Journal of Solid Mechanics and Materials Engineering

Size: px
Start display at page:

Download "Journal of Solid Mechanics and Materials Engineering"

Transcription

1 n Mtrils Enginring Strss ntnsit tor of n ntrf Crk in Bon Plt unr Uni-Axil Tnsion No-Aki NODA, Yu ZHANG, Xin LAN, Ysushi TAKASE n Kzuhiro ODA Dprtmnt of Mhnil n Control Enginring, Kushu nstitut of Thnolog, - Snsui- ho, Tot-ku, Kitkushu-shi, ukuok, Jpn E-mil: no@mh.kuth..jp Tokum Collg of Thnolog, Gkuni, Shunn-shi, Ymguhi,Jpn Astrt Although lot of intrf rk prolms wr prviousl trt, fw solutions r vill unr ritrr mtril omintion. This ppr ls with ntrl intrf rk in on infinit plt n finit plt. Thn, th ffts of mtril omintion on th strss intnsit ftors r isuss. A usful mtho to lult th strss intnsit ftor of intrf rk is prsnt with fousing on th strss t th rk tip lult th finit lmnt mtho. or th ntrl intrf rk, it is foun tht th rsults of on infinit plt unr rmot uni-xil tnsion r lws pning on th Dunrs prmtrs, β n iffrnt from th wll-known solution of th ntrl intrf rk unr intrnl prssur tht is onl pning on β. Bsis, it is shown tht th strss intnsit ftor of on infinit plt n stimt from th strss of rk tip in th on plt whn thr is no rk. t is lso foun tht imnsionlss strss intnsit ftor < whn ( + 2 β)( 2 β) >, > whn ( + 2 β)( 2 β) <, n = whn ( + 2 β)( 2 β) =. K wors: Elstiit, Strss ntnsit tor, rtur Mhnis, init Elmnt Mtho, ntrf Crk, Bon Plt. ntroution An intrf rk in n infinit on plt unr intrnl prssur in ig. () is known s th most funmntl n wll known solution for intrf rks. Th strss intnsit ftor is givn in Eq.. K + ik = ( + i )(+ 2 iε ) π, =, = () Riv 6 Nov., 29 (No. 84-) [DO:.299/jmmp.4.974] Copright 2 JSME t is lso known tht th intrf rk unr rmot ixil tnsion s shown in ig. () is quivlnt to th on in ig. (). n ig. (), = is th rmot tnsil strss in th irtion, n x, x2 r th ons in th x irtion so s to prou th sm strin in th x irtion ε x = ε x2 long th i-mtril intrf (). As shown in ig.2 (), ntrl intrf rk in on plt hs n trt in th prvious stuis (2)-(4), n som notil rsults r provi in Tl. As n n sn from this tl, thos rsults lmost oini with h othr. Howvr, th limiting solution s in Tl hs not n isuss t in th prvious stuis. n Tl it is sn tht imnsionlss strss intnsit ftor os not pproh unit lthough s. n othr wors, it is onfirm tht th solution unr uni-xil tnsion in ig.3 () is not quivlnt to Eq. ()

2 () G, ν 2 2 () 2 2 = x x2 K + ik = ( + i)(+ 2 iε ) π, =, = G2 G2 x2 ( ) x 3 2 (3 ) κ2 G κ κ G κ = ig. nfinit on plt sujt to () intrnl prssur n () rmot ixil tnsil strss. 2 2 G, ν () G2, ν 2 () G2, ν 2 ig.2 Bon finit plt with ntrl intrf rk. Tl Dimnsionlss strss intnsit ftors of ntr intrf rk in on plt (s ig 2, Pln strss, ν = ν2 =.3 ). G2 G / Rf.[2] Rf.[3] Rf.[4] Rf.[2] Rf.[3] Rf.[4] () 2 2 () 2 2 = ig.3 nfinit on plt sujt to () intrnl prssur n () rmot uni-xil tnsil strss. n this stu, strsss t th intrf rk tip will lult ppling th finit lmnt mtho. Thn th strss intnsit ftors r trmin from th rsults of th rfrn prolm n givn unknown prolm (2) using th sm finit lmnt msh pttrn. Hr, th most funmntl ntrl intrf rk in on plt in ig. 2 will onsir with vring Dunur s prmtr, β. Thn, th ffts of mtril omintion on th intrf strss intnsit ftors K, K will isuss

3 2. Anlsis Mtho Th nlsis mtho us in this rsrh is s on th strsss t th rk tip lult EM. B using th proportionl strss fils for th rfrn n givn prolms, strss intnsit ftors n otin with goo ur (5). or xmpl, for mol rk in homognous plts, th strss istriution nr th rk tip n xprss th following qution. = K 2π r (2) t is onfirm tht th rror of EM minl oms from th msh roun th rk tip. Thrfor if th sm msh siz n pttrn r ppli to th rfrn n givn unknown prolms, strss intnsit ftors K n otin from th strsss lult EM. At givn istn r, th following rltionship n riv from Eq.(2). K = onst (3) f iffrnt rk prolms A n B r nlz ppling th sm EM msh, th following qution n givn t th sm istn from th rk tip. K = K A B Hr, n strisk () mns th vlus of th rfrn prolm. B using Eq.4 with strss vlus t rk tip lult EM, urt strss intnsit ftors in homognous plts wr sussfull otin Nisitni t l (5),(6). Although this mtho nnot ppli to intrf rk prolms without iffiult, n fftiv mtho ws rntl propos O t l (2) sussfull to nlz intrf rk prolms. t is wll known tht thr xists osilltion singulrit t th intrf rk tip. rom th strsss, τ x long th intrf rk tip, strss intnsit ftors r fin s shown in Eq.(5). iε K + ik r + iτ =, r, x 2π r (4) (5) ε κ κ ln / 2 = + + 2π G G2 G2 G (6) 3 ν j κ j = ( pln strss), κ j = 3 4 ν j ( pln strin) ( j =,2) + ν j rom Eq.(5), th strss intnsit ftors m sprt s τ x K = lim 2πr osq+ sin Q, (7) r K = lim 2πτ r x osq+ sin Q, (8) r τ x r Q = ε ln( ). (9) Hr, r n Q n hosn s onstnt vlus sin th rfrn n unknown prolm hv th sm msh pttrn n mtril omintion. Thrfor if Eq.() is stisfi, Eq.()m riv from Eq.(). n suh s, osilltor itms of th rfrn n unknown prolms r hng into th sm. x x Q = Q, τ τ = ()

4 K K K K =, = () τ τ x x Strss intnsit ftors of th givn unknown prolm n otin :, EM K= K, EM (2) K= K (3), EM, EM,τ, τ r Hr, x r strsss of rfrn prolm lult EM, n x strsss of givn unknown prolm. Strss intnsit ftors of th rfrn prolm r fin Eq.(4). K + ik = ( T + is) π(+ 2 iε ) (4) Rgring th rfrn prolm in ig.4, not strsss for ( T, S) = (, ), n T, S = = T, EM, S x, EM = =, T, S, EM τ = = r vlus of T, S x, EM τ = = r ons for ( T, S) = (,). n orr to stisf Eq.(), strsss t th rk tip of th rfrn prolm r xprss s = T + S, T=, S= T=, S=, EM, EM, EM τ = τ T + τ S T=, S= T=, S= x, EM x, EM x, EM B sustituting Eq.() into Eq.(5) with T=, th vlu of S is otin s T =, S= T =, S=, EM x, EM x, EM, EM T =, S= T =, S= x, EM, EM, EM x, EM (5) τ τ S =. (6) τ τ 3. Strss ntnsit tors of n ntrf Crk in Bon nfinit Plt To xprss th rsults th following imnsionlss strss intnsit ftors, r us. K + ik = ( + i )( + 2 iε ) π (7) Dunurs i-mtril prmtrs, β r fin in Eq.(8). G( κ2 + ) G2( κ+ ) = G ( κ + ) + G ( κ + ) 2 2 G ( κ ) G ( κ ) G ( κ + ) + G ( κ + ) 2 2, β = 2 2 (8) 3. Efft of Plt Dimnsions on th Strss ntnsit tors n orr to isuss on infinit plts, it is nssr to onsir th fft of th plt imnsions on th strss intnsit ftors us th finit lmnt mtho nnot trt th infinit plts irtl. Th rsults of ntrl intrf rk in ig.2 () r thrfor invstigt in Tl 2 with vring = /62, /324, / 648 n =.75, β =, =.9, β =, =.75, β =.2. t is sn tht rsults of < /62 oini h othr n m hv mor thn 3 igit ur. n othr wors, Tl 2 shows tht th rsults for = /62 n us s th infinit plt with lss thn.9% rror. t is lso sn tht s unr ritrr mtril omintion. n th following stions, th rsults for th on infinit plt otin s shown in Tl will isuss

5 = T τ = S x x τ x G, E, ν o r θ x x τ x x2 G2, E2, ν 2 x2 τ x ig.4 Rfrn prolm ( ε x = ε x2 t = ) 3.2 Cntrl ntrf Crk in Bon nfinit Plt unr Uni-Axil Tnsion igur 5 shows th rsults of ntrl intrf rk in on infinit plt unr uni-xil tnsion in th -irtion s shown in ig.2 (). n ig.5, Dunur s prmtr β is fix, n th vritions of r pit with vring prmtr. hn mtril n mtril 2 r xhng, Dunur s prmtrs (, β ) om (, β). Thn th strss intnsit ftors (, ) om (, ). Thrfor ll mtril omintions r onsir in th rng > in ig.6( ). n ig.5, th soli urvs show th rsults of ntrl intrf rk unr rmot tnsion =.Th sh lins r xtn from soli lins us som ss of mtril omintion r iffiult to otin th EM. Th sh lin shows th rsults of tht unr intrnl prssur whos solution is known s = n =. igur 5 shows th vrition of =.882~.36, whih hs th minimum vlu =.882 whn =., β =, n th mximum vlu =.36 whn =.2, β =.3. t is lso foun tht = for th full rng of, β. Thrfor it m onlu tht ntrl intrf rk in on infinit plt unr rmot tnsion of = is quivlnt to tht unr intrnl prssur of =.882~.36. All th vlus in ig.5 r givn in Tl 3 with 3 iml. rom ig.5 n Tl 3, w n onlu tht >. whn ( + 2 β)( 2 β) <, =. whn ( + 2 β)( 2 β) = n < whn ( + 2 β)( 2 β) >. n Tl 3, vlus for =. r mrk unrlins. Tl 2 Dimnsionlss strss intnsit ftors of rk in ig.2 () with iffrnt. / / =.75 β = =.75 β = =.75 β = /62 /324 / /62 /324 /

6 β= β=.3 β=-.2 β=.2 β=-. β=.4 β= K + ik = π( + i )(+ 2 iε) β= β= ig.5 of ntrl intrf rk in on infinit plt unr uni-xl tnsion whih is orrsponing to ig.2 () with /. Tl 3 Dimnsionlss strss intnsit ftor in ig.2 () with /. inits = for ( + 2 β)( 2 β) = ; > ( + 2 β)( 2 β) < ; < for ( + 2 β)( 2 β) > for β (.3) (.966) (.882) (.886) (.898) (.36) (.99) (.33) (.952) (.22) (.974) (,.25) β goo pir (.2,.3) x/= ( = ) (.6,.4) (.,) (.8,.45) (.,.45) (.,.4) (.,.3) (.,.2) (-.,) qul pir (-.,-) = x/= ( = ) - o (,-.25) - (.6,-.) (.2,-.2) pir x/= ( = ) (.,.) (.,) () Show rgions ( 2 β) < hv no strss singulr t th g x =± in ig.2 ()

7 (,.25) β (.2,.3) > (.6,.4) (.8,.45) (.,) (.,.45) (.,.4) (.,.2) (-.,) = o (.2,-.2) (,-.25) (.6,-.) < (.,.) (.,) (-.,-) - () Show rgions ( + 2 β)( 2 β) < hv > for ig. () with / ig.6 Th mp of n β 3.3 Strss Distriutions in Bon Plt without Crk igur7 shows i-mtril on plt without rk unr rmot tnsion, whih is us to xplin th rson wh strss intnsit ftor for th ntrl intrf rk. Hr, strss istriutions t ross-stions,,,, in ig.7 r invstigt unr iffrnt mtril omintions. = O Gv, Gv 2, 2 x = ig.7 Th finit lmnt mol in ig.2 () with / igur 8 (), (), (), (), () show th strss istriutions for () =.4, β =.3, () =.6, β =.3, () =.7, β =., () =., β =.2, () =.2, β =. rsptivl. As n n sn from ig.8, strsss t ross-stions,,,, in ig.7 r not unit, howvr, th vrg strss t h ross-stion is quivlnt to th rmot tnsion =. Spifill, =.4, β =.3 is onsir s goo pir sin ( 2 β ) < is 98 98

8 stisfi s shown in ig.6 (). n this s, it is sn tht = t th fr g of th intrf x=. Thrfor, roun x = shoul lrgr thn whih ls to > whn ( 2 β ) < (7),(8). On th othr hn, from ig.8 (), onstnt strss istriutions of = t h ross-stion r onfirm. Hr, =.6, β =.3 is suppos to th qul pir sin ( 2 β) = s shown in ig.6 (). As rsult, = pprs whn ( 2 β ) =. Similrl, =.7, β =. stisfis ( 2 β ) >, whih is rgr s pir s shown in ig.6 (). n this s, th strss t th fr intrf g x= gos to infinit s. Th strss istriutions nr x = r thrfor shoul lss thn unit s <. This is th rson wh < whn ( 2 β ) >. ig.8 () inits strss istriutions for =.2, β =. whih stisfis pir onition ( 2 β ) > s shown in ig.6 (), n th strss t th fr intrf g x= gos to infinit s, ut iffrnt from ig.8 (), th strss oms smllr roun x=. Thn, = pprs t x =, whih ls to =. Bus in this s, n β stisf + 2β =, onsiring ig,8 () n ig.8 (), it n onlu tht = is otin whn ( + 2 β)( 2 β ) =. igur8 () inits strss istriutions for =., β =.2, similr with ig.8 (), lthough pir onition ( 2 β ) > is stisfi, > pprs t x =, whih ls to >. Bus in this s, n β stisf + 2β <, onsiring ig,8 () n ig.8 (), it n onlu tht > is otin whn ( + 2 β)( 2 β ) <. Thrfor, thr r two lins to ontrol s shown in ig.6 (), on is 2β = n th othr is + 2β =. or ( + 2 β)( 2 β ) >, < ; for ( + 2 β)( 2 β ) =, = ; for ( + 2 β)( 2 β ) <, >. Tl 4 shows th strss t O in ig.7 ompring with of ntrl rk in on infinit plt with vring mtril omintion. rom this tl, it is foun tht th strss intnsit ftor is qul to th strss t O in th on plt without rk. This ls us to th onlusion tht of n intrf rk in on infinit plt n sil otin from th strss t th intrf without rk. () =.4,β=.3 (+2β)( 2β)< =.6,β=.3 (+2β)( 2β)= G =.357 v =.4 G2 =.245 v2 =.4932 x/ = x G =.357 v =.4 G2 =.245 v2 =.4932 = x = (-.,) (-.,-) (-.,) (-.,-),3β = β = (.,) (.8,.45) (.,.45) > (.6,.4) (.,,4) (.2,.3) (,.25) (.,.3) (.,.2) (.,.) - o = (.,) (.6,-.) (.2,-.2) < (,-.25) -.6,3(.,) β = β = (.8,.45) (.,.45) > (.6,.4) (.,,4) (.2,.3) (,.25) (.,.3) (.,.2) (.,.) - o = (.,) (.6,-.) (.2,-.2) < - (,-.25).4..() x/ 98 98

9 ..2Journl of Soli Mhnis =.7, β=. ( 2 β )> G =.357 v =.4 G2 =.245 v2 =.4932 = x = (-.,) (-.,-).7,β = β = (.8,.45) > (.6,.4) (.2,.3) (,.25) - o = (.6,-.) (.2,-.2) < - (,-.25).(.,) (.,.45) (.,,4) (.,.3) (.,.2) (.,.) (.,).8 () x/ () () =.2,β=. (+2β)( 2β)= x/ G =.357 v =.4 G2 =.245 v2 =.4932 = =.,β=.2 (+2β)( 2β)> x/ G =.357 v =.4 G2 =.245 v2 =.4932 = (-.,) (-.,-) (-.,) (-.,-) β (.8,.45) > (.6,.4) (.2,.3) (,.25) - o = (.6,-.) (.2,-.2) < (,-.25).2,= β = - β (.8,.45) > (.6,.4) (.2,.3) (,.25) - o = (.6,-.) (.2,-.2) < (,-.25).,= β = - (.,) (.,.45) (.,,4) (.,.3) (.,.2) (.,.) (.,) (.,) (.,.45) (.,,4) (.,.3) (.,.2) (.,.) (.,) ig.8 strss istriution () =.4, β =.3, () =.6, β =.3, () =.7, β =., () =.2, β =., () =., β =.2 Tl 4 Th omprison twn with /. t x =, = in ig.7 n in ig.2 () β t O in ig

10 3.4 Cntrl ntrf Crk in Bon nfinit Plt with Mtril unr Tnsion in th x-irtion Tl 5 shows strss intnsit ftors of ntrl intrf rk shown in ig.2() with iffrnt rltiv rk siz = /62,/324,/648 unr iffrnt mtril omintion =.3, β =.2, =.75, β =, =.8, β =.4. t is sn tht ll th rsults oini h othr mor thn 3 igit whn < /62. igur 9 shows th rsults of on infinit plt with mtril unr tnsion in th x-irtion. Th sh lins r xtn from soli lins us som ss of mtril omintion r iffiult to otin th EM. n ig.9, β in h urv is fix, n th vritions of r pit with vring prmtr. Prviousl, it hs n thought tht tnsion in th x irtion os not ontriut to th strss intnsit ftors (). Howvr, s n sn from ig.9, is not in urrnt rsrh. t shoul not tht th strss intnsit ftor is not zro unr x-irtionl tnsion, xpt th s whn ε x = ε x2 is prou long th intrf, n it hs th minimum vlu =.34 whn =.2, β =.3, n th mximum vlu =.267 whn =., β =.45. t is lso foun tht = for th ntrl intrf rk unr x-irtionl tnsion. Thrfor, it m onlu tht ntrl intrf rk in on infinit plt with mtril unr x-irtionl rmot tnsion is quivlnt to tht of unr intrnl prssur of =.34 ~.267. All th vlus in ig.9 r provi in Tl Cntrl ntrf Crk in Bon init Plt Until hr th strss intnsit ftors of intrf rk in on infinit plt r minl trt. n this hptr, th on finit plt s shown in ig.2 () is nwl Tl 5 Dimnsionlss strss intnsit ftors of rk in ig.2 () with iffrnt /. / =.3, β =.2 =.75, β = =.8, β =.4 /62 /324 / /62 /324 / β=-.45 β= β=-.3.5 β= β=-.2 β=. β= β=.2 β=.45 β=.3 β= ig.9 of ntrl intrf rk in on infinit plt unr x = (s ig. 2 () with / )

11 Tl 6 Dimnsionlss strss intnsit ftor in ig.2 () with /. β (.267) (.99) (.242) (.3) (.23) (.53) (.7) (.9) (.42) (-.9) (.6) (-.2) (.3) (.) (-.2) (.) (-.34) (.) (-.3) (-.) (-.2) (.) onsir. igurs n show th strss intnsit ftors for =.2 n =. Th sh lins r xtn from soli lins us som ss of mtril omintion r iffiult to otin th EM. Compring igs., with ig.5, it is foun tht th rsults in igs., hv similr vrition trns lthough vlus in igs., r slightl lrgr thn thos of ig.5. Similr xmintions r prform for =..9 in this stu. Th mximum n minimum vlus of, for h r shown in Tl 7 n ig.2 with vring. Th sh lins r xtn from soli lins us som ss of mtril omintion r iffiult to otin th EM. Hr homois th rsults of ntrl rk in homognous plt, n th prsnt rsults homo oini with si s rsults (9). n ig.2 th rsults r init s th rtios of mx / homo n min / homo. t is sn tht homo givs lmost lrgst vlus of, n th iffrn twn mx n homo is lss thn 4%. On th othr hn, th iffrn twn min n homo inrss with inrsing. igur 2() shows mximum n minimum solut vlus of inrss with inrsing. Spifill, th rsults for G2 / G = 4 n G 2 / G = in th prvious stuis (2)-(4) r plott in ig β=-.2 β=.3 β=.2 β=.4 β=.45 β=-. β= 2.95 β=..9 / =.2 () K + ik = π( + i )(+ 2 iε)

12 β=-.2 β=-. β= β=. β=.2.2 β=.3. β=.4 () β= / =.2 K + ik = π( + i )(+ 2 iε) ig. Dimnsionlss strss intnsit for (),() for / = β=-.2 β=-. β=.2 β=.3 β=.4 β= / = β= β=..5 () K + ik = π ( i + )(+ 2 i ε) β=-.2 β=. β= β=. β=.2.5 β=.3 β=.4 β=.45 () -.5 K + ik = π( + i )(+ 2 iε) / = ig. Dimnsionlss strss intnsit ftor (), () for / =

13 Tl7 Mximum n minimum vlus of strss intnsit ftors, /, mx Rf. [9],min homo, mx (homognous),min / homo mx / homo G / G = 4 2 ( ν = ν =.3) 2 2 G / G = ( ν = ν =.3).8 min / homo ().6 /.4, mx.2 G / G =, ( ν = ν =.3) 2 2 G / G = 4,( ν = ν =.3) , min () / ig. 2 () mx / homo, min / homo vs. / n (), m x,, mi n vs. / ( hom : Strss intnsit ftor for homognous plt) o

14 5. Conlusions n this stu, strsss t th intrf rk tip r lult ppling th finit lmnt mtho. Thn th strss intnsit ftors r trmin from th rsults of th rfrn prolm n givn unknown prolm. Th onlusions r givn s following.. Strss intnsit ftors of ntrl intrf rk in on infinit plt unr rmot tnsion wr lult vr urtl unr ritrr mtril omintion. 2. Cntrl intrf rk in on infinit plt unr rmot tnsion of = is quivlnt to tht unr intrnl prssur of =.882~.36. Morovr, ntrl intrf rk in on infinit plt with mtril unr rmot x-irtionl tnsion of = is quivlnt to tht unr intrnl prssur of =.34 ~ Vritions of th mximum n minimum strss intnsit ftors, in on finit plt r lso invstigt with vring in this ppr. t is sn tht th strss intnsit ftor for homognous mtril homo givs th mximum vlu mx within 4% rror. On th othr hn, th iffrn twn min n homo inrss with inrsing. Rfrns () Yuki,Y., Mhnis of ntrf, (992), p. 2,Bifuukn. (2) O, K., Kmisugi, K., n No, N.A., Strss intnsit ftor nlsis of intrf rks s on proportionl mtho, Trnstions of th Jpn Soit of Mhnil Enginrs, Sris A, Vol.. 75, (29), pp (3) Mtsumoto, T., Tnk, M. n Or, R., Strss intnsit ftor nlsis of imtril intrf rks s on intrtion nrg rls rt n ounr lmnt snsitivit nlsis, Trnstions of th Jpn Soit of Mhnil Enginrs, Sris A, Vol.65, No.638(999), pp (4) Mizki, N., k,t., So,T., n Munkt, T., Strss intnsit ftor nlsis of intrf rk using ounr lmnt mtho, Trnstions of th Jpn Soit of Mhnil Enginrs, Sris A, Vol.57, No.54(99), pp (5) Trnisi, T., n Nisitni, H., Dtrmintion of highl urt vlus of strss intnsit ftor in plt of ritrr form EM, Trnstions of th Jpn Soit of Mhnil Enginrs, Sris A, Vol. 65, (999), pp (6) Nisitni, H., Trnisi, T., n ukum, K., Strss intnsit ftor nlsis of iomtril plt s on th rk tip strss mtho, Trnstions of th Jpn Soit of Mhnil Enginrs, Sris A, Vol. 69, (23), pp (7) Bog, D.B., Eg-on issimilr orthogonl lsti wgs unr norml n shr loing, Journl of Appli Mhnis, Vol. 35, (968), pp (8) Bog, D.B., Two g-on lsti wgs of iffrnt n wg ngls unr surf trtions, Journl of Appli Mhnis, Vol. 38, (97), pp (9) si, M., Elsti nlsis n strss intnsit ftor of rk, (976), p. 45, Bifuukn

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

WORKSHOP 6 BRIDGE TRUSS

WORKSHOP 6 BRIDGE TRUSS WORKSHOP 6 BRIDGE TRUSS WS6-2 Workshop Ojtivs Lrn to msh lin gomtry to gnrt CBAR lmnts Bom fmilir with stting up th CBAR orinttion vtor n stion proprtis Lrn to st up multipl lo ss Lrn to viw th iffrnt

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

12 - M G P L Z - M9BW. Port type. Bore size ø12, ø16 20/25/32/40/50/ MPa 10 C to 60 C (With no condensation) 50 to 400 mm/s +1.

12 - M G P L Z - M9BW. Port type. Bore size ø12, ø16 20/25/32/40/50/ MPa 10 C to 60 C (With no condensation) 50 to 400 mm/s +1. ris - MP - Compt gui ylinr ø, ø, ø, ø, ø, ø, ø, ø ow to Orr Cln sris lif typ (with spilly trt sliing prts) Vuum sution typ (with spilly trt sliing prts) ir ylinr otry tutor - M P - - MW ll ushing ring

More information

Chem 107: Inorganic Chemistry (40720)

Chem 107: Inorganic Chemistry (40720) Chm 107: Inorgni Chmistry (40720) Prossor Mtt Lw -mil: lwm@ui.u Oi Hours: W 3:00-4:00p n Thurs 11-noon in NS2 2127 TAs Julit Khosrowi -mil: jkhosrow@ui.u Oi Hours: Tus 2:00-3:00p, 3 r loor tls, Rins Hll

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University I TURFGRASS DISEASE RESEARCH REPORT 9 J. M. Vrgs, Jr. n R. Dtwilr Dprtmnt f Btny n Plnt Pthlgy Mihign Stt Univrsity. Snw Ml Th 9 snw ml fungii vlutin trils wr nut t th Byn Highln Rsrt, Hrr Springs, Mihign

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

Acceptance Single Sampling Plan with fuzzy parameter with The Using of Poisson Distribution

Acceptance Single Sampling Plan with fuzzy parameter with The Using of Poisson Distribution Worl Amy of Sin, Enginring n Thnology 49 9 Aptn Singl Smpling ln with fuzzy prmtr with Th sing of oisson Distriution Ezztllh Bloui Jmhnh,*, Bhrm Sghpour-Gilh, Gholmhossin Yri 3 h.d Stunt, Sin n Rsrh Brnh,

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Amphenol Canada Corp.

Amphenol Canada Corp. HT SINK OPTION = PIN STYL HT SINK (NIKL PLT) N LIP (H=.mm; SN HIGHT) = PIN STYL HT SINK (NIKL PLT) N LIP (H=.mm; PI HIGHT) = PIN STYL HT SINK (NIKL PLT) N LIP (H=.mm; TLL) = PIN-FIN HT SINK (NOIZ, LK)N

More information

Miscellaneous open problems in the Regular Boundary Collocation approach

Miscellaneous open problems in the Regular Boundary Collocation approach Miscllnous opn problms in th Rgulr Boundry Colloction pproch A. P. Zilińsi Crcow Univrsity of chnology Institut of Mchin Dsign pz@mch.p.du.pl rfftz / MFS Confrnc ohsiung iwn 5-8 Mrch 0 Bsic formultions

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas Effiint Brost in MANETs Using Ntwork Coing n Dirtionl Antnns Shuhui Yng Dprtmnt of Computr Sin Rnsslr Polythni Institut Troy, NY 28 Ji Wu n Mihl Cri Dprtmnt of Computr Sin n Enginring Flori Atlnti Univrsity

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

On each of them are the numbers +6, 5, +4, 3, +2, 1. The two dice are rolled. The score is obtained by adding the numbers on the upper faces.

On each of them are the numbers +6, 5, +4, 3, +2, 1. The two dice are rolled. The score is obtained by adding the numbers on the upper faces. Cmrig Essntils Mthmtis Cor 8 N1.1 Homwork N1.1 Homwork 1 A thr shows hr lss 2 six-si i. On h of thm r th numrs +6, 5, +4, 3, +2, 1. Th two i r roll. Th sor is otin y ing th numrs on th uppr fs. Clult th

More information

2-D ARMA MODEL PARAMETER ESTIMATION BASED ON THE EQUIVALENT 2-D AR MODEL APPROACH

2-D ARMA MODEL PARAMETER ESTIMATION BASED ON THE EQUIVALENT 2-D AR MODEL APPROACH -D AMA MODEL PAAMETE ESTIMATION BASED ON THE EQUIVALENT -D A MODEL APPOAH Ayın Kıılky Ahmt Hmi Kyrn -mil: yin@hituutr -mil: kyrn@hituutr Istnul Tchnicl Univrsity, Fculty of Elctricl n Elctronics Enginring,

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Mode switching in modal domain models of overhead lines and underground cables

Mode switching in modal domain models of overhead lines and underground cables Mo swithing in mol omin mols o ovrh lins n unrgroun ls I. Zltunić, S. Voopij, R. Goić Astrt- This ppr prsnts ri rviw o irnt mthos or lultion o ignvlus n ignvtors or pplition in th mol trnsmission lin thory.

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES EZ SERVO EZSV17 WIRING DIAGRAM FOR BLDC MOTOR

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES EZ SERVO EZSV17 WIRING DIAGRAM FOR BLDC MOTOR 0V TO 0V SUPPLY GROUN +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P TO P OM PORT US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. OPTO SNSOR # GROUN +0V TO +0V GROUN RS85 RS85 OPTO SNSOR # PHOTO TRNSISTOR TO OTHR

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION RVISION RV SRIPTION Y T HNG NO NOT OR PROUT LL JJH // LR TIL PPLY PROUT I LL TIL INSI UPPR ROSS MMR ON PR RK IS J OUR POST RK SQUR HOL RIL IS MN MS G NUT, PNL RNG 99 PPLY PROUT I LL INSI UPPR ROSS MMR

More information

1.60± ± ±0.07 S 1.60± ± ±0.30 X

1.60± ± ±0.07 S 1.60± ± ±0.30 X 02M557-01B - Pg 1 of 7 Produt Fmily: Prt Numbr Sris: Multilyr rmi itors Flxibl Trmintion ST Sris onstrution: Flxibl Trmintions NPO, X7R, X5R nd Y5V diltri mtrils Wr round ltrods 100% mtt tin ovr Ni trmintions

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

35 th Design Automation Conference Copyright 1998 ACM

35 th Design Automation Conference Copyright 1998 ACM Eint Booln ivision n Sustitution Shih-Chih Chng vi Ihsin Chng pt. o CS n IE Ntionl Chung Chng Univrsit Ultim Intronnt Th. Chi-Yi, TAIWAN, ROC Sunnvl, CA 94086 Astrt Booln ivision, n hn Booln sustitution,

More information