Mathematical formulation of the F 0 motor model

Size: px
Start display at page:

Download "Mathematical formulation of the F 0 motor model"

Transcription

1 negy Tnsduction in TP Synthse: Supplement Mthemticl fomultion of the F 0 moto model. Mkov chin model fo the evolution of the oto stte The fou possible potontion sttes of the two oto sp61 sites t the otostto intefce e: oth sites empty () : (o o) The ight site potonted () : (o ) oth sites potonted (F) : ( ) The left site potonted () : ( o) s potons hop into nd out of the chnnel, the stte of the two exposed oto sites chnges. Figue 1 shows the tnsitions between these oto sttes due to poton hops. The Mkov tnsition mtix coesponding to the tnsition digm in Figue 1 is: é k + k k 0 k ( + ) K = k k kf kf 0 0 kf ( kf + kf ) kf ë k 0 k k + k F F We ssume tht potons cnnot hop between the sp61 sites. t ny fixed oto position, it tkes two poton hops to go fom stte (o ) to stte ( o) (i.e. one poton hops out nd nothe one hops in). So thee is no diect Mkov tnsition between nd in Figue 1. Howeve the tnsition between nd cn be done by ottion of the oto (shown s dshed line in Figue 1). Fo exmple, when the oto is in stte (o ), ottion to the ight cn push the potonted site on the ight into the membne nd pull potonted site out of the membne on the left, which chnges the oto into stte ( o). In Figue, we plot the fee enegy chnge, G(, s), in the system s function of ottion ngle,, nd oto stte, s, when one poton psses though the moto poducing ottion of p/1 din ginst lod toue of 41 pnnm. The cycle shown is the powe cycle. The potonmotive foce coss the membne is p = 0 mv (= 8.8 k T). The wok done by the poton ginst the lod toue is 41 pnnm x (p/1) = 5. k T. The enegy dissipted in the pocess is = 3.6 k T. In Figue, the fee enegy cuve fo stte t the end of the cycle is 3.6 k T lowe thn the one fo stte t the beginning of the cycle. ù û (1) 1

2 ottion k F k F k F Full ottion k F ight eft k mpty k k k Figue 1 Mkov chin descibing the fou possible oto sttes nd thei tnsition tes, k i j. = mpty, F = F ull, = eft site occupied, = ight site occupied. ( o ) = unpotonted sp61 sites, ( ) = potonted sites G(,s) k T p 1 p 1

3 Figue Fee enegy chnge, G(, s), in the system s function of ottion ngle,, nd oto stte, s, when one poton psses though the moto poducing ottion of p/1 din ginst lod toue of 41 pnnm. The eflecting membne boundies e denoted by solid ectngles. The cycle shown is the powe cycle ; othe cycles shown in Figue 1 e not powe poducing, nd involve oto slip nd/o poton lekge. The potonmotive foce coss the membne is p = 0 mv» 8.8 k T. The wok done by the poton ginst the lod toue is 41 pnnm x (p/1) = 5. k T. The enegy dissipted in the pocess is = 3.6 k T, so the fee enegy cuve fo stte t the end of the cycle is 3.6 k T lowe thn the one fo stte t the beginning of the cycle.. ngevin eution fomultion Since ineti is negligible, euting the viscous dg on the oto to the foces cting on it yields the ngevin eution 1, whee: d z d y ( ; s) dfh s = ( ; ) t + (), t s =,,,F dt d d () z = dg coefficient of the coto. Ä(t) = the ndom foce due to bownin fluctutions. The bownin foce is modeled in the usul wy by Gussin distibution with unit men nd mplitude z kt t, whee t is the time step in the numeicl simultion. t = lod toue fom F 1. s = (,, F, ). The stte of the two exposed oto sites evolves ccoding to the tnsition tes k ij shown in Figue 1. y (; s) = the potentil ffecting the oto in stte s. y (; s) contins the intections between the oto sites nd the fixed stto chges (g10, Glu19, nd His45). f H (; s) = the hydophobic potentil bie peventing the ottion of unpotonted oto sites into the membne. The enegy bie ginst otting n unpotonted sp61 site into the bilye depends on the diffeence in the dielectic constnts 1 1 between the two medi: G» 00ç 3. Tking emem» 3 nd e è emembne estto stto» 10, we hve G» 45 k T. Note tht y (; s) nd f H (; s) could be combined into one potentil in eution (). Howeve, we keep them septe becuse in the FokkePlnck fomultion, the effect of the membne potentil bie, f H (; s), is modeled by boundy conditions, while 3

4 the effect of otostto chge intections e cied by the potentil y(; s), which esides in the eutions of motion. To compute the toue geneted by the moto, eutions () must be solved simultneously with the Mkov pocess govening the hopping of potons on nd off of the oto sites. lthough we dw the ottion of the oto s link (dshed line) between sttes nd, the ottion of the oto fom to +p/1 cnnot be teted simply s single Mkov step fo the esons listed below: The ottion of the oto is continuous. The ottion of the oto fom to +d cn be teted s single Mkov step only if the diffusion of the oto in [, +d] is much fste thn the net ottion of the oto fom to +d. The time scle fo diffusion in [, +d] is ~d / nd the time scle of the net ottion is ~d/<v>. Theefoe, if d is smll enough, the diffusion is lwys fste thn the net ottion. This is the essence of the numeicl discetiztion of the model. Howeve, d = p/1 is not smll enough, so the ottion fom to +p/1 cnnot be teted s single Mkov step; insted it hs to be teted s seuence of smlle Mkov steps. The effect of the stto chge, g10, on the oto is stongly ngledependent. When potonted oto site psses g10, the stto chge educes the effective pk of the oto site nd foces the oto site to elinuish its poton. When oto site is f fom the stto chge, its lge pk cn hold the poton tightly. This pevents mny futile potontion nd depotontion cycles. If we tet the ottion fom to +p/1 s single Mkov step, then we cnnot model the ngledependence of the intections between the stto nd oto chges. C. FokkePlnck eution fomultion In the FokkePlnck fomultion coesponding to eutions (), the stte of the system is descibed by the fou pobbility density functions: é (, t) = ë F (, t) (, t) (, t) (, t) ù û whee s (,t) is the pobbility density tht the moto is in stte s nd the oto is t loction t time t. These distibutions evolve ccoding to the convective diffusion eutions 1 ì dy = t z îè d ý þ + + K (4) whee = k T/z is the diffusion coefficient of the coto. The electosttic potentil mtix is (3) 4

5 = Y éy ù 0 y ( ) y ( ) F 0 ë y ( ) û whee y s () is the potentil cting on the oto due to the electosttic intections between the oto sites nd the stto chges when the two oto sites e in stte s. The boundy conditions fo eution (4) e given by oundy condition fo ((o o): eflecting t = 0 nd t d = p/1): ì1 dy îz è d oundy condition fo ((o ): eflecting t = 0): ì1 dy îz è d ì1 dy + ý = 0 ; + 0 þ 0 z è d ý = (6) = î þ= d + ý = 0 þ = 0 oundy condition fo F (( ): peiodic with peiod = d): ì1 dy F F 1 dy F F ì F + t F z è d ý = + + î þ 0 z è d ý = î þ= d oundy condition fo (( o): eflecting t = d): ì1 dy îz è d + ý = 0 þ = d The pobbility flux leving the ight end ( = d) of stte is eul to the flux enteing the left end ( = 0) of stte : (5) (7) (8) (9) ì1 dy 1 dy ì + t z è d ý = + + î þ d z è d ý = î þ= 0. Numeicl Clcultions (10).1 Moto without g10: pue ownin tchet In this model, we ssume: k in = the te of poton hopping into the chnnel fom the cidic side (low ph) of the membne. It is independent of the oto position,, nd independent of the stte of the othe site. 5

6 k in = the te of poton hopping into the chnnel fom the bsic side (high ph) of the membne. It is independent of the oto position,, nd independent of the stte of the othe site. k out = the te of poton hopping off the site to the cidic side. It is independent of the oto position,, nd independent of the stte of the othe site. k out = the te of poton hopping off the site to the bsic side. It is independent of the oto position,, nd independent of the stte of the othe site. These tnsition tes depend on the pmetes listed below: ph = poton concenttion on the cidic side (low ph) of the membne. ph = poton concenttion on the bsic side (high ph) of the membne. y = potentil dop coss the membne. f = the potentil dop t sufce (due to sufce chges) t the cidic side of the membne. f = the potentil dop t sufce (due to sufce chges) t the bsic side of the membne. p = poton diffusion coefficient. = dius of the chnnel leding to the oto sites.. Tnsition tes fo tchet model In this subsection we fist use k in nd k out s n exmple to demonstte ou stepbystep pocedue fo clculting the tnsition tes. Then we give the te fomuls fo the model without g10. The ection on the oto sites is epesented by t euilibium, sp61 + H + «sp61 H k [ sp61 ] = k sp61 H (11) in out sp H y definition, pk = ph + 61 log 10, fom which sp61 sp61 H sp61 = 10 pk ph The poton hopping tes, k in nd k out, e elted to pk by combining (11) nd (1): (1) 6

7 k k in out = 10 pk ph Fist conside the cse whee the potentil dop coss the membne is zeo nd thee is no sufce chge on the membne. Fo the cidic esevoi we hve k k ( 0) in pk ph 10 out ( 0) = The te k in(0) is limited by the te potons cn jump into the chnnel. We compute the poton te constnts fo enty into the chnnels by the Smoluchowski fomul 4 : The te k in(0) is given by (13) k in = è ç sufce poton è ç bsoption te to pefectly concenttion bsobing disk of dius (14) = ph kin nm p 13 poton concenttion t the cidic side bsoption te (15) Fom eution (13), the te k out(0) is given by pk k nm 10 4 (16) out = Using the pmete vlues listed in Tble 1 (ph = 7, = 0.5 nm nd p = 9.3x10 9 nm /s), we hve k in(0) = 1.1x10 3 /s. This is the te of potons hopping into the chnnel fom the cidic side when no sufce chge is on the membne. This poton inte is too smll to chieve the TP synthesis te of 400 TP/s. The poton inte cn be incesed by incesing the poton concenttion ne the membne sufce. The sufce chges on the membne incese (o decese) the sufce concenttion of potons, nd chnge the potentil dop inside the membne. The potentil dop inside the membne is the sum of the contibution fom membne potentil nd the contibution fom the sufce chges on the membne. The potentil dop inside the membne is y f f If thee is eul mount of sufce chges on ech side (i.e., f = f ), the contibution of the sufce chges is zeo. The potentil dop inside the membne does not ffect the te of potons jumping into the chnnel. It only chnges the te p (17) 10 ph is the poton concenttion in mole/lite. 1 mole/lite = 0.6 molec / nm 3 7

8 of potons jumping off the site. So the inte nd the offte fo the model without g10 e given by ph kin = 0. 6 nm 10 4 p f pk ( ) kout = 0. 6 nm 10 4 p exp f f y ç ph kin = 0. 6 nm 10 4 p f pk kout = 0. 6 nm 10 4 p exp y f f ç (18) (19) (0) (1) Fo the model without g10, the tnsition mtix enties e given by k = k = k F in k = k = k F out k = k = k F in k = k = k F out ().3 Moto including g10: lectostticlly ssisted tchet The tnsition tes fo the model with g10 e given by ph f k ( ) = 0. 6 nm 10 4 p pk ( f f ) y y y k ( ) = nm p ç exp expç ph f k ( ) = 0. 6 nm 10 4 p y f f pk y y k ( ) = nm p ç exp expç ph f kf ( ) = 0. 6 nm 10 4 p f f y pk yf y kf ( ) = nm p ç exp expç (3) (4) (5) (6) (7) (8) 8

9 ph f kf ( ) = 0. 6nm 10 4 p y f f pk y F y kf ( ) = nm p ç exp expç (9) (30). The electosttic foces ct ginst the oto motion The vege toue geneted diectly by the electosttic intections between the oto nd stto cn be computed fom p 1 tlectosttic = å S( ) y S ( ) d ò S = F,,, 0 t the opeting point fo TP synthesis, the vege toue geneted diectly by the electosttic intections between the oto nd stto is negtive. Howeve this is moe thn compensted by the effect of the electosttic intections on the oto sites' pk 's, which tightly couples the poton flux to the oto motion, nd incese the effectiveness of ectifying the otoõs diffusion. Tble 1 lists the pmete vlues used in the numeicl simultions. The complete simultion code in Mtlbª 5 is vilble on euest. (31) 9

10 PMT Vlue p = poton diffusion coefficient nm /s = oty diffusion coefficient of the oto 10 4 /s * e c = dielectic constnt of chnnel 10 e m = dielectic constnt of the membne 3 h = bilye viscosity h = height of the oto 1 poise 6 nm 1 / l = shielding length of stto chges 1.1 nm ph = bulk ph of the cidic esevoi moto = 7 pump = 6.6 ph = bulk ph of the bsic esevoi moto = 8.4 pump = 7.6 = 'dius' of the poton chnnel = dius of oto x = distnce between sp61 esidues = p/1 ph = ph diffeence coss the membne y = membne potentil f = potentil dop by sufce chges t the cidic side f = potentil dop by sufce chges t the bsic side Tble 1. Pmete vlues. 0.5 nm 5 nm.6 nm 80 mv = 3. k T 140 mv = 5.6 k T.3 k T (without g10).0 k T (with g10).3 k T (without g10).0 k T (with g10) * The diffusion coefficient of the oto ws computed fom = k T/(6phh ), nd ws modified to eflect the fct tht pt of the oto is not subject to the membne viscosity. Potentil dop of.3 k T by sufce chges cn educe the sufce ph vlue (incese the sufce concenttion) by 1. 10

11 efeences 1. isken, H. The FokkePlnck ution (SpingeVelg, New Yok, 1989).. oeing, C. in 1990 ectues in Complex Systems (eds. Ndel,. & Stein,.) 351 (ddisonwesley, edwood City, C, 1990). 3. Iselchvili, J. Intemolecul nd Sufce Foces (cdemic Pess, New Yok, 199). 4. eg, H. ndom Wlks in iology (Pinceton Univesity Pess, Pinceton, N.J., 1983). 11

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

Dynamically Equivalent Systems. Dynamically Equivalent Systems. Dynamically Equivalent Systems. ME 201 Mechanics of Machines

Dynamically Equivalent Systems. Dynamically Equivalent Systems. Dynamically Equivalent Systems. ME 201 Mechanics of Machines ME 0 Mechnics of Mchines 8//006 Dynmicy Equivent Systems Ex: Connecting od G Dynmicy Equivent Systems. If the mss of the connecting od m G m m B m m m. Moment out cente of gvity shoud e zeo m G m B Theefoe;

More information

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy: LCTROSTATICS. Quntiztion of Chge: Any chged body, big o smll, hs totl chge which is n integl multile of e, i.e. = ± ne, whee n is n intege hving vlues,, etc, e is the chge of electon which is eul to.6

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

Electronic Supplementary Material

Electronic Supplementary Material Electonic Supplementy Mteil On the coevolution of socil esponsiveness nd behvioul consistency Mx Wolf, G Snde vn Doon & Fnz J Weissing Poc R Soc B 78, 440-448; 0 Bsic set-up of the model Conside the model

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018. SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Fourier-Bessel Expansions with Arbitrary Radial Boundaries Applied Mthemtics,,, - doi:./m.. Pulished Online My (http://www.scirp.og/jounl/m) Astct Fouie-Bessel Expnsions with Aity Rdil Boundies Muhmmd A. Mushef P. O. Box, Jeddh, Sudi Ai E-mil: mmushef@yhoo.co.uk

More information

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r Wok, Potentil Enegy, Consevtion of Enegy the electic foces e consevtive: u Fd = Wok, Potentil Enegy, Consevtion of Enegy b b W = u b b Fdl = F()[ d + $ $ dl ] = F() d u Fdl = the electic foces e consevtive

More information

Electricity & Magnetism Lecture 6: Electric Potential

Electricity & Magnetism Lecture 6: Electric Potential Electicity & Mgnetism Lectue 6: Electic Potentil Tody s Concept: Electic Potenl (Defined in tems of Pth Integl of Electic Field) Electicity & Mgnesm Lectue 6, Slide Stuff you sked bout:! Explin moe why

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

Continuous Charge Distributions

Continuous Charge Distributions Continuous Chge Distibutions Review Wht if we hve distibution of chge? ˆ Q chge of distibution. Q dq element of chge. d contibution to due to dq. Cn wite dq = ρ dv; ρ is the chge density. = 1 4πε 0 qi

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

Chapter 2: Electric Field

Chapter 2: Electric Field P 6 Genel Phsics II Lectue Outline. The Definition of lectic ield. lectic ield Lines 3. The lectic ield Due to Point Chges 4. The lectic ield Due to Continuous Chge Distibutions 5. The oce on Chges in

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

MAGNETIC EFFECT OF CURRENT & MAGNETISM

MAGNETIC EFFECT OF CURRENT & MAGNETISM TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

PX3008 Problem Sheet 1

PX3008 Problem Sheet 1 PX38 Poblem Sheet 1 1) A sphee of dius (m) contins chge of unifom density ρ (Cm -3 ). Using Guss' theoem, obtin expessions fo the mgnitude of the electic field (t distnce fom the cente of the sphee) in

More information

= ΔW a b. U 1 r m 1 + K 2

= ΔW a b. U 1 r m 1 + K 2 Chpite 3 Potentiel électiue [18 u 3 mi] DEVOIR : 31, 316, 354, 361, 35 Le potentiel électiue est le tvil p unité de chge (en J/C, ou volt) Ce concept est donc utile dns les polèmes de consevtion d énegie

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chpte 24 Guss s Lw CHAPTR OUTLIN 24.1 lectic Flux 24.2 Guss s Lw 24.3 Appliction of Guss s Lw to Vious Chge Distibutions 24.4 Conductos in lectosttic uilibium 24.5 Foml Deivtion of Guss s Lw In tble-top

More information

Multiple-input multiple-output (MIMO) communication systems. Advanced Modulation and Coding : MIMO Communication Systems 1

Multiple-input multiple-output (MIMO) communication systems. Advanced Modulation and Coding : MIMO Communication Systems 1 Multiple-input multiple-output (MIMO) communiction systems Advnced Modultion nd Coding : MIMO Communiction Systems System model # # #n #m eceive tnsmitte infobits infobits #N #N N tnsmit ntenns N (k) M

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

NS-IBTS indices calculation procedure

NS-IBTS indices calculation procedure ICES Dt Cente DATRAS 1.1 NS-IBTS indices 2013 DATRAS Pocedue Document NS-IBTS indices clcultion pocedue Contents Genel... 2 I Rw ge dt CA -> Age-length key by RFA fo defined ge nge ALK... 4 II Rw length

More information

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Capacitance! What s Next! Review! Lab this week! Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this mteil useful? You cn help ou tem to keep this site up nd bing you even moe content conside donting vi the link on ou site. Still hving touble undestnding the mteil? Check out ou Tutoing pge to

More information

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , ,

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , , SURFACE TENSION Definition Sufce tension is popety of liquid by which the fee sufce of liquid behves like stetched elstic membne, hving contctive tendency. The sufce tension is mesued by the foce cting

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s Chpte 5: Cuent, esistnce nd lectomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m q ndomizing Collisions (momentum, enegy) >esulting Motion http://phys3p.sl.psu.edu/phys_nim/m/ndom_wlk.vi

More information

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS . (D). (B). (). (). (D). (A) 7. () 8. (B) 9. (B). (). (A). (D). (B). (). (B) NAAYANA I I T / T A A D E Y XIS-I-IIT-SA (..7) o m m o n c t i c e T e s t 9 XI-I SA Dte:..7 ANSWE YSIS EISTY ATEATIS. (B).

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

2.2 This is the Nearest One Head (Optional) Experimental Verification of Gauss s Law and Coulomb s Law

2.2 This is the Nearest One Head (Optional) Experimental Verification of Gauss s Law and Coulomb s Law 2.2 This is the Neest One Hed 743 P U Z Z L R Some ilwy compnies e plnning to cot the windows of thei commute tins with vey thin lye of metl. (The coting is so thin you cn see though it.) They e doing

More information

r = (0.250 m) + (0.250 m) r = m = = ( N m / C )

r = (0.250 m) + (0.250 m) r = m = = ( N m / C ) ELECTIC POTENTIAL IDENTIFY: Apply Eq() to clculte the wok The electic potentil enegy of pi of point chges is given y Eq(9) SET UP: Let the initil position of q e point nd the finl position e point, s shown

More information

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57 Gols: 1. Undestnd volume s the sum of the es of n infinite nume of sufces. 2. Be le to identify: the ounded egion the efeence ectngle the sufce tht esults fom evolution of the ectngle ound n xis o foms

More information

4.2 Boussinesq s Theory. Contents

4.2 Boussinesq s Theory. Contents 00477 Pvement Stuctue 4. Stesses in Flexible vement Contents 4. Intoductions to concet of stess nd stin in continuum mechnics 4. Boussinesq s Theoy 4. Bumiste s Theoy 4.4 Thee Lye System Weekset Sung Chte

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Problem Set 3 SOLUTIONS

Problem Set 3 SOLUTIONS Univesity of Albm Deptment of Physics nd Astonomy PH 10- / LeCli Sping 008 Poblem Set 3 SOLUTIONS 1. 10 points. Remembe #7 on lst week s homewok? Clculte the potentil enegy of tht system of thee chges,

More information

Elastic scattering of 4 He atoms at the surface of liquid helium

Elastic scattering of 4 He atoms at the surface of liquid helium Indin Jounl of Pue & Applied Physics Vol. 48, Octobe, pp. 743-748 Elstic sctteing of 4 He toms t the sufce of liquid helium P K Toongey, K M Khnn, Y K Ayodo, W T Skw, F G Knyeki, R T Eki, R N Kimengichi

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems. Physics 55 Fll 5 Midtem Solutions This midtem is two hou open ook, open notes exm. Do ll thee polems. [35 pts] 1. A ectngul ox hs sides of lengths, nd c z x c [1] ) Fo the Diichlet polem in the inteio

More information

General Physics (PHY 2140)

General Physics (PHY 2140) Genel Physics (PHY 40) Lightning Review Lectue 3 Electosttics Lst lectue:. Flux. Guss s s lw. simplifies computtion of electic fields Q Φ net Ecosθ ε o Electicl enegy potentil diffeence nd electic potentil

More information

Language Processors F29LP2, Lecture 5

Language Processors F29LP2, Lecture 5 Lnguge Pocessos F29LP2, Lectue 5 Jmie Gy Feuy 2, 2014 1 / 1 Nondeteministic Finite Automt (NFA) NFA genelise deteministic finite utomt (DFA). They llow sevel (0, 1, o moe thn 1) outgoing tnsitions with

More information

This chapter is about energy associated with electrical interactions. Every

This chapter is about energy associated with electrical interactions. Every 23 ELECTRIC PTENTIAL whee d l is n infinitesiml displcement long the pticle s pth nd f is the ngle etween F nd d l t ech point long the pth. econd, if the foce F is consevtive, s we defined the tem in

More information

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts Chpte 5: Cuent, esistnce nd Electomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m qe ndomizing Collisions (momentum, enegy) =>esulting Motion Avege motion = Dift elocity = v d

More information

ELECTROSTATICS. JEE-Physics ELECTRIC CHARGE

ELECTROSTATICS. JEE-Physics ELECTRIC CHARGE J-Physics LCTIC CHAG LCTOSTATICS Chge is the popety ssocited with mtte due to which it poduces nd epeiences electicl nd mgnetic effects. The ecess o deficiency of electons in body gives the concept of

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PE ELECTOSTATICS C Popeties of chges : (i) (ii) (iii) (iv) (v) (vi) Two kinds of chges eist in ntue, positive nd negtive with the popety tht unlike chges ttct ech othe nd like chges epel ech othe. Ecess

More information

Polymer A should have the medium T g. It has a larger sidechain than polymer B, and may also have hydrogen bonding, due the -COOH group.

Polymer A should have the medium T g. It has a larger sidechain than polymer B, and may also have hydrogen bonding, due the -COOH group. MATERIALS 0 INTRODUTION TO STRUTURE AND PROPERTIES WINTER 202 Poblem Set 2 Due: Tuesdy, Jnuy 3, :00 AM. Glss Tnsition Tempetue ) The glss tnsition tempetue, T g, is stongly govened by the bility of the

More information

CHAPTER 29 ELECTRIC FIELD AND POTENTIAL EXERCISES

CHAPTER 29 ELECTRIC FIELD AND POTENTIAL EXERCISES HPTER ELETRI FIELD ND POTENTIL EXERISES. oulob Newton l M L T 4 k F.. istnce between k so, foce k ( F ( The weight of boy 4 N 4 N wt of boy So,. foce between chges 4 So, foce between chges.6 weight of

More information

CHAPTER 2 ELECTROSTATIC POTENTIAL

CHAPTER 2 ELECTROSTATIC POTENTIAL 1 CHAPTER ELECTROSTATIC POTENTIAL 1 Intoduction Imgine tht some egion of spce, such s the oom you e sitting in, is pemeted by n electic field (Pehps thee e ll sots of electiclly chged bodies outside the

More information

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1 Week : DTMC Alictions Rnking Web ges & Slotted ALOHA etwok efonce - Outline Aly the theoy of discete tie Mkov chins: Google s nking of web-ges Wht ge is the use ost likely seching fo? Foulte web-gh s Mkov

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

CHAPTER? 29 ELECTRIC FIELD AND POTENTIAL EXERCISES = 2, N = (5.6) 1 = = = = = Newton

CHAPTER? 29 ELECTRIC FIELD AND POTENTIAL EXERCISES = 2, N = (5.6) 1 = = = = = Newton Downloe fo HPTER? ELETRI FIELD ND POTENTIL EXERISES. oulob Newton l M L T 4 k F.. istnce between k so, foce k ( F ( The weight of boy 4 N 4 N wt of boy.5 So, foce between chges 4 So, foce between chges

More information

Production Mechanism of Quark Gluon Plasma in Heavy Ion Collision. Ambar Jain And V.Ravishankar

Production Mechanism of Quark Gluon Plasma in Heavy Ion Collision. Ambar Jain And V.Ravishankar Poduction Mechnism of Quk Gluon Plsm in Hevy Ion Collision Amb Jin And V.Rvishnk Pimy im of theoeticlly studying URHIC is to undestnd Poduction of quks nd gluons tht fom the bulk of the plsm ( ) t 0 Thei

More information

r a + r b a + ( r b + r c)

r a + r b a + ( r b + r c) AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

Chapter 23 Electrical Potential

Chapter 23 Electrical Potential hpte Electicl Potentil onceptul Polems [SSM] A poton is moved to the left in unifom electic field tht points to the ight. Is the poton moving in the diection of incesing o decesing electic potentil? Is

More information

Prof. Anchordoqui Problems set # 12 Physics 169 May 12, 2015

Prof. Anchordoqui Problems set # 12 Physics 169 May 12, 2015 Pof. Anchodoqui Poblems set # 12 Physics 169 My 12, 2015 1. Two concentic conducting sphees of inne nd oute dii nd b, espectively, cy chges ±Q. The empty spce between the sphees is hlf-filled by hemispheicl

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Unit 1. Electrostatics of point charges

Unit 1. Electrostatics of point charges Unit 1 Electosttics of point chges 1.1 Intoduction 1. Electic chge 1.3 Electosttic foces. Coulomb s lw 1.4 Electic field. Field lines 1.5 Flux of the electic field. Guss s lw 1.6 Wok of the foces of electic

More information

Michael Rotkowitz 1,2

Michael Rotkowitz 1,2 Novembe 23, 2006 edited Line Contolles e Unifomly Optiml fo the Witsenhusen Counteexmple Michel Rotkowitz 1,2 IEEE Confeence on Decision nd Contol, 2006 Abstct In 1968, Witsenhusen intoduced his celebted

More information

(1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored.

(1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored. Cpcito Cpcito: Cpcito ( o conense ) is evice fo stoing chge. It essentilly consists of two conucting sufces such s two pltes o two spheicl shell o two cylines etc. kept exctly pllel to ech othe septe y

More information

Lecture 4. Sommerfeld s theory does not explain all

Lecture 4. Sommerfeld s theory does not explain all Lectue 4 Nely Fee Electon Model 4. Nely Fee Electon Model 4.. Billoiun Zone 4.. Enegy Gps 4. Tnsltionl Symmety Bloch s Theoem 4. Konig-Penney Model 4.4 Tight-Binding Appoximtion 4.5 Exmples Refeences:.

More information

Plane Wave Expansion Method (PWEM)

Plane Wave Expansion Method (PWEM) /15/18 Instucto D. Rymond Rumpf (915) 747 6958 cumpf@utep.edu EE 5337 Computtionl Electomgnetics Lectue #19 Plne Wve Expnsion Method (PWEM) Lectue 19 These notes my contin copyighted mteil obtined unde

More information