David Blaschke Univ. Wroclaw & JINR Dubna

Size: px
Start display at page:

Download "David Blaschke Univ. Wroclaw & JINR Dubna"

Transcription

1 David Blaschke Univ. Wroclaw & JINR Dubna Warszawa, 28 th November 2007

2 David Blaschke Univ. Wroclaw & JINR Dubna Mass & Spin Phase diagram Mass clustering = Phase transition High density EoS with Phase transition Masquerade and Cooling of Hybrid stars Phase diagram of dense matter Warszawa, 28 th November 2007

3 Young binary system: 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Masses of Neutron Stars in binaries - clustering vs. maximum Old binary system Lattimer, Prakash, PRL 94 (2005) updates

4 LMXB s show: Accretion (mass/spin evolution) X-ray bursts with quasiperiodic brightness oscillations (QPO s) further GRT effects (ISCO) Ω {khz] No Stationary Rotating Stars Ω max (N) Hadronic Stars over 100 million years about 60 million years N crit (Ω) 0.6 TG 1.0 TG Quark Core Stars N max (Ω) N [N sun ] Black Holes Poghosyan, Grigorian, D.B., ApJ 551: L73 (2001) ν [khz] Phase transition signal: Population clustering at N crit (Ω) QPO-phenomenon gives information about Mass-radius relation Rotation frequency Ω N plane Hertzsprung-Russell diagram for binaries!

5 Ω 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Double Neutron star: Masses in Double Neutron Stars - a Waiting Point phenomenon? Moment of Inertia Ω [khz] No Stationary Rotating Stars Hadronic Stars Quark Core Stars Black Holes N/N. N Ω [khz] DBHF (Bonn A) - NJL Neutron Stars M crit (Ω), =1.017 M crit (Ω), =1.020 M max (Ω) Ω max (M) J J B J (A) B B C J B Hybrid Stars B J (B) J Black Holes M [M sun ] E. van den Heuvel, arxiv: [astro-ph] D.B., T. Klähn, F. Weber, CBM Theory Book (2007)

6 Double core scenario: 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Baryon mass vs. gravitational mass - constraint or consistency? He v CO M G [M sun ] NLρδ D 3 C NLρ KVOR DD-F4 DBHF (Bonn A) BBG KVR APR98 FPS WFF without loss with 1% loss with 2% loss X X 1.23 J (B) v X X M N [M sun ] Dewi et al., MNRAS (2006) Podsiadlowski et al., MNRAS 361 (2005) 1243 D.B., T. Klähn, F. Weber, CBM Theory Book (2007)

7 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Cooling + Structure 2.5 PSR B B [MeV] E ,4 0,8 n [fm -3 ] NLρ NLρδ D 3 C DD-F4 KVR KVOR BBG DBHF E S 0 0,4 0,8 n [fm -3 ] E 0 + α 2 E S 0 0,4 0,8 n [fm -3 ] M [M sun ] typical neutron stars NLρ NLρδ D 3 C DD-F4 KVR KVOR BBG DBHF (Bonn A) n(r = 0) [fm -3 ] DU threshold for most hadronic EoS active in neutron stars with typical masses! Klähn, et al., PRC 74, (2006); [nucl-th/ ]

8 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling log 10 (T s [K]) Crab 3C58 Brightness Constraint Vela EoS: DBHF Crust: Tsuruta law Gaps: AV18 (Takatsuka et al.) CTA 1 M/M O = RXJ log 10 (t[yr]) log 10 (T s [K]) Crab 3C58 Brightness Constraint M/M O = Vela 5.8 EoS: DDF-4 CTA 1 Crust: Tsuruta law RXJ 1856 Gaps: AV18 (Takatsuka et al.) log 10 (t[yr]) DU threshold sensitivity to tiny mass variations; Description of Vela not possible with typical masses! S. Popov et al., PRC 74 (2006); D.B. and H. Grigorian, Prog. Part. Nucl. Phys. 59 (2007) 139

9 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling 40 DBHF DDF Popov et al. (2006) ,2 M [M O ] DU threshold: overpopulation of a small mass window; Hadronic cooling not fast enough to describe Vela with M < 1.5 M! D.B. and H. Grigorian, Prog. Part. Nucl. Phys. 59 (2007) 139; [astro-ph/ ]

10 M [M sun ] causality constraint NLρ NLρδ 4U D 3 C DD-F4 KVR KVOR BBG DBHF (Bonn A) APR (Dany Page) XTE J RX J1856 4U R [km] P [MeV fm -3 ] Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Flow constraint NLρ, NLρδ D 3 C DD-F4 KVR KVOR BBG DBHF (Bonn A) n [fm -3 ] Large Mass ( 2 M ) and radius (R 12 km) stiff EoS; Flow in Heavy-Ion Collisions not too stiff EoS! Klähn, D.B., Typel, Fuchs, Faessler, Grigorian, Miller, Roepke, Truemper, et al. PRC 74, (2006)

11 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling causality constraint PSR J RX J EXO M [M sun ] DBHF - Bonn A DU onset 0.2 z = 0.1 P [MeV fm -3 ] 10 2 Flow constraint DBHf - Bonn A R [km] Large Mass ( 2 M ) and radius (R 12 km) stiff EoS; But: DBHF has DU onset in typical mass regon! 10 1 Danielewicz et al., Science (2002) n [fm -3 ] Flow in Heavy-Ion Collisions not too stiff EoS! But: DBHF violates at high densities Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Roepke, Truemper, [arxiv:nucl-th/ ] (2006)

12 C NU N O R T LO Introduction Hadronic Cooling Quark Substructure and Phases Hybrid Star Cooling Summary

13 Ch ira l Qu ark Mo del CL NU N O OTR Field Theo ry Introduction Hadronic Cooling Quark Substructure and Phases Hybrid Star Cooling Summary

14 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Summary Partition function for chiral Quark Field theory { β Z[T, V, µ] = D ψdψ exp dτ V d 3 x[ ψ(iγ µ µ m γ 0 µ)ψ L int ] Current-current coupling (4-fermion interaction) L int = M=π,σ,... G M( ψγ M ψ) 2 + D G D( ψ C Γ D ψ) 2 Bosonisation (Hubbard-Stratonovich Transformation) { Z[T, V, µ] = Dφ M D D D D exp φ 2 M 4G M M D Collective (stochastic) Fields: Mesons (φ M ) and Diquarks ( D ) Systematic Evaluation: Mean field + Fluctuations } } D G D 2 Tr lns 1 [{M M }, { D }] Mean-field Approximation: Order parameter for Phase transitions (Gap equations) Fluctuations (2. Order): Hadronic Correlations (Bound- & Scattering states) Fluctuations of higher Order: Hadron-Hadron Interaction

15 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Summary T [MeV] NQ χ 2SC =1 NQ-2SC g2sc 2SC gusc gcfl usc 200 CFL M s =175 MeV µ [MeV] Rüster et al, PRD 72 (2005) ; Blaschke et al, PRD 72 (2005) The phases are: NQ: ud = us = ds = 0; NQ-2SC: ud 0, us = ds = 0, 0 χ 2SC 1; 2SC: ud 0, us = ds = 0; usc: ud 0, us 0, ds = 0; CFL: ud 0, ds 0, us 0; Result: Gapless phases only at high T, CFL only at high chemical potential, At T MeV: mixed NQ-2SC phase, Critical point (T c,µ c )=(48 MeV, 353 MeV), Strong coupling, G D = G S, similar, no NQ-2SC mixed phase.

16 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling M [M sun ] causality constraint PSR J DBHF = 0.92, η V = 0.00 = 1.00, η V = 0.00 = 1.00, η V = 0.25 = 1.02, η V = 0.25 = 1.03, η V = RX J EXO z = 0.1 P [MeV fm -3 ] Flow constraint DBHF = 0.92, η V = 0.00 = 1.00, η V = 0.25 = 1.02, η V = 0.25 = 1.03, η V = R [km] n [fm -3 ] Large Mass ( 2 M ) and radius (R 12 km) stiff quark matter EoS; Note: DU problem of DBHF removed by deconfinement! and: CFL core Hybrids unstable! Flow in Heavy-Ion Collisions not too stiff EoS! Note: Quark matter removes violation by DBHF at high densities Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Roepke, Truemper, [arxiv:nucl-th/ ] (2006)

17 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling I [M sun km 2 ] B PSR J A DBHF = 0.92, η V = 0.00 = 1.00, η V = 0.00 = 1.00, η V = 0.25 = 1.03, η V = 0.25 PSR J Redshift [z] DBHF = 0.92, η V = 0.00 = 1.00, η V = 0.00 = 1.00, η V = 0.25 = 1.02, η V = 0.25 = 1.03, η V = 0.25 EXO = 1.02, η V = M [M sun ] M [M sun ] Moment of Inertia objects with large masses necessary Surface redshift large values (> 0.5) troublesome for quark matter Alford et al., ApJ 629, 969 (2005); Klähn et al., nucl-th/

18 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling The energy flux per unit time l(r) through a spherical slice at distance r from the center is: l(r) = 4πr 2 k(r) (T eφ ) e 1 Φ 2M r r. The factor e Φ 1 2M r corresponds to relativistic corrections of time and distance scales. The equations for energy balance and thermal energy transport are: (le 2Φ ) = 1 N B n (ɛ νe 2Φ + c V t (T eφ )) (T e Φ ) = 1 le Φ N B k 16π 2 r 4 n where n = n(r) is the baryon number density, N B = N B (r) is the total baryon number in the sphere with radius r and N B r = 4πr2 n(1 2M r ) 1/2 F. Weber: Pulsars as Astrophys. Labs... (1999); D.B., Grigorian, Voskresensky, A& A 368 (2001) 561.

19 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Quark direct Urca (QDU) the most efficient processes d u + e + ν and u + e d + ν ɛ QDU ν α s uye 1/3 ζ QDU T9 6 erg cm 3 s 1, Compression u = n/n 0 2, strong coupling α s 1 Quark Modified Urca (QMU) and Quark Bremsstrahlung (QB) d + q u + q + e + ν and q 1 + q 2 q 1 + q 2 + ν + ν ɛ QMU ν ɛ QB ν ζ QMU T9 8 erg cm 3 s 1. Suppression due to the pairing QDU : ζ QDU exp( q /T ) QMU and QB : ζ QMU exp( 2 q /T ) for T < T crit,q 0.57 q e+ e e+ e+ ν+ ν ɛ ee ν = Ye 1/3 u 1/3 T9 8 erg cm 3 s 1, becomes important for q /T >> 1 d d u Quark PBF - ν e - u ν - e - u u BLASCHKE, GRIGORIAN, VOSKRESENSKY, ASTRON. & ASTROPHYS. 368 (2001) 561; JAIKUMAR, PRAKASH, PLB 516 (2001) 345 FLOWERS, ITOH, APJ 250 (1981) 750; SCHAAB, VOSKRESENSKY, SEDRAKIAN, WEBER, WEIGEL, A & A 321 (1997)591 YAKOVLEV, LEVENFISH, SHIBANOV, PHYS. USP. 169 (1999) 825; BAIKO, HAENSEL, ACTA PHYS. POLON. B 30 (1999) 1097 JAIKUMAR, ROBERTS, SEDRAKIAN, PRC 73 (2006) ; WANG, WANG, WU, PRC 74 (2006)

20 2. Hadronic Cooling 3. Quark Matter Phase Diagram 4. Hybrid Star Cooling 2SC phase: 1 color (blue) is unpaired (mixed superconductivity) Ansatz 2SC + X phase: X (µ) = 0 exp[α(1 µ/µ c )] Grigorian, D.B., Voskresensky, PRC 71 (2005) Model 0 [MeV] α I 1 10 II III IV 5 25 Popov, Grigorian, D.B., PRC 74 (2006) [MeV] n c [n 0 ] n 1S 0 p 1S 0 n 3P 2 q X (I) q X (II) q X (III) q X (IV) n [n 0 ] Pairing gaps for hadronic phase AV18 - Takatsuka et al. (2004) and 2SC + X phase

21 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling log 10 (T s [K]) Model I log 10 (t[yr]) 2SC + X phase, 0 = 1 MeV, α = 10 Too large mass for Vela required N Model I BSC S [cts s -1 ] Log N - Log S test fails Popov, Grigorian, D.B., PRC 74 (2006)

22 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 100 log 10 (T s [K]) Model IV log 10 (t[yr]) 2SC + X phase, 0 = 5 MeV, α = 25 Temperature-age and Vela mass OK N BSC 10 1 Model IV S [cts s -1 ] Log N - Log S test passed Popov, Grigorian, D.B., PRC 74 (2006)

23 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Hybrid star cooling passes all modern tests: Temperature - age Log N - Log S Brightness constraint Vela mass (Population sysnthesis) Popov, Grigorian, D.B., PRC 74 (2006) D.B., H. Grigorian, PPNP (2007) Model I Model II Model III Model IV Popov et al. (2006) M [M sun ]

24 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Ansatz Color-spin-locking (CSL) gap: ˆ = (γ 3 λ 2 + γ 1 λ 7 + γ 2 λ 5 ) Aguilera et al., PRD 72 (2005) ; PRD 74 (2006) E i [MeV] i = 1 i = 3 i = 5 M = 330 MeV p [MeV] M = 400 MeV p [MeV] Phases of superfluid 3 He

25 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling ε ν /ε µ q = 400 MeV µ q = 425 MeV µ q = 450 MeV µ q = 475 MeV µ q = 500 MeV T/T c Color-spin-locking (iso-csl) gap: ˆ = (γ 3 λ 2 + γ 1 λ 7 + γ 2 λ 5 ) Aguilera et al., PRD 72 (2005) ; PRD 74 (2006) E i [MeV] i = 1 i = 3 i = 5 M = 330 MeV M = 400 MeV Neutrino Emissivity Berdermann, Ph.D. Thesis (Rostock, 2007) D.B., Berdermann, [hep-ph] p [MeV] p [MeV] Schmitt, Shovkovy, Wang, PRD 73 (2006)

26 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling Stable stars NQ g2sc 2SC Twins gusc usc gcfl NQ g2sc 2SC Stable stars gdsc gusc gcfl T [MeV] χsb s/n B =3 Twins CFL µ [MeV] 3.0 T [MeV] s/n B = CFL µ [MeV] Phase diagrams of charge neutral quark matter in β-equilibrium at strong coupling, η = 1.0, for fixed values of the electron neutrino chemical potential, µ ν = 0 (left-hand side) and µ ν = 200 MeV (right-hand side). F. Sandin, D.B., [arxiv:astro-ph/ ] PRD (2007) χsb

27 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling M G [M sun ] =1.02 DBHF, Y le =0.4 DBHF, Y le =0 DBHF+NJL, Y le =0.4 DBHF+NJL, Y le = n c [fm -3 ] Neutrinos trapped Neutrinos untrapped Neutrinos trapped Neutrinos untrapped M B [M sun ] M G [M sun ] M G [M sun ] The effect of neutrino untrapping (Y le = 0.4 0) on hybrid star configurations. The release of gravitational binding energy amounts to 0.04 M. Blue rectangle in lower right is the constraint by Podsiadlowski et al., MNRAS (2005) F. Sandin, D.B., T. Klähn, in preparation (2007)

28 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling =0.92 η V =0.0 T [MeV] NM (DD-F4) 2SC = 1.03 η V = 0.25 = η V = 0.00 = 0.75 η V = 0.00 CFL T [MeV] 50 NM (DDF4) 2SC CFL n B [fm -3 ] n B [fm -3 ] Phase diagrams for isospin-symmetric matter, for hybrid star maximum mass M max = 2.1 M (left-hand side) and M max = 1.7 M (right-hand side). D.B.,F. Sandin, T. Klähn, Proc. CPOD Conference (2007), in preparation.

29

30 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling 5. Summary 10 2 Supernova evolution in the phase diagram temperature T [MeV] 10 1 Nuclear matter 2SC density ρ [g cm -3 ]

31 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling 5. Summary 10 2 Supernova evolution in the phase diagram temperature T [MeV] 10 1 Nuclear matter 15 M sun (Harald Dimmelmeier) 2SC density ρ [g cm -3 ]

32 2. Hadronic Cooling + Structure 3. Quark Substructure + Phases 4. Hybrid Star Structure + Cooling 5. Summary 10 2 Supernova evolution in the phase diagram 40 M sun (Tobias Fischer) temperature T [MeV] 10 1 Nuclear matter 15 M sun (Harald Dimmelmeier) density ρ [g cm -3 ]

33

34 Discovery: Sept. 18, 2006 in NGC 1260 (Perseus) Distance: 72 Mpc=238 Mill. Ly (Smith et al.: astro-ph/ ) Light curve: 70 days rise time Energy release: erg= 10 bethe Progenitor star: 150 M? Engine: Quark-star formation? (Leahy & Ouyed: [astro-ph])

35 Supernova 1987A - 20 years later: Big mystery of rings! Double degenerate core in common envelope? 2.14 ms periodic signal Explanation for 99% of GRB? Middleditch, [astro-ph] CAMK Warsaw,

36 What has happened here?? Supernova 1987A - 20 years later: Big mystery of rings! Double degenerate core in common envelope? 2.14 ms periodic signal Explanation for 99% of GRB? Middleditch, [astro-ph] CAMK Warsaw,

37 1. Astrophysik kompakter Sterne 2. Quantenfeldtheorie dichter Materie 3. Quarkmaterie in Neutronensternen 4. Ausblick: Astro-Hadron Physik Exploration of the Hadron-Quark Phase transition: Relativistic Heavy ion collisions Nuclotron (NICA start 2013) NUKLOTRON 3 Baryon Density n [0.16 fm ] Mixed Phase: Quark - Hadron coexistence Precursor effects of the chiral phase transition?

38 1. Astrophysik kompakter Sterne 2. Quantenfeldtheorie dichter Materie 3. Quarkmaterie in Neutronensternen 4. Ausblick: Astro-Hadron Physik Exploration of the Hadron-Quark phase transition: Relativistic heavy ion collisions FAIR SIS300 (after 2014) 3 Baryon Density n [0.16 fm ] Is there a critical point? Signals of Chiral Symmetry (massless quarks)? Effects of Color Superconductivity (pseudogapphase)?

39 1. Astrophysik kompakter Sterne 2. Quantenfeldtheorie dichter Materie 3. Quarkmaterie in Neutronensternen 4. Ausblick: Astro-Hadron Physik Optical and Radio telescopes: Neutron stars (since at least 10 8 years) Arecibo (Puerto Rico): 305 m

40 1. Astrophysik kompakter Sterne 2. Quantenfeldtheorie dichter Materie 3. Quarkmaterie in Neutronensternen 4. Ausblick: Astro-Hadron Physik Optical and Radio telescopes: Neutron stars (since at least 10 8 years) Very Large Array (Socorro, NM): 27m x 25m

41 1. Astrophysik kompakter Sterne 2. Quantenfeldtheorie dichter Materie 3. Quarkmaterie in Neutronensternen 4. Ausblick: Astro-Hadron Physik X-ray satellites: Neutron stars (since at least 10 8 years) Chandra (since 1999):

42 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Summary THEORY OF EOS WITH CONSTRAINTS Nuclear Matter - Quark Matter Phase transition depends on details of the modeling, e.g. Coupling Constants, Form Factors Improve by using DSE Models Phase transition weakly first order, Masquerade effect Stable Neutron Stars with 2-Flavor Quark Matter Core possible EXPERIMENTAL OBSERVABLES Observation of Compact Star Configurations: Very massive stars (M > 2M ) require stiff EoS Large compact stars (R > 12 km) require stiff EoS Mass clustering in double neutron stars: observation of the quark matter onset? Cooling Evolution: Hadronic DU process should not occur: sensitive star mass dependence! Quark matter core all quarks gapped, min 30 kev, 2SC+X oder CSL phase? CFL phase unlikely, critical density (and gaps) too large, gcfl only at T > 50 MeV OUTLOOK Include hadronic fluctuations (bound and scattering states) at finite density: Quark Exchange (Pauli Blocking)

43 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Wroclaw

44 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Wroclaw Complex Physics of Compact Stars, Karpacz, February karp44

45 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling Wroclaw Complex Physics of Compact Stars, Karpacz, February karp44

David Blaschke Univ. Wroclaw & JINR Dubna

David Blaschke Univ. Wroclaw & JINR Dubna David Blaschke Univ. Wroclaw & JINR Dubna Warszawa, Thursday 14 th February, 28 David Blaschke Univ. Wroclaw & JINR Dubna Phase Diagram & Chiral Quark Model Mass and Flow constraint on high-density EoS

More information

David Blaschke Univ. Wroclaw & JINR Dubna. Krakow, May 18, PSR J in 3C58

David Blaschke Univ. Wroclaw & JINR Dubna. Krakow, May 18, PSR J in 3C58 David Blaschke Univ. Wroclaw & JINR Dubna Krakow, May 18, 2007 PSR J020564 in 3C58 David Blaschke Univ. Wroclaw & JINR Dubna Astro-Hadron Physics: HIC & Compact Stars Phase Diagrams Quark Matter Quark

More information

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna) Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna) Facets of Strong Interaction Physics, Hirschegg, January 17, 2012 Structure and Cooling

More information

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES David Blaschke Universität Bielefeld & JINR Dubna Collaboration: D. Aguilera, H. Grigorian, D. Voskresensky EoS and QCD Phase Transition

More information

Physics of Compact Stars

Physics of Compact Stars Physics of Compact Stars Crab nebula: Supernova 1054 Pulsars: rotating neutron stars Death of a massive star Pulsars: lab s of many-particle physics Equation of state and star structure Phase diagram of

More information

David Blaschke (Univ. Wroclaw & JINR Dubna)

David Blaschke (Univ. Wroclaw & JINR Dubna) David Blaschke (Univ. Wroclaw & JINR Dubna) INT Workshop, Seattle, August 15 th, 28 David Blaschke (Univ. Wroclaw & JINR Dubna) NCQM as a tool for strong QCD T,µ Mean-field: order params. & phase diagram

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications

Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications D. Blaschke (Wroclaw & Dubna) PSR J0737 3039 Collaboration (incomplete): D.E. Alvarez Castillo (Dubna), S. Benic

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

EOS Constraints From Neutron Stars

EOS Constraints From Neutron Stars EOS Constraints From Neutron Stars J. M. Lattimer Department of Physics & Astronomy Stony Brook University January 17, 2016 Bridging Nuclear and Gravitational Physics: the Dense Matter Equation of State

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Tobias Fischer University of Wroclaw (Poland) Bonn workshop on Formation and Evolution of Neutron Stars

More information

Cooling of isolated neutron stars as a probe of superdense matter physics

Cooling of isolated neutron stars as a probe of superdense matter physics Cooling of isolated neutron stars as a probe of superdense matter physics, Alexander Potekhin and Dmitry Yakovlev Ioffe Physical Technical Institute - Politekhnicheskaya 26, 194021 Saint-Petersburg, Russia

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

Color superconductivity in quark matter

Color superconductivity in quark matter Fedora GNU/Linux; L A TEX 2ǫ; xfig Color superconductivity in quark matter Mark Alford Washington University Saint Louis, USA Outline I Quarks at high density Cooper pairing, color superconductivity II

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Quark matter in compact stars: the Constant Sound Speed parameterization

Quark matter in compact stars: the Constant Sound Speed parameterization Quark matter in compact stars: the Constant Sound Speed parameterization Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà,

More information

An Introduction to Neutron Stars

An Introduction to Neutron Stars An Introduction to Neutron Stars A nuclear theory perspective Sanjay Reddy Theoretical Division Los Alamos National Lab Compressing matter: Liberating degrees of freedom 12,700 km 1km Density Energy Phenomena

More information

Tests of nuclear properties with astronomical observations of neutron stars

Tests of nuclear properties with astronomical observations of neutron stars Institute for Nuclear Theory 17 July 2014 Tests of nuclear properties with astronomical observations of neutron stars Wynn Ho University of Southampton, UK Nils Andersson University of Southampton, UK

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution

Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution D.N. Aguilera 1,2,D.Blaschke

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

Hadronization as Mott-Anderson localization in cqm

Hadronization as Mott-Anderson localization in cqm Hadronization as Mott-Anderson localization in cqm David Blaschke University of Wroclaw, Poland & JINR Dubna, Russia PSR J0348+0432 PSR J1614-2230 ECT* Workshop Hadronization & Statistical Model, Trento,

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Neutron Star Cooling. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México

Neutron Star Cooling. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México Neutron Star Cooling Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México 1 Core: homogeneous matter Swiss cheese Lasagna Spaghetti B Crust: nuclei + neutron superfluid Atmosphere

More information

Compact Stars within a SU(3) chiral Quark Meson Model

Compact Stars within a SU(3) chiral Quark Meson Model Compact Stars within a SU(3) chiral Quark Meson Model Andreas Zacchi Matthias Hanauske,3 Laura Tolos Jürgen Schaffner-Bielich Institute for Theoretical Physics Goethe University Frankfurt Institut de Ciencies

More information

CURRENT STATUS OF NEUTRON STAR THERMAL EVOLUTION AND RELATED PROBLEMS

CURRENT STATUS OF NEUTRON STAR THERMAL EVOLUTION AND RELATED PROBLEMS CURRENT STATUS OF NEUTRON STAR THERMAL EVOLUTION AND RELATED PROBLEMS Sachiko Tsuruta Physics Department, Montana State University Kiken Conference, Kyoto, Japan, September 1 2012 1 I. INTRODUCTION BRIEF

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae J. M. Lattimer Department of Physics & Astronomy Stony Brook University September 13, 2016 Collaborators:

More information

Rotating Neutron Stars Fridolin Weber San Diego State University San Diego, California USA

Rotating Neutron Stars Fridolin Weber San Diego State University San Diego, California USA Rotating Neutron Stars Fridolin Weber San Diego State University San Diego, California USA HYP 2006, 10-14 October 2006, Mainz, Germany Outline Neutron stars (Ultrafast) Rotation Compressed baryonic matter

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Thermal States of Transiently Accreting Neutron Stars in Quiescence arxiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday

More information

Astrophysics implications of dense matter phase diagram

Astrophysics implications of dense matter phase diagram Astrophysics implications of dense matter phase diagram Armen Sedrakian 1 1 Institute for Theoretical Physics, University of Frankfurt, Germany Hirschegg 2010 Januray 20, Hirschegg Introduction Phase diagram

More information

arxiv: v2 [nucl-th] 10 Oct 2017

arxiv: v2 [nucl-th] 10 Oct 2017 Mixed Phase within the Multi-polytrope Approach to High Mass Twins. David Alvarez-Castillo, 1,2 David Blaschke, 1,3,4 and Stefan Typel 5,6 arxiv:1709.08857v2 [nucl-th] 10 Oct 2017 1 Bogoliubov Laboratory

More information

Realistic nucleon force and X-ray observations of neutron stars

Realistic nucleon force and X-ray observations of neutron stars Realistic nucleon force and X-ray observations of neutron stars Pawe l Haensel haensel@camk.edu.pl New perspectives on neutron star interiors ECT*, Trento, Italy, October Pawe l Haensel (CAMK) Nucleon

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

PoS(QNP2012)029. Quark Matter in Compact Stars

PoS(QNP2012)029. Quark Matter in Compact Stars Institute for Theoretical Physics, University of Wrocław (Poland) E-mail: thomas.klaehn@gmail.com Neutron stars by their very nature are the most likely physical systems in nature where pure, deconfined

More information

Two types of glitches in a solid quark star model

Two types of glitches in a solid quark star model Two types of glitches in a solid quark star Enping Zhou Supervisor: Prof. Renxin Xu & Prof. Luciano Rezzolla 2015.01.13 1 Outline Motivation The The result D & C Challenges to the theories on pulsar glitches

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Neutron Star and Superfluidity

Neutron Star and Superfluidity Neutron Star and Superfluidity Ka Wai Lo Department of Physics, University of Illinois at Urbana-Champaign December 13, 2010 Abstract It is expected that under high density, nucleons in neutron star can

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

arxiv:nucl-th/ v1 13 Feb 2006

arxiv:nucl-th/ v1 13 Feb 2006 Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions arxiv:nucl-th/6238v1 13 Feb 26 T. Klähn, 1,2, D. Blaschke, 3,4, S. Typel, 3 E.N.E.

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

ERFORSCHUNG DES QCD PHASENDIAGRAMMS MIT SCHWERIONENSTÖSSEN UND KOMPAKTEN STERNEN

ERFORSCHUNG DES QCD PHASENDIAGRAMMS MIT SCHWERIONENSTÖSSEN UND KOMPAKTEN STERNEN ERFORSCHUNG DES QCD PHASENDIAGRAMMS MIT SCHWERIONENSTÖSSEN UND KOMPAKTEN STERNEN EXPLORATION OF THE QCD PHASE DIAGRAM WITH HEAVY-ION COLLISIONS AND COMPACT STARS David Blaschke Institute for Theoretical

More information

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California Fridolin Weber San Diego State University and University of California at San Diego San Diego, California INT Program INT-16-2b The Phases of Dense Matter, July 11 August 12, 2016 EMMI Rapid Reaction Task

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Thermal Emission. Cooling Neutron Stars

Thermal Emission. Cooling Neutron Stars Neutron Stars and Pulsars: about 40 Years after their Discovery 363th Heraeus-Seminar, Bad Honnef, May 14-19, 19, 2006 Thermal Emission from Cooling Neutron Stars Dany Page Instituto de Astronomía, UNAM,

More information

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars Brazilian Journal of Physics, vol. 36, no. 4B, December, 2006 1391 The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars L. P. Linares 1, M. Malheiro 1,2, 1 Instituto de Física, Universidade

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

David Blaschke (Univ. Wrocław & JINR Dubna)

David Blaschke (Univ. Wrocław & JINR Dubna) ÈÖÓ Ò Ò Å ØØ Ö Û Ø ÓÑÔ Ø ËØ Ö David Blaschke (Univ. Wrocław & JINR Dubna) STIαS, April 6 th, ÈÖÓ Ò Ò Å ØØ Ö Û Ø ÓÑÔ Ø ËØ Ö David Blaschke (Univ. Wrocław & JINR Dubna) T. Klähn, R. Łastowiecki, D. Zabłocki

More information

Neutron Star Observations and Their Implications for the Nuclear Equation of State

Neutron Star Observations and Their Implications for the Nuclear Equation of State Neutron Star Observations and Their Implications for the Nuclear Equation of State J. M. Lattimer Department of Physics & Astronomy Stony Brook University May 24, 2016 24 May, 2016, JINA-CEE International

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

arxiv: v1 [astro-ph.he] 16 Jul 2015

arxiv: v1 [astro-ph.he] 16 Jul 2015 Compact Stars in the QCD Phase Diagram IV (CSQCD IV) September 26-30, 2014, Prerow, Germany http://www.ift.uni.wroc.pl/~csqcdiv Proton gaps and cooling of neutron stars with a stiff hadronic EoS Hovik

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Constraints from the GW merger event on the nuclear matter EoS

Constraints from the GW merger event on the nuclear matter EoS COST Action CA16214 Constraints from the GW170817 merger event on the nuclear matter EoS Fiorella Burgio INFN Sezione di Catania CRIS18, Portopalo di Capo Passero, June 18-22, 2018 1 Schematic view of

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Gordon Baym University of Illinois, Urbana Workshop on Universal Themes of Bose-Einstein Condensation Leiden

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

The high density equation of state for neutron stars and (CC)-supernovae

The high density equation of state for neutron stars and (CC)-supernovae The high density equation of state for neutron stars and (CC)-supernovae Part I: Equations of state for neutron star matter Micaela Oertel micaela.oertel@obspm.fr Laboratoire Univers et Théories (LUTH)

More information

Sound modes and the two-stream instability in relativistic superfluids

Sound modes and the two-stream instability in relativistic superfluids Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford,

More information

arxiv: v1 [hep-ph] 25 Apr 2010

arxiv: v1 [hep-ph] 25 Apr 2010 Accessibility of color superconducting quark matter phases in heavy-ion collisions arxiv:1004.4375v1 [hep-ph] 5 Apr 010 D. B. Blaschke Institute for Theoretical Physics, University of Wroc law, 50-04 Wroc

More information

Few-particle correlations in nuclear systems

Few-particle correlations in nuclear systems Trento, 9. 4. 2014 Few-particle correlations in nuclear systems Gerd Röpke, Rostock Outline Quantum statistical approach to nuclear systems at subsaturation densities, spectral function Correlations and

More information

Equation of state constraints from modern nuclear interactions and observation

Equation of state constraints from modern nuclear interactions and observation Equation of state constraints from modern nuclear interactions and observation Kai Hebeler Seattle, March 12, 218 First multi-messenger observations of a neutron star merger and its implications for nuclear

More information

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Stellar and terrestrial observations from the mean field QCD model MANJARI BAGCHI PDF, TIFR, Mumbai MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Mira & Jishnu Dey, Presidency College,

More information

Cooling Neutron Stars. What we actually see.

Cooling Neutron Stars. What we actually see. Cooling Neutron Stars What we actually see. The Equilibrium We discussed the equilibrium in neutron star cores through this reaction (direct Urca). nëp + e à + ö e ö n = ö p + ö e + ö öe Does the reaction

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Gravitational waves from neutron stars and the nuclear equation of state

Gravitational waves from neutron stars and the nuclear equation of state Gravitational waves from neutron stars and the nuclear equation of state Ian Jones School of Mathematics, University of Southampton, UK University of Surrey, 18th October 2011 Context: the hunt for gravitational

More information

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves Farrukh J. Fattoyev Bao-An Li, William G. Newton Texas A&M University-Commerce 27 th Texas Symposium on Relativistic Astrophysics

More information

The Constant-Sound-Speed parameterization of the quark matter EoS

The Constant-Sound-Speed parameterization of the quark matter EoS The Constant-Sound-Speed parameterization of the quark matter EoS Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà, arxiv:1501.07902

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

arxiv:hep-ph/ v1 27 Nov 2001

arxiv:hep-ph/ v1 27 Nov 2001 Color Superconductivity and Blinking Proto-Neutron Stars arxiv:hep-ph/0111353v1 27 Nov 2001 G. W. Carter Department of Physics and Astronomy State University of New York Stony Brook, NY 11794-3800 1 Introduction

More information

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick 2 Interacting Fermion Systems: Hubbard-Stratonovich Trick So far we have dealt with free quantum fields in the absence of interactions and have obtained nice closed expressions for the thermodynamic potential,

More information

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars Journal of Physics: Conference Series OPEN ACCESS Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars To cite this article: G B Alaverdyan 2014 J. Phys.:

More information

Pulsar glitch dynamics in general relativity

Pulsar glitch dynamics in general relativity Pulsar glitch dynamics in general relativity Jérôme Novak (jerome.novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot Sourie, Novak, Oertel &

More information

Thomas Tauris Bonn Uni. / MPIfR

Thomas Tauris Bonn Uni. / MPIfR Thomas Tauris Bonn Uni. / MPIfR Heidelberg XXXI, Oct. 2013 1: Introduction Degenerate Fermi Gases Non-relativistic and extreme relativistic electron / (n,p,e - ) gases 2: White Dwarfs Structure, cooling

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

arxiv:astro-ph/ v1 11 May 2004

arxiv:astro-ph/ v1 11 May 2004 arxiv:astro-ph/040596v May 2004 THE MINIMAL COOLING OF NEUTRON STARS DANY PAGE Instituto de Astronomía, UNAM Mexico, D.F. 0440, MEXICO E-mail: page@astroscu.unam.mx A general overview of the main physical

More information

Signatures of QCD phase transition in a newborn compact star

Signatures of QCD phase transition in a newborn compact star Mon. Not. R. Astron. Soc. 350, L42 L46 (2004 doi:10.1111/j.1365-2966.2004.07849.x Signatures of QCD phase transition in a newborn compact star K.-W. Wong 1,2 and M.-C. Chu 1 1 Department of Physics, The

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Neutron Star and Dense EOS 3.

More information

Bumpy neutron stars in theory and practice

Bumpy neutron stars in theory and practice Bumpy neutron stars in theory and practice Nathan K. Johnson-McDaniel TPI, Uni Jena NS2013, Bonn 15.4.2013 In collaboration with Benjamin J. Owen and William G. Newton. See PRD 86, 063006 (2012), arxiv:1208.5227,

More information

arxiv:astro-ph/ v1 28 Oct 2004

arxiv:astro-ph/ v1 28 Oct 2004 Structure of the electrospheres of bare strange stars V.V. Usov 1, T. Harko 2 and K.S. Cheng 2 arxiv:astro-ph/0410682v1 28 Oct 2004 ABSTRACT We consider a thin ( 10 2 10 3 fm) layer of electrons (the electrosphere)

More information

Constraints on Neutron Star Properties from KaoS Heavy-Ion Data

Constraints on Neutron Star Properties from KaoS Heavy-Ion Data Constraints on Neutron Star Properties from KaoS Heavy-Ion Data Jürgen Schaffner-Bielich Institute for Theoretical Physics and Heidelberg Graduate School for Fundamental Physics and ExtreMe Matter Institute

More information

Equation-of-State of Nuclear Matter with Light Clusters

Equation-of-State of Nuclear Matter with Light Clusters Equation-of-State of Nuclear Matter with Light Clusters rmann Wolter Faculty of Physics, University of Munich, D-878 Garching, Germany E-mail: hermann.wolter@lmu.de The nuclear equation-of-state (EoS)

More information

Thermal Behavior of Neutron Stars

Thermal Behavior of Neutron Stars Thermal Behavior of Neutron Stars Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México 1 Thermal Behavior of Neutron Stars Overview of neutron star structure and a simple analytical

More information

Gravitational Waves from Neutron Stars

Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars Astronomical Institute Anton Pannekoek Elastic outer crust Neutron star modelling Elastic inner curst with superfluid neutrons Superfluid neutrons and superconducting

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information