the gnetc nogue of couob s w n Eectosttcs. The chge eeent dq ppeng n Couob s w s sc but the cuent eeent d ppeng n ot-svt s w s vectod. Mgnetc fed ong the s of ccu oop: P µ n = ( + ) 3/ µ nπ When >>, = 4π 3 A cuent cyng oop cts s gnetc dpoe whose gnetc oent s M = na, whee A s e of the co. µ Mgnetc fed ong the s of soenod = n {sn α + sn β} whee β n s α nube of tuns pe unt ength. If soenod s vey ong α = β = 9 = µ n. Foce on ovng chge n unfo gnetc fed : The foce on chge q ovng wth veocty v n gnetc fed s gven by F = qv..e. F = qvsn θ whee θ s nge between v nd. Ntue of pth foowed by chged ptce n gnetc fed : If θ = o 18, F =, the pth s stght ne. v If θ = 9, F = v, the pth s cce of dus =, nd fequency fequency). f q = (cycoton π

2 If θ es between nd 9, the chged ptce descbes hec pth of dus v sn θ/q; nd ptch = vcos θ π. Afte te t, the devton w be θ = t, n tes of ength of the gnetc fed. 1 θ = sn. Loentz Foce: The foce epeenced by ovng chge wth veocty v n eectc fed E nd gnetc fed, F = q{e + v }. When E s pe to nd ptce veocty s pependcu to both of these feds, the pth of ptce s he wth ncesng ptch. When eectc fed E s pependcu to nd the ptce s eesed t est fo ogn, the pth of ptce s cycod. Foce on cuent cyng conducto n gnetc fed F = ( ). Foce between two pe wes cyng cuent s gven by F µ 1 =. π 1 Toque on cuent oop: The toque epeenced by cuent cyng oop n gnetc fed. τ = M Whee M s gnetc dpoe oent = na. Potent enegy of gnetc dpoe cuent cyng oop n gnetc fed s U = M. d Foce on gnetc dpoe cuent cyng oop non-unfo gnetc fed F = (M ). d 1. The Mgnetc fu (φ) though gven sufce A s gven by φ = N A = NA cos θ. dφ. Fdy s ws of eectognetc nducton sys e =. dt Whee e = nduced ef nd φ = gnetc fu. Accodng to Lenz w, negtve sgn shows tht ef nduced w oppose the chnge n gnetc fu (cusng the ef). 3. Moton ef: The ef nduced due to oton of conducto n gnetc fed s gven by e = ( v), whee s the gnetc fed n the egon. s the ength of conducto nd v s the veocty of conducto. The fou gven bove s vey usefu to fnd the nduced ef.

3 The decton of nduced cuent cn be gven by Feng Rght Hnd Rue. If the thub nd fst two fnges of the ght hnd e sped out so tht they pont n thee dectons t ght nges to one nothe, the fst fnge gvng the decton of gnetc fed, the thub ndctng the decton of the oton of the conducto, then second fnge ndctes the decton of nduced ef o cuent. 4. Moton ef nduced n ottng conducto: A conductng od of ength ottes wth constnt ngu speed ω bout one end P n unfo gnetc fed. Consde segent of od of ength d t dstnce fo P. ω Induced ef n ths segent de = v d = ω d. d Q Sung the ef nduced coss segents we get, tot ef coss the od. e = d = ω d ω e = Fo Feng Rght Hnd Rue we cn see tht Q s t hghe potent nd P s t owe potent. 5. Sef nducton: Wheneve the eectc cuent psses though co chnges, the gnetc fu nked wth t so chnges. As esut, n ef s nduced n the co. e cefu n checkng the poty of ths nduced ef (o ced bck ef). ) The gnetc fu poduced n co s decty popoton to the cuent fowng n t,.e., φ α I o φ = LI. The constnt of popotonty L s defned s the coeffcent of sef nducton. dφ d b) The nduced e..f. geneted n the co s gven by e = = L dt dt c) The nductnce of ong soenod o tood s gve by L = s ength nd A s e of coss- secton. µ N A. Whee N s tot nube of tuns, Ccut s de ON o cuent s ncesng Ccut s de OFF o cuent s decesng d e = L dt d e = L dt 6. Cobnton of nductos. ) Cos n sees LS = L1 + L L1L ) Cos n pe LP = L + L 1 7. Coeffcent of utu nducton (M): ) The coeffcent of utu nducton between two cos s equ to tht gnetc fu nked wth the secondy co whch s poduced s esut of unt cuent fow n the py co. φ M 1 = when I 1 =1 p, then M1 = φ I1 b) The coeffcent of utu nducton s nuecy equ to tht nduced e..f. n the secondy co, whch s poduced s esut of unt te of chnge of cuent n the py co, e M = di 1 when 1 =1 p/s, then M 1 =e di1 dt dt

4 µ N N A c) Mutu nductnce of two soenods o cos s M = 1. N 1, N e nube of tuns n py co, secondy co, s ength nd A s e of coss secton of the cos. d) If L 1 nd L e sef nductnces of two cos, the utu nductnce between the cos M= L 1L. 7. Oscton n L-C ccut: When chged cpcto C hvng n nt chge q s dschged though n nducto L then C q Ld q d q d q 1 = o L = o + q =. L C dt C dt dt LC Ths equton s s to Spe Honc Moton. So, chge osctes n the ccut wth ntu 1 π fequency ω =, q = q cos ωt, = qωcos ω t + LC. Apee s Lw: S to the Guss s w of eectosttcs, ths w povdes us shotcut ethods of fndng gnetc fed n cses of syety. Accodng to ths w, the ne nteg of gnetc fed ove the cosed pth ( d ) s equ to µ tes the net cuent cossng the e encosed by the pth. d = µ I cosed opp encosed d = µ (I + I I ) 1 3 I 5 d I 1 I 3 I I 4 Pevous questons: 1. A thn febe we of ength L s connected to two djcent fed ponts nd ces cuent I n the cockwse decton, s shown n the fgue. When the syste s put n unfo gnetc fed of Hnt: stength gong nto the pne of the ppe, the we tkes the shpe of cce. The tenson n the we s (IIT-1) ) IL b) *c) IL π T cos θ/ T Id d) IL π IL 4π d θ/ A θ/ θ/ θ θ/ O T sn θ/ T T cos θ/

5 T Id IR IL = = = θ π d L θ =, R = R π. A stedy cuent I goes though we oop PQR hvng shpe of ght nge tnge wth PQ = 3, PR = 4 nd QR = 5. If the gntude of the gnetc fed t P due to ths µ oop s k I Q, fnd the vue of k. 48 π Anyss: µ I µ I = [cos53 + cos37 ] = 7 1 4π 48π 5 K = /5 37 P 4 R 3. A gnetc fed = ˆ j ests n the egon < < nd = ˆ j, n the egon < < 3, whee s postve constnt. A postve pont chge ovng wth veocty v = vˆ, whee v s postve constnt, entes the gnetc fed t =. The tjectoy of the chge n ths egon cn be ke, ) z b) z c) z d) z 3 3 Anyss: fo < < < < 3 pth w be concve upwd pth w be concve downwd ; So () coect. 4 A ptce of ss nd chge q ovng wth veocty v entes Regon II no to the boundy s shown n the fgue. Regon II hs unfo gnetc fed pependcu to the pne of the ppe. The ength of the Regon II s. Choose the coect choce(s). *) The ptce entes Regon III ony f ts veocty v > Regon I Regon II Regon III b) The ptce entes Regon III ony f ts veocty v < v *c) Pth ength of the ptce n Regon II s u when veocty v = *d) Te spent n Regon II s se fo ny veocty v s ong s the ptce etuns to Regon I.

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

ρ θ φ δ δ θ δ φ δ φ π δ φ π δ φ π

ρ θ φ δ δ θ δ φ δ φ π δ φ π δ φ π Physics 6 Fin Ex Dec. 6, ( pts Fou point chges with chge ± q e nged s in Figue. (5 pts. Wht is the chge density function ρ (, θφ,? (,, q ( ( cos ( / + ( ( / / ρ θ φ δ δ θ δ φ δ φ π δ φ π δ φ π b (5 pts.

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

1 - ELECTRIC CHARGE AND ELECTRIC FIELD Page 1

1 - ELECTRIC CHARGE AND ELECTRIC FIELD Page 1 . Eectc Chge ELECTRIC CHARGE AND ELECTRIC IELD Pge Of most moe thn fundment ptces of mtte, thee most mpotnt e eecton, poton nd neuton. The msses e m e 9. g, m p m n.6 7 g espectvey. Gvtton foce of ttcton

More information

Classical Electrodynamics

Classical Electrodynamics Fist Look t Quntu hysics Cssic Eectoynics Chpte gnetosttics Fy s Lw Qusi-Sttic Fies Cssic Eectoynics of. Y. F. Chen Contents Fist Look t Quntu hysics. The etionship between eectic fie n gnetic fie. iot

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

MAGNETIC EFFECT OF CURRENT

MAGNETIC EFFECT OF CURRENT J-hyscs NOD6 ()\Dt\4\Kot\J-Advnced\SM\hy\Unt No-9\Mgnetc ffect of cuent & Mgnets\ng\.Theoy.p65 The bnch of physcs whch dels wth the gnets due to electc cuent o ovng chge (.e. electc cuent s equvlent to

More information

Neural Network Introduction. Hung-yi Lee

Neural Network Introduction. Hung-yi Lee Neu Neto Intoducton Hung- ee Reve: Supevsed enng Mode Hpothess Functon Set f, f : : (e) Tnng: Pc the est Functon f * Best Functon f * Testng: f Tnng Dt : functon nput : functon output, ˆ,, ˆ, Neu Neto

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

Physics Exam 3

Physics Exam 3 Physcs 114 1 Exam 3 The numbe of ponts fo each secton s noted n backets, []. Choose a total of 35 ponts that wll be gaded that s you may dop (not answe) a total of 5 ponts. Clealy mak on the cove of you

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

SECTION (A) : FLUX AND FARADAY S LAWS OF ELECTROMAGNETIC INDUCTION

SECTION (A) : FLUX AND FARADAY S LAWS OF ELECTROMAGNETIC INDUCTION SETON () : FUX N FY S WS OF EETOMGNET NUTON. onsde the stuton shown n fg. The esstnceless we s sld on the fed ls wth nstnt velocty. f the we s eplced by esstnceless seccul we, the gntude of the nduced

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

Dynamically Equivalent Systems. Dynamically Equivalent Systems. Dynamically Equivalent Systems. ME 201 Mechanics of Machines

Dynamically Equivalent Systems. Dynamically Equivalent Systems. Dynamically Equivalent Systems. ME 201 Mechanics of Machines ME 0 Mechnics of Mchines 8//006 Dynmicy Equivent Systems Ex: Connecting od G Dynmicy Equivent Systems. If the mss of the connecting od m G m m B m m m. Moment out cente of gvity shoud e zeo m G m B Theefoe;

More information

Chapter 4. Interaction of Many-Electron Atoms with Electromagnetic Radiation

Chapter 4. Interaction of Many-Electron Atoms with Electromagnetic Radiation Cpte 4. Intecton o ny-ecton Atos wt ectognetc Rdton Redng: Bnsden & ocn Cpte 9 ny-ecton Atos n n Fed Htonn V t A e p t A e p V t ea p H H Te-ndependent Htonn nt t H Intecton o te to wt te dton ed Te dependent

More information

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017 COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1 016/017 PROGRAMME SUBJECT CODE : Foundaton n Engneeng : PHYF115 SUBJECT : Phscs 1 DATE : Septembe 016 DURATION :

More information

gravity r2,1 r2 r1 by m 2,1

gravity r2,1 r2 r1 by m 2,1 Gavtaton Many of the foundatons of classcal echancs wee fst dscoveed when phlosophes (ealy scentsts and atheatcans) ted to explan the oton of planets and stas. Newton s ost faous fo unfyng the oton of

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

Ch.9. Electromagnetic Induction

Ch.9. Electromagnetic Induction PART Ch.9. Eectomgnetic nuction F. Mutu nuctnce between the Two Cicuits G. Exmpes of nuctnce Ccution H. Enegy Stoe in the Coi. Wok by Eectomgnetic Foce J. Ey Cuent n Skin Effect Yong-Jin Shin, Pofesso

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Physics 202, Lecture 2. Announcements

Physics 202, Lecture 2. Announcements Physcs 202, Lectue 2 Today s Topcs Announcements Electc Felds Moe on the Electc Foce (Coulomb s Law The Electc Feld Moton of Chaged Patcles n an Electc Feld Announcements Homewok Assgnment #1: WebAssgn

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

Angular Momentum in Spherical Symmetry

Angular Momentum in Spherical Symmetry Angu Moentu n Sphec Set Angu Moentu n Sphec Set 6 Quntu Mechncs Pof. Y. F. Chen Angu Moentu n Sphec Set The concept of ngu oentu ps cuc oe n the theedenson 3D Schödnge we equton. The ethod of septon w

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r MULTIPOLE FIELDS Mutpoes poes. Monopoes dpoes quadupoes octupoes... 4 8 6 Eectc Dpoe +q O θ e R R P(θφ) -q e The potenta at the fed pont P(θφ) s ( θϕ )= q R R Bo E. Seneus : Now R = ( e) = + cosθ R = (

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

Classical Electrodynamics

Classical Electrodynamics A Fst Look at Quantum Physcs Cassca Eectodynamcs Chapte 4 Mutpoes, Eectostatcs of Macoscopc Meda, Deectcs Cassca Eectodynamcs Pof. Y. F. Chen Contents A Fst Look at Quantum Physcs 4. Mutpoe Expanson 4.

More information

Physics 207 Lecture 12

Physics 207 Lecture 12 Physcs 07 ectue Physcs 07, ectue 6, Oct. 9 Agend: Chpte 3 Cente of ss Toque oent of net ottonl Enegy ottonl oentu Chp. 3: ottonl Dyncs Up untl now otton hs been only n tes of ccul oton wth c v / nd T d

More information

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy: LCTROSTATICS. Quntiztion of Chge: Any chged body, big o smll, hs totl chge which is n integl multile of e, i.e. = ± ne, whee n is n intege hving vlues,, etc, e is the chge of electon which is eul to.6

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

Chapter 5: Your Program Asks for Advice.

Chapter 5: Your Program Asks for Advice. Chte 5: You Pogm Asks fo Advce. Pge 63 Chte 5: You Pogm Asks fo Advce. Ths chte ntoduces new tye of ves (stng ves) nd how to get text nd numec esonses fom the use. Anothe Tye of Ve The Stng Ve: In Chte

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th EN: Contnuum Mechncs Homewok 4: Blnce lws, wok nd enegy, vtul wok Due : noon Fdy Feuy 4th chool of Engneeng Bown Unvesty. how tht the locl mss lnce equton t cn e e-wtten n sptl fom s xconst v y v t yconst

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Lecture 9-3/8/10-14 Spatial Description and Transformation

Lecture 9-3/8/10-14 Spatial Description and Transformation Letue 9-8- tl Deton nd nfomton Homewo No. Due 9. Fme ngement onl. Do not lulte...8..7.8 Otonl et edt hot oof tht = - Homewo No. egned due 9 tud eton.-.. olve oblem:.....7.8. ee lde 6 7. e Mtlb on. f oble.

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Continuous Charge Distributions

Continuous Charge Distributions Continuous Chge Distibutions Review Wht if we hve distibution of chge? ˆ Q chge of distibution. Q dq element of chge. d contibution to due to dq. Cn wite dq = ρ dv; ρ is the chge density. = 1 4πε 0 qi

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

CHAPTER (6) Biot-Savart law Ampere s Circuital Law Magnetic Field Density Magnetic Flux

CHAPTER (6) Biot-Savart law Ampere s Circuital Law Magnetic Field Density Magnetic Flux CAPTE 6 Biot-Svt w Ampee s Ciuit w Mgneti Fied Densit Mgneti Fu Soues of mgneti fied: - Pemnent mgnet - Fow of uent in ondutos -Time ving of eeti fied induing mgneti fied Cuent onfigutions: - Fiment uent

More information

Chapter 11 Exercise 11A. Exercise 11B. Q. 1. (i) = 2 rads (ii) = 5 rads (iii) 15 = 0.75 rads. Q. 1. T = mv2 r = 8(25) (iv) 11 = 0.

Chapter 11 Exercise 11A. Exercise 11B. Q. 1. (i) = 2 rads (ii) = 5 rads (iii) 15 = 0.75 rads. Q. 1. T = mv2 r = 8(25) (iv) 11 = 0. Chpte Execise A Q.. (i) 0 0 = ds (ii) 00 0 = ds (iii) = 0.7 ds 0 (iv) = 0. ds 0 Q.. (i) = cm (ii) 0.8 = cm (iii). = 6 cm (iv).7 = 8. cm Q.. =. = cm Q.. =.07 =. cm.8 Q.. Angu speed = 8 =.8 ds/sec 0 Q. 6.

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Collection of Formulas

Collection of Formulas Collection of Fomuls Electomgnetic Fields EITF8 Deptment of Electicl nd Infomtion Technology Lund Univesity, Sweden August 8 / ELECTOSTATICS field point '' ' Oigin ' Souce point Coulomb s Lw The foce F

More information

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 10/15/01 PHY 11 C Geneal Physcs I 11 AM-1:15 PM MWF Oln 101 Plan fo Lectue 14: Chapte 1 Statc equlbu 1. Balancng foces and toques; stablty. Cente of gavty. Wll dscuss elastcty n Lectue 15 (Chapte 15) 10/14/01

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rg Bo Dnmcs CSE169: Compute Anmton nstucto: Steve Roteneg UCSD, Wnte 2018 Coss Pouct k j Popetes of the Coss Pouct Coss Pouct c c c 0 0 0 c Coss Pouct c c c c c c 0 0 0 0 0 0 Coss Pouct 0 0 0 ˆ ˆ 0 0 0

More information

PHY121 Formula Sheet

PHY121 Formula Sheet HY Foula Sheet One Denson t t Equatons o oton l Δ t Δ d d d d a d + at t + at a + t + ½at² + a( - ) ojectle oton y cos θ sn θ gt ( cos θ) t y ( sn θ) t ½ gt y a a sn θ g sn θ g otatonal a a a + a t Ccula

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y (ˆ ( ) ( ) ( (( ) # (ˆ ( ) ( ) ( ) # B ˆ z ( k ) Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ight-hnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i

More information

MAGNETIC EFFECT OF CURRENT & MAGNETISM

MAGNETIC EFFECT OF CURRENT & MAGNETISM TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

? plate in A G in

? plate in A G in Proble (0 ponts): The plstc block shon s bonded to rgd support nd to vertcl plte to hch 0 kp lod P s ppled. Knong tht for the plstc used G = 50 ks, deterne the deflecton of the plte. Gven: G 50 ks, P 0

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s Chpte 5: Cuent, esistnce nd lectomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m q ndomizing Collisions (momentum, enegy) >esulting Motion http://phys3p.sl.psu.edu/phys_nim/m/ndom_wlk.vi

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits Phys-7 ectue 8 Mutual nductance Self-nductance - Cicuits Mutual nductance f we have a constant cuent i in coil, a constant magnetic field is ceated and this poduces a constant magnetic flux in coil. Since

More information

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts Chpte 5: Cuent, esistnce nd Electomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m qe ndomizing Collisions (momentum, enegy) =>esulting Motion Avege motion = Dift elocity = v d

More information

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy 7//008 Adh Haoko S Ontang Antng Moent of neta Enegy Passenge undego unfo ccula oton (ccula path at constant speed) Theefoe, thee ust be a: centpetal acceleaton, a c. Theefoe thee ust be a centpetal foce,

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

The Shape of the Pair Distribution Function.

The Shape of the Pair Distribution Function. The Shpe of the P Dstbuton Functon. Vlentn Levshov nd.f. Thope Deptment of Phscs & stonom nd Cente fo Fundmentl tels Resech chgn Stte Unvest Sgnfcnt pogess n hgh-esoluton dffcton epements on powde smples

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today? Clce Quz I egsteed my quz tansmtte va the couse webste (not on the clce.com webste. I ealze that untl I do so, my quz scoes wll not be ecoded. a Tue b False Theoetcal hyscs: the etenal quest fo a mssng

More information

MAGIC058 & MATH64062: Partial Differential Equations 1

MAGIC058 & MATH64062: Partial Differential Equations 1 MAGIC58 & MATH646: Prti Differenti Equtions 1 Section 4 Fourier series 4.1 Preiminry definitions Definition: Periodic function A function f( is sid to be periodic, with period p if, for, f( + p = f( where

More information