On the behavior of the population density for branching random. branching random walks in random environment. July 15th, 2011

Size: px
Start display at page:

Download "On the behavior of the population density for branching random. branching random walks in random environment. July 15th, 2011"

Transcription

1 On the behavior of the population density for branching random walks in random environment Makoto Nakashima Kyoto University July 15th, 2011

2 Branching Processes offspring distribution P(N) = {{q(k)} k=0 [0, 1]N : q(k) = 1} k=0

3 Branching Random Walks in Random Environment on Z d In this talk, we consider branching random walk in time-space random environment defined by the following rule: 1 There exists one particle at the origin at time 0 2 Each particle at site x at integer time t independently chooses a nearest neighbor site, moves there, and is independently replaced by k particles with probability q t,x (k), where q t,x = (q t,x (k)) k N are offspring distributions given as P(N)-valued iid random variables in time and space

4

5

6

7

8

9

10

11

12 Remark 1 When q t,x q, this process is branching random walks on Z d and the total number of particles is a Galton-Watson process with offspring distribution q 2 If the space is a single point, then this process is called Smith-Wilkinson model which is a branching processes in random environment

13 In this talk, we will consider the population density of particles, ie Population density ρ t (x) = N t,x 1{N t > 0}, N t where we define N t, N t,x as follows: N t = {particles at time t}, N t,x = {particles at site x at time t} Remark {ρ t ( )} t N are random probability measures on Z d R d on {surv}, where {surv} def = {N t > 0, t N}

14 Known Results When environment is constant (q t,x q), we have the following theorem about the behavior of ρ t (x) (central limit theorem for BRW) Theorem 1(Biggins 90) Suppose that m > 1 and k 1 (k log k)q(k) <, where m = k 1 k q(k) Then, ρ t ( t ) ν( ), as on {surv}, that is, for all f C b (R d ), lim f ( x )ρ t (dx) = f (x)ν(dx), t R d t R d as on {surv}, where ν is a Gaussian measure with mean 0 and covariance 1 d I

15 We have the following question: Question How about the behavior of population density for BRWRE? More precisely, does CLT hold for BRWRE?

16 We have the following question: Question How about the behavior of population density for BRWRE? More precisely, does CLT hold for BRWRE? Answer Partially yes! d = 1, 2 Only the localization can occur d 3 Phase transition (CLT holds in one phase whereas the localization occurs in the other phase)

17 We have the following question: Question How about the behavior of population density for BRWRE? More precisely, does CLT hold for BRWRE? Answer Partially yes! d = 1, 2 Only the localization can occur d 3 Phase transition (CLT holds in one phase whereas the localization occurs in the other phase) In the rest of talk, we see the conditions for CLT and localization

18 Properties Notation P q : the probability measure describes branching random walk under fixed environment q = (q t,x ) (t,x) N Z d Q : the probability measure describes the iid offspring distributions assigned to each time-space location P( ) = P q ( )Q(dq)

19 Lemma 2 E[N t ] = m t, where m = Q[ k 1 kq t,x(k)] N t def = N t a non-negative martingale with respect to F t Therefore, there exists the limit m t = N t E[N t ] is N t N = lim t m t = lim N t t E[N t ] P-as and E[N ] = 1 or 0 Moreover, E[N ] = 1 N t are uniformly integrable F t is the filtration generated by branching, random walks, and environment up to time t

20 Fact It is known that 1 if d = 1 or 2 and Q(m t,x = m) 1, then N = 0 P-as, where m t,x = k 1 k q t,x(k) 2 if d 3, then a phase transition occurs, that is, { 1 if environment is not too random (regular growth) E[N ] = 0 if environment is random enough (slow growth) Regular growth N t E[N t ] Slow growth N t E[N t ]

21 Fact It is known that 1 if d = 1 or 2 and Q(m t,x = m) 1, then N = 0 P-as, where m t,x = k 1 k q t,x(k) 2 if d 3, then a phase transition occurs, that is, { 1 if environment is not too random (regular growth) E[N ] = 0 if environment is random enough (slow growth) Regular growth N t E[N t ] Slow growth N t E[N t ] We will look at the behavior of ρ t for each phase

22 Regular Growth Phase Theorem 3 (Heil-N-Yoshida 11) Suppose d 3 In the regular growth phase, we assume that m > 1, m (4) <, where m (4) = Q[ k 1 k4 q t,x (k)] Then, ρ t ( t ) ν in P( surv)-probability, where ν is a Gaussian measure with mean 0 and covariance 1 d I

23 Remark 1 We found from this theorem that central limit theorem holds when the process is in the regular growth phase 2 The sufficient conditions for regular growth phase are known Moreover, under some conditions, CLT is improved to almost sure convergence (N 11)

24 Slow Growth Phase In the slow growth phase, the behavior of ρ t has been completely changed Set Ψ = lim t Q[log Pq [N t ]] Theorem 4 (Heil-N 10) Suppose that Q[mt,x 1 ] <, Ψ > 0, and m (3) < If the process is in the slow growth phase, then there exists a constant c > 0 such that t 1 max ρ t (x) > c io on {surv} x This result is proved under non-extinction condition (Hu-Yoshida 09)

25 ρ t1 (x) ρ t2 (x) c

26 When Ψ > 0? It is difficult to check the assumptions in Theorem 4, since we cannot compute Ψ However, we have a sufficient conditions for Ψ > 0 as follows Q[ln(m t,x )] > 0 Ψ > 0 Also, we remark that P q [N t ] is the partition function of directed polymers in random environment

27 Thank you for your attention!

CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT. BY NOBUO YOSHIDA 1 Kyoto University

CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT. BY NOBUO YOSHIDA 1 Kyoto University The Annals of Applied Probability 2008, Vol. 18, No. 4, 1619 1635 DOI: 10.1214/07-AAP500 Institute of Mathematical Statistics, 2008 CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT

More information

Mandelbrot s cascade in a Random Environment

Mandelbrot s cascade in a Random Environment Mandelbrot s cascade in a Random Environment A joint work with Chunmao Huang (Ecole Polytechnique) and Xingang Liang (Beijing Business and Technology Univ) Université de Bretagne-Sud (Univ South Brittany)

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

Modern Discrete Probability Branching processes

Modern Discrete Probability Branching processes Modern Discrete Probability IV - Branching processes Review Sébastien Roch UW Madison Mathematics November 15, 2014 1 Basic definitions 2 3 4 Galton-Watson branching processes I Definition A Galton-Watson

More information

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems Branching Brownian motion: extremal process and ergodic theorems Anton Bovier with Louis-Pierre Arguin and Nicola Kistler RCS&SM, Venezia, 06.05.2013 Plan 1 BBM 2 Maximum of BBM 3 The Lalley-Sellke conjecture

More information

Branching, smoothing and endogeny

Branching, smoothing and endogeny Branching, smoothing and endogeny John D. Biggins, School of Mathematics and Statistics, University of Sheffield, Sheffield, S7 3RH, UK September 2011, Paris Joint work with Gerold Alsmeyer and Matthias

More information

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES Applied Probability Trust 7 May 22 UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES HAMED AMINI, AND MARC LELARGE, ENS-INRIA Abstract Upper deviation results are obtained for the split time of a

More information

Some functional (Hölderian) limit theorems and their applications (II)

Some functional (Hölderian) limit theorems and their applications (II) Some functional (Hölderian) limit theorems and their applications (II) Alfredas Račkauskas Vilnius University Outils Statistiques et Probabilistes pour la Finance Université de Rouen June 1 5, Rouen (Rouen

More information

Theory of Stochastic Processes 3. Generating functions and their applications

Theory of Stochastic Processes 3. Generating functions and their applications Theory of Stochastic Processes 3. Generating functions and their applications Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo April 20, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Resistance Growth of Branching Random Networks

Resistance Growth of Branching Random Networks Peking University Oct.25, 2018, Chengdu Joint work with Yueyun Hu (U. Paris 13) and Shen Lin (U. Paris 6), supported by NSFC Grant No. 11528101 (2016-2017) for Research Cooperation with Oversea Investigators

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

Hard-Core Model on Random Graphs

Hard-Core Model on Random Graphs Hard-Core Model on Random Graphs Antar Bandyopadhyay Theoretical Statistics and Mathematics Unit Seminar Theoretical Statistics and Mathematics Unit Indian Statistical Institute, New Delhi Centre New Delhi,

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

Branching within branching: a general model for host-parasite co-evolution

Branching within branching: a general model for host-parasite co-evolution Branching within branching: a general model for host-parasite co-evolution Gerold Alsmeyer (joint work with Sören Gröttrup) May 15, 2017 Gerold Alsmeyer Host-parasite co-evolution 1 of 26 1 Model 2 The

More information

4 Branching Processes

4 Branching Processes 4 Branching Processes Organise by generations: Discrete time. If P(no offspring) 0 there is a probability that the process will die out. Let X = number of offspring of an individual p(x) = P(X = x) = offspring

More information

THE NOISY VETO-VOTER MODEL: A RECURSIVE DISTRIBUTIONAL EQUATION ON [0,1] April 28, 2007

THE NOISY VETO-VOTER MODEL: A RECURSIVE DISTRIBUTIONAL EQUATION ON [0,1] April 28, 2007 THE NOISY VETO-VOTER MODEL: A RECURSIVE DISTRIBUTIONAL EQUATION ON [0,1] SAUL JACKA AND MARCUS SHEEHAN Abstract. We study a particular example of a recursive distributional equation (RDE) on the unit interval.

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Population growth: Galton-Watson process. Population growth: Galton-Watson process. A simple branching process. A simple branching process

Population growth: Galton-Watson process. Population growth: Galton-Watson process. A simple branching process. A simple branching process Population growth: Galton-Watson process Population growth: Galton-Watson process Asimplebranchingprocess September 27, 2013 Probability law on the n-th generation 1/26 2/26 A simple branching process

More information

An almost sure invariance principle for additive functionals of Markov chains

An almost sure invariance principle for additive functionals of Markov chains Statistics and Probability Letters 78 2008 854 860 www.elsevier.com/locate/stapro An almost sure invariance principle for additive functionals of Markov chains F. Rassoul-Agha a, T. Seppäläinen b, a Department

More information

A Note on the Central Limit Theorem for a Class of Linear Systems 1

A Note on the Central Limit Theorem for a Class of Linear Systems 1 A Note on the Central Limit Theorem for a Class of Linear Systems 1 Contents Yukio Nagahata Department of Mathematics, Graduate School of Engineering Science Osaka University, Toyonaka 560-8531, Japan.

More information

m + q = p + n p + s = r + q m + q + p + s = p + n + r + q. (m + s) + (p + q) = (r + n) + (p + q) m + s = r + n.

m + q = p + n p + s = r + q m + q + p + s = p + n + r + q. (m + s) + (p + q) = (r + n) + (p + q) m + s = r + n. 9 The Basic idea 1 = { 0, 1, 1, 2, 2, 3,..., n, n + 1,...} 5 = { 0, 5, 1, 6, 2, 7,..., n, n + 5,...} Definition 9.1. Let be the binary relation on ω ω defined by m, n p, q iff m + q = p + n. Theorem 9.2.

More information

Lecture 06 01/31/ Proofs for emergence of giant component

Lecture 06 01/31/ Proofs for emergence of giant component M375T/M396C: Topics in Complex Networks Spring 2013 Lecture 06 01/31/13 Lecturer: Ravi Srinivasan Scribe: Tianran Geng 6.1 Proofs for emergence of giant component We now sketch the main ideas underlying

More information

The genealogy of branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego

The genealogy of branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego The genealogy of branching Brownian motion with absorption by Jason Schweinsberg University of California at San Diego (joint work with Julien Berestycki and Nathanaël Berestycki) Outline 1. A population

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

1 Informal definition of a C-M-J process

1 Informal definition of a C-M-J process (Very rough) 1 notes on C-M-J processes Andreas E. Kyprianou, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY. C-M-J processes are short for Crump-Mode-Jagers processes

More information

Sharpness of second moment criteria for branching and tree-indexed processes

Sharpness of second moment criteria for branching and tree-indexed processes Sharpness of second moment criteria for branching and tree-indexed processes Robin Pemantle 1, 2 ABSTRACT: A class of branching processes in varying environments is exhibited which become extinct almost

More information

A Note on Bisexual Galton-Watson Branching Processes with Immigration

A Note on Bisexual Galton-Watson Branching Processes with Immigration E extracta mathematicae Vol. 16, Núm. 3, 361 365 (2001 A Note on Bisexual Galton-Watson Branching Processes with Immigration M. González, M. Molina, M. Mota Departamento de Matemáticas, Universidad de

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

Recent results on branching Brownian motion on the positive real axis. Pascal Maillard (Université Paris-Sud (soon Paris-Saclay))

Recent results on branching Brownian motion on the positive real axis. Pascal Maillard (Université Paris-Sud (soon Paris-Saclay)) Recent results on branching Brownian motion on the positive real axis Pascal Maillard (Université Paris-Sud (soon Paris-Saclay)) CMAP, Ecole Polytechnique, May 18 2017 Pascal Maillard Branching Brownian

More information

Infinitely iterated Brownian motion

Infinitely iterated Brownian motion Mathematics department Uppsala University (Joint work with Nicolas Curien) This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm, as part of the Symposium in honour of Olav Kallenberg

More information

Notes 18 : Optional Sampling Theorem

Notes 18 : Optional Sampling Theorem Notes 18 : Optional Sampling Theorem Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall: DEF 18.1 (Uniform Integrability) A collection

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

DOMINATION BETWEEN TREES AND APPLICATION TO AN EXPLOSION PROBLEM

DOMINATION BETWEEN TREES AND APPLICATION TO AN EXPLOSION PROBLEM DOMINATION BETWEEN TREES AND APPLICATION TO AN EXPLOSION PROBLEM Robin Pemantle 1, 2 and Yuval Peres 3 ABSTRACT: We define a notion of stochastic domination between trees, where one tree dominates another

More information

MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS

MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS Frank den Hollander Leiden University, The Netherlands New Results and Challenges with RWDRE, 11 13 January 2017, Heilbronn Institute for Mathematical

More information

Problem set 2 The central limit theorem.

Problem set 2 The central limit theorem. Problem set 2 The central limit theorem. Math 22a September 6, 204 Due Sept. 23 The purpose of this problem set is to walk through the proof of the central limit theorem of probability theory. Roughly

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE CHRISTOPHER HEIL 1. Weak and Weak* Convergence of Vectors Definition 1.1. Let X be a normed linear space, and let x n, x X. a. We say that

More information

Positive and null recurrent-branching Process

Positive and null recurrent-branching Process December 15, 2011 In last discussion we studied the transience and recurrence of Markov chains There are 2 other closely related issues about Markov chains that we address Is there an invariant distribution?

More information

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past.

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past. 1 Markov chain: definition Lecture 5 Definition 1.1 Markov chain] A sequence of random variables (X n ) n 0 taking values in a measurable state space (S, S) is called a (discrete time) Markov chain, if

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

arxiv: v2 [math.pr] 25 Feb 2017

arxiv: v2 [math.pr] 25 Feb 2017 ypical behavior of the harmonic measure in critical Galton Watson trees with infinite variance offspring distribution Shen LIN LPMA, Université Pierre et Marie Curie, Paris, France E-mail: shen.lin.math@gmail.com

More information

Uniqueness of random gradient states

Uniqueness of random gradient states p. 1 Uniqueness of random gradient states Codina Cotar (Based on joint work with Christof Külske) p. 2 Model Interface transition region that separates different phases p. 2 Model Interface transition

More information

Branching processes. Chapter Background Basic definitions

Branching processes. Chapter Background Basic definitions Chapter 5 Branching processes Branching processes arise naturally in the study of stochastic processes on trees and locally tree-like graphs. After a review of the basic extinction theory of branching

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

Extrema of log-correlated random variables Principles and Examples

Extrema of log-correlated random variables Principles and Examples Extrema of log-correlated random variables Principles and Examples Louis-Pierre Arguin Université de Montréal & City University of New York Introductory School IHP Trimester CIRM, January 5-9 2014 Acknowledgements

More information

Lecture 2: Convergence of Random Variables

Lecture 2: Convergence of Random Variables Lecture 2: Convergence of Random Variables Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Introduction to Stochastic Processes, Fall 2013 1 / 9 Convergence of Random Variables

More information

Scaling exponents for certain 1+1 dimensional directed polymers

Scaling exponents for certain 1+1 dimensional directed polymers Scaling exponents for certain 1+1 dimensional directed polymers Timo Seppäläinen Department of Mathematics University of Wisconsin-Madison 2010 Scaling for a polymer 1/29 1 Introduction 2 KPZ equation

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Long-Run Covariability

Long-Run Covariability Long-Run Covariability Ulrich K. Müller and Mark W. Watson Princeton University October 2016 Motivation Study the long-run covariability/relationship between economic variables great ratios, long-run Phillips

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 3: Regenerative Processes Contents 3.1 Regeneration: The Basic Idea............................... 1 3.2

More information

Probability Theory I: Syllabus and Exercise

Probability Theory I: Syllabus and Exercise Probability Theory I: Syllabus and Exercise Narn-Rueih Shieh **Copyright Reserved** This course is suitable for those who have taken Basic Probability; some knowledge of Real Analysis is recommended( will

More information

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego Yaglom-type limit theorems for branching Brownian motion with absorption by Jason Schweinsberg University of California San Diego (with Julien Berestycki, Nathanaël Berestycki, Pascal Maillard) Outline

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

A Central Limit Theorem for biased random walks on Galton-Watson trees

A Central Limit Theorem for biased random walks on Galton-Watson trees A Central Limit Theorem for biased random walks on Galton-Watson trees Yuval Peres Ofer Zeitouni June 22, 2006 Abstract Let T be a rooted Galton-Watson tree with offspring distribution {p k } that has

More information

BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES

BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES Galton-Watson processes were introduced by Francis Galton in 1889 as a simple mathematical model for the propagation of family names. They were reinvented

More information

A Fourier analysis based approach of rough integration

A Fourier analysis based approach of rough integration A Fourier analysis based approach of rough integration Massimiliano Gubinelli Peter Imkeller Nicolas Perkowski Université Paris-Dauphine Humboldt-Universität zu Berlin Le Mans, October 7, 215 Conference

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

RARE EVENT SIMULATION FOR STOCHASTIC FIXED POINT EQUATIONS RELATED TO THE SMOOTHING TRANSFORMATION. Jie Xu

RARE EVENT SIMULATION FOR STOCHASTIC FIXED POINT EQUATIONS RELATED TO THE SMOOTHING TRANSFORMATION. Jie Xu Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds. RARE EVENT SIMULATION FOR STOCHASTIC FIXED POINT EQUATIONS RELATED TO THE SMOOTHING

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

Two viewpoints on measure valued processes

Two viewpoints on measure valued processes Two viewpoints on measure valued processes Olivier Hénard Université Paris-Est, Cermics Contents 1 The classical framework : from no particle to one particle 2 The lookdown framework : many particles.

More information

LIMIT THEOREMS FOR NON-CRITICAL BRANCHING PROCESSES WITH CONTINUOUS STATE SPACE. S. Kurbanov

LIMIT THEOREMS FOR NON-CRITICAL BRANCHING PROCESSES WITH CONTINUOUS STATE SPACE. S. Kurbanov Serdica Math. J. 34 (2008), 483 488 LIMIT THEOREMS FOR NON-CRITICAL BRANCHING PROCESSES WITH CONTINUOUS STATE SPACE S. Kurbanov Communicated by N. Yanev Abstract. In the paper a modification of the branching

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

Negative Association, Ordering and Convergence of Resampling Methods

Negative Association, Ordering and Convergence of Resampling Methods Negative Association, Ordering and Convergence of Resampling Methods Nicolas Chopin ENSAE, Paristech (Joint work with Mathieu Gerber and Nick Whiteley, University of Bristol) Resampling schemes: Informal

More information

Almost sure asymptotics for the random binary search tree

Almost sure asymptotics for the random binary search tree AofA 10 DMTCS proc. AM, 2010, 565 576 Almost sure asymptotics for the rom binary search tree Matthew I. Roberts Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI Case courrier 188,

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Three Disguises of 1 x = e λx

Three Disguises of 1 x = e λx Three Disguises of 1 x = e λx Chathuri Karunarathna Mudiyanselage Rabi K.C. Winfried Just Department of Mathematics, Ohio University Mathematical Biology and Dynamical Systems Seminar Ohio University November

More information

The range of tree-indexed random walk

The range of tree-indexed random walk The range of tree-indexed random walk Jean-François Le Gall, Shen Lin Institut universitaire de France et Université Paris-Sud Orsay Erdös Centennial Conference July 2013 Jean-François Le Gall (Université

More information

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and

More information

Mouvement brownien branchant avec sélection

Mouvement brownien branchant avec sélection Mouvement brownien branchant avec sélection Soutenance de thèse de Pascal MAILLARD effectuée sous la direction de Zhan SHI Jury Brigitte CHAUVIN, Francis COMETS, Bernard DERRIDA, Yueyun HU, Andreas KYPRIANOU,

More information

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 )

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 ) 1 Introduction These problems are meant to be practice problems for you to see if you have understood the material reasonably well. They are neither exhaustive (e.g. Diffusions, continuous time branching

More information

Kernel families of probability measures. Saskatoon, October 21, 2011

Kernel families of probability measures. Saskatoon, October 21, 2011 Kernel families of probability measures Saskatoon, October 21, 2011 Abstract The talk will compare two families of probability measures: exponential, and Cauchy-Stjelties families. The exponential families

More information

Large deviations and fluctuation exponents for some polymer models. Directed polymer in a random environment. KPZ equation Log-gamma polymer

Large deviations and fluctuation exponents for some polymer models. Directed polymer in a random environment. KPZ equation Log-gamma polymer Large deviations and fluctuation exponents for some polymer models Timo Seppäläinen Department of Mathematics University of Wisconsin-Madison 211 1 Introduction 2 Large deviations 3 Fluctuation exponents

More information

arxiv: v3 [math.pr] 21 Sep 2016

arxiv: v3 [math.pr] 21 Sep 2016 Submitted to the Annals of Applied Probability arxiv: arxiv:1412.5975 EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION arxiv:1412.5975v3 [math.pr] 21 Sep 2016 By Anton Bovier,

More information

Introduction to self-similar growth-fragmentations

Introduction to self-similar growth-fragmentations Introduction to self-similar growth-fragmentations Quan Shi CIMAT, 11-15 December, 2017 Quan Shi Growth-Fragmentations CIMAT, 11-15 December, 2017 1 / 34 Literature Jean Bertoin, Compensated fragmentation

More information

Parameters estimation for asymmetric bifurcating autoregressive processes with missing data arxiv: v3 [math.

Parameters estimation for asymmetric bifurcating autoregressive processes with missing data arxiv: v3 [math. Electronic Journal of Statistics ISSN: 935-7524 Parameters estimation for asymmetric bifurcating autoregressive processes with missing data arxiv:02.202v3 [math.pr] 27 Sep 20 Benoîte de Saporta Université

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

ESTIMATION OF THE OFFSPRING AND IMMIGRATION MEAN VECTORS FOR BISEXUAL BRANCHING PROCESSES WITH IMMIGRATION OF FEMALES AND MALES

ESTIMATION OF THE OFFSPRING AND IMMIGRATION MEAN VECTORS FOR BISEXUAL BRANCHING PROCESSES WITH IMMIGRATION OF FEMALES AND MALES Pliska Stud. Math. Bulgar. 20 (2011), 63 80 STUDIA MATHEMATICA BULGARICA ESTIMATION OF THE OFFSPRING AND IMMIGRATION MEAN VECTORS FOR BISEXUAL BRANCHING PROCESSES WITH IMMIGRATION OF FEMALES AND MALES

More information

QUEUEING FOR AN INFINITE BUS LINE AND AGING BRANCHING PROCESS

QUEUEING FOR AN INFINITE BUS LINE AND AGING BRANCHING PROCESS QUEUEING FOR AN INFINITE BUS LINE AND AGING BRANCHING PROCESS VINCENT BANSAYE & ALAIN CAMANES Abstract. We study a queueing system with Poisson arrivals on a bus line indexed by integers. The buses move

More information

Hitting Probabilities

Hitting Probabilities Stat25B: Probability Theory (Spring 23) Lecture: 2 Hitting Probabilities Lecturer: James W. Pitman Scribe: Brian Milch 2. Hitting probabilities Consider a Markov chain with a countable state space S and

More information

Computer Science Section 1.6

Computer Science Section 1.6 Computer Science 180 Solutions for Recommended Exercises Section 1.6. Let m and n be any two even integers (possibly the same). Then, there exist integers k and l such that m = k and n = l. Consequently,

More information

Brownian survival and Lifshitz tail in perturbed lattice disorder

Brownian survival and Lifshitz tail in perturbed lattice disorder Brownian survival and Lifshitz tail in perturbed lattice disorder Ryoki Fukushima Kyoto niversity Random Processes and Systems February 16, 2009 6 B T 1. Model ) ({B t t 0, P x : standard Brownian motion

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains A regeneration proof of the central limit theorem for uniformly ergodic Markov chains By AJAY JASRA Department of Mathematics, Imperial College London, SW7 2AZ, London, UK and CHAO YANG Department of Mathematics,

More information

Max stable Processes & Random Fields: Representations, Models, and Prediction

Max stable Processes & Random Fields: Representations, Models, and Prediction Max stable Processes & Random Fields: Representations, Models, and Prediction Stilian Stoev University of Michigan, Ann Arbor March 2, 2011 Based on joint works with Yizao Wang and Murad S. Taqqu. 1 Preliminaries

More information

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 Justify your answers; show your work. 1. A sequence of Events. (10 points) Let {B n : n 1} be a sequence of events in

More information

Zhan Shi. Université Paris VI. This version: June 21, Updated version available at:

Zhan Shi. Université Paris VI. This version: June 21, Updated version available at: RANDOM WALKS & TREES Zhan Shi Université Paris VI This version: June 2, 200 Updated version available at: http://www.proba.jussieu.fr/pageperso/zhan/guanajuato.html E-mail: zhan.shi@upmc.fr Preface These

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

An extension of Hawkes theorem on the Hausdorff dimension of a Galton Watson tree

An extension of Hawkes theorem on the Hausdorff dimension of a Galton Watson tree Probab. Theory Relat. Fields 116, 41 56 (2000) c Springer-Verlag 2000 Steven P. Lalley Thomas Sellke An extension of Hawkes theorem on the Hausdorff dimension of a Galton Watson tree Received: 30 June

More information

Inference for High Dimensional Robust Regression

Inference for High Dimensional Robust Regression Department of Statistics UC Berkeley Stanford-Berkeley Joint Colloquium, 2015 Table of Contents 1 Background 2 Main Results 3 OLS: A Motivating Example Table of Contents 1 Background 2 Main Results 3 OLS:

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Lattice spin models: Crash course

Lattice spin models: Crash course Chapter 1 Lattice spin models: Crash course 1.1 Basic setup Here we will discuss the basic setup of the models to which we will direct our attention throughout this course. The basic ingredients are as

More information

arxiv: v1 [math.pr] 24 Jul 2009

arxiv: v1 [math.pr] 24 Jul 2009 Localization for a Class of Linear Systems arxiv:97.42v [math.pr] 24 Jul 29 Yukio Nagahata Department of Mathematics, Graduate School of Engineering Science Osaka University, Toyonaka 56-853, Japan. email:

More information

Discrete random structures whose limits are described by a PDE: 3 open problems

Discrete random structures whose limits are described by a PDE: 3 open problems Discrete random structures whose limits are described by a PDE: 3 open problems David Aldous April 3, 2014 Much of my research has involved study of n limits of size n random structures. There are many

More information

Lectures on Markov Chains

Lectures on Markov Chains Lectures on Markov Chains David M. McClendon Department of Mathematics Ferris State University 2016 edition 1 Contents Contents 2 1 Markov chains 4 1.1 The definition of a Markov chain.....................

More information

Backward Stochastic Differential Equations with Infinite Time Horizon

Backward Stochastic Differential Equations with Infinite Time Horizon Backward Stochastic Differential Equations with Infinite Time Horizon Holger Metzler PhD advisor: Prof. G. Tessitore Università di Milano-Bicocca Spring School Stochastic Control in Finance Roscoff, March

More information