ANISOTROPY OF THE OPTICAL POLARISATION FIELD IN LIQUIDS. BY IV~. RAMANADHAM, Received October 11, (Communicated by Nfr. S. Bhagavantam.

Size: px
Start display at page:

Download "ANISOTROPY OF THE OPTICAL POLARISATION FIELD IN LIQUIDS. BY IV~. RAMANADHAM, Received October 11, (Communicated by Nfr. S. Bhagavantam."

Transcription

1 ANISOTROPY OF THE OPTICAL POLARISATION FIELD IN LIQUIDS. BY IV~. RAMANADHAM, Department of Physics, Andhra University, Waltair. Received October 11, (Communicated by Nfr. S. Bhagavantam.) 7. Introduction. IT is now well known that while computing the optic moments induced in the individual molecules of a liquid one has to take into account not only the electric vector in the incident field but also the local polarisation field of the surrounding molecules. In the case of a gas, however, the latter becomes negligible as the distances separating the molecules is then considerable. If b is the optic moment induced per unit incident field in the gaseous condition the optic moment induced per the same incident field when in liquid condition is shown by Lorentz to be equal to b (l + 3 x), where, nz2--] the optical susceptibility of the liquid is equal to 4~' nz being the refractive index of the liquid medium. In deriving the above expression the assumption is made that the distribution of polarisable matter round the molecule is spherically symmetrical. The above considerations lead nl ~-1 4~r to the well-known Lorentz's equation = -~ v~ b, which when com- bined with the simple relation n~2--1 ~ v~ b gives equation (1) in ~vhich n~ 4~r the refractive index of the vapour at N.T.P. is expressed in terms of that of the liquid. 3 nz~--i :M: (1) n~--l=~ nz~+-----~ d 3 v denotes the number of molecules per e.c., M, the molecular weight and d, the density of the liquid. It is now recognised that the above relation is at best only an approximation and that considerable deviations from the same are to be found in practice. The following table shows the disagreement between the observed refractive indices for a few typical vapours and those calculated on the basis of equation (1) using the known refractive index of the liquid. 281

2 282 M. Ramanadham TABLt~ I. Substance (no--l) 1 ~ observed (no--]) i 6 calculated Benzene.. 1" Pentane.. 1" Hexan~., 1" Carbon disulphide.. 1" It has been pointed out by Raman and Krishnan (1928) that the above discrepancies have their origin in a fundamental defect underlying I, orentz's theory, viz., the assumption of a spherically symmetrical local polarisation field. They have suggested that the local polarisation field should be regarded generally as anisotropic and it is the purpose of the present paper to see if better agreement between the observed and calculated values could be effected by introducing this conception into the calculations. Considerable amount of evidence in support of the above modified theory of Raman and Krishnan is already available and witl only be briefly referred to here. 2. Raman and Krishm~n's Theory and i/s applications. This theory supplemented Lorentz's idea of the polarisation field by the additional postulate that the local field is anisotropic, i.e., is different for different directions of the molecule, because the molecule by its anisotropic shape, evidence to which has been revealed by studies of -ray diffraction in liquids (Sogani~ 1927), cannot present the same degree of accessibility in all directions to the surrounding molecules. They supposed, therefore, that the magnitude of the polarisation field depends on the orientation of the molecule with respect to the light field. Instead of assuming, as Lorentz supposed, a spherical cavity to be scooped out they in general supposed an ellipsoid to be scooped out and knowing the dimensions of the molecule, they have shown that the magnitude of the polarisation field can be evaluated in terms of three characteristic coefficients Pl, P2 and Ps whose values are given by the integral oo s du 2rrabe Ju ~ + u r 2 + ( (b ~" % u)cd + ( where a, b, c are the dimensions of the molecule and m can assume the values of a, b, or c, according as we are finding Pl, ~b.2, or 23.

3 Anisotropy o~ Field ijz Liquids 283 The integral reduces to a simple form when the ellipsoid is a spheroid of revolution. Two cases arise according as the spheroid is prolate or oblate. In the former b ---- c --- a ~/i'e 2 In the latter b= c -- (e/2)/1 l+e \ pl = -1 [ logf -l) 1 1--e 2 l+e\ = =. logf ) VJl_e ',. p~=47r ~-- 1--e'sin'~e 3 ( ~/~sin-le 1--e2~ p2=p~=2~r ~. -- e2 ] Krishnan and Ramachandra Rao (1929) calculated t51 and ~ from -ray data in some suitable cases, and have shown that the values thus calculated agree with those derived from the study of the scattering of light in liquids and gases. The latter method of deriving Jh and f12 is given here in some detail as certain of the equations contained therein will be referred to again in the following sections. We start with the two well-known equations (2) and (3) showing the relationship between the depolarisation factor and the anisotropy. 65~ rv = v (2) 6~z rl== 51~ Tfl v< + 7 ~ (3) N The letters have the usual significance and the eqlmtions refer respectively to the gaseous and liquid states. The optic moments induced in a molecule in the latter case are not identical with those in the gaseous condition but are according to the theory of Raman and Krishnan connected with them by equations of the type B~ = b~ (l+pl) (4) where the capital letters denote the effective optic moments in the liquid state and - nz2-1 4~r The equations for the refractive index in terms of the optic moments become somewhat different in as much as we have to take the optical anisotropy into account. Thus n, 2-1 b 1 + b., + b~ - (5) 4vv~ 3 and n?--i BI+B~+B 3 (6) 4~rv~ 8

4 284 M. Ramanadham It is possible by the aid of equations (2), (3), (5) and (6) to calculate B1, Be, and bl, be, separately in the case of molecules possessing an axis of symmetry and from them to deduce the values Pl and t52 by equations of type 4. This is what Krishnan and Ramachandl-a Rao have done. The values of 151 and p~ so calculated agree with those derived from the -ray data, thus supporting the theory of the auisotropic polarisation field. Krishnan (193) has subsequently made use of the data of the scattering of light alone in support of the theory, tie calculated the refractive index of benzene liquid from the knowledge of its refractivity in the vapour state, and the scattering data both in gaseous and liquid conditions and showed that better agreement between the calculated and the observed values could be obtained in this manner than when the calculations were made by the simple Lorentz equation. I, angevin's theory of electric and magnetic birefringence has also been modified on the basis of this idea (Raman and Krishnan, 1928) in order to explain the observed results satisfactorily in liquids. The present author (t929) has applied the same idea of the anisotropic polarisation field in deriving an expression for the magnetic birefringence in liquid mixtures. Narasimhiah (1934) has recently derived an equation for the refractivity of the liquid mixtures on this basis. A similar equation has also been derived by the present author in an earlier paper already referred to. 3. Calculation of the Refractivity of the Vapour. Krishnan's calculation of the refractivity of the liquid from that of the vapour is beset with certain difficulties, which he overcomes by the method of successive approximations. In making use of equation (3) for calculating Pl and P2 one can see that it involves the very refractive index of the liquid which we want to find out. IZrishnan first makes use of the refractive index as derived from relation (1) based on the simple Lorentz's theory and then calculates Pl and p~ by the use of equations (3) and (4). Then he calculates the refractive index by inserting these values of Pl and P2 in equation (6). He resubstitutes this in the formula (3) and gets new values for Pl and ft.2 and so on. We have in this paper avoided this method of successive approximations by calculating the refractivity of the vapour from the known refractivity of the liquid instead of the other way. This procedure is free from the above difficulties and provides a satisfactory and direct means of testing the validity or otherwise of the anisotropic polarisation field theory. The method of calculation is as follows. We have assumed for simplicity that the molecule possesses an axis of symmetry, i.e., B2=B3; b2---bs and /~-~=P3. Two cases at once present themselves, e.g., when BI> B2 and B1 <B2.

5 A~Hsot.ropy of the O#tical Polarisatio~z fi'idd in Lir 285 Let us suppose BI > B2. We calculate first BI and B2 from equations (3) and (6). Then we calculate Pl and 1#., by means of the equation (Narasimhiah, loc. cir.) 4~r+pl(n~'-- ~ 1 ) _ I+2~/$z 1-- r 4~r+p2(n~--l) 1-- VSz l+2vsv together with the equation p~+ 2p~= 4~. Knowing Bz and B2 and ibz and ib2 we calculate bl and b,,, which latter enable us to calculate the refractivity in the vapour using the equation nj-71 = bl + 2b~. In the case in which 47rv~ 3 B1 < B~ to calculate Pl and P2 we must make use of an equation like 4zr+io ~ (nz2--1) 1--2 ~Sz 1 + ~/(S,v -- 4~r+p2 (n[-'--l) 1 + ~/~z ] --2 ~/~v To decide the choice between the two possibilities, one may be guided to a certain extent by the doublet theory of optical anisotropy developed by Ramanathan (1925). In this connection, it is, however, of interest to mention the recent theoretical work of Mrowka (1932) according to which the optical polarisability of the hydrogen molecule along the nuclear axis is less than that in directions lying in the symmetry plane. This result is surprising and in our terminology, means B1 < B2 which is in direct conflict with the conclusions of the theory developed by Ramanathan. An experimental test between the two alternatives is only possible in those cases in which the crystal structure and birefringence of the substance in the solid state are known. In view of this both cases have been worked out in the present paper without showing any prejudice towards the one or the other, with a view to see which of the cases brings closer agreement between calculation and observation. In the table the alternative sets of values are given only in the cases of benzene and carbon disulphide as they happen to afford results distinctly in favour of the theory developed by Ramanathan. In other liquids, the two alternatives lead to more or less the same results. 4. Discussion. The first six liquids are cases where we can justifiably assume an axis of symmetry to exist for the molecule concerned. Such an assumption in the other instances is an approximation and these have been worked out only to see whether the conception of the anisotropic polarisation field improves the results or not. One can in general find from a glance at the table that the values calculated on the basis of Raman and Krishnan's theory are higher than those calculated according to Lorentz's formula. With the exception of the liquids which we have listed as third group in the table, Raman and Krishnan's theory makes the calculated value~

6 286 M. Rarnanadham ~x~,.._,, &x? x,m,4 d' r *--4 O ~ ~ ~ ~ ~ I II $ x 4 g ~g a~ > d O~.! a AV A V A V A ~ ~. ~. ~. ~.. ~ ~ ~ 9 ~ o ' " ~ ' " " i " d < i A Q N w ww~n NN N~

7 .q~z/sotropy of #ze Ofifica/ Po/azisaLiosz FieM i~z Licuids 287 approach the observed values more closely than the Lorentz's theory. It must also be noted that the agreement between the calculated and observed values in the case of the first six compounds with the exception of cyclohexane (for which we do not have reliable data for the refractivity of the vapour), is excellent as may be expected. It is interesting to note that in the third group of compounds the value calculated according to Lorentz is itself generally higher than the observed value but it is not possible to draw any definite conclusions. Of the two alternatives given in benzene and carbon disulphide it will be noticed that the case in which Bl is less than B2 for the former and the case in which B1 is greater than :B2 for the latter provide decidedly better agreement with the observed values and this is in accordance with the prevailing ideas regarding these two molecules. It may further be pointed out that the mode of calculation adopted in the present paper lends a strong support to the theory of Raman and Krishnan in that it affords a kind of internal agreement without our having to fall back upon any theory to derive the values of pl and P2 from the dimensions of the molecules. The only assumption we made regarding them was that Pl + 2p2 = 4rr. 5. Summary. The theory of the anisotropic polarisation field developed by Raman and Krishnan has been applied to calculate the refractivities of a number of organic vapours from the known refractive indices in the liquid state. The observed values are found to agree better with those calculated on the above basis than those obtained with the help of Lorentz's formula. The author is highly thankful to Mr. S. Bhagavantam for his interest in the work. He is also thankful to the Syndicate of the And&ra University for having awarded him a research scholarship. REFEI%ENCES. Krishnan Krislmau and ~amachandra ~rowka Narasimhiah.. R.aman and Krishnan Do, ~amanadham 9 9 Ramanathan.. Sogani.... R ao.. Proc. Roy. Soy. (A), 193, 126, 155. Ind. Jour. Phys., 1929, 4, 396. Z. fl Phys., 1932, 76, 3. Proc. Ind. Acad. Sci., 1934, l, 34. Proc. Roy. Soc. (A), 1928, 117, 1. Ibid., 1928, 117, 589. Ind. Jour. Phys., 1929, 4, 19. 7~roc. Roy. Soe. (A), 1925, 17, 684. Ind. Jour. Phys., 1927, 1, 357.

Development of X-ray Crystallography Reseawh in India

Development of X-ray Crystallography Reseawh in India Development of X-ray Crystallography Reseawh in India K. BANERJEE X-ray crystallography began in India with the successful determination of the structures of naphthalene and anthracene crystals in 1929

More information

THE THERMAL EXPANSION OF CALCITE FROM ROOM TEMPERATURE UP TO 400 ~ C.

THE THERMAL EXPANSION OF CALCITE FROM ROOM TEMPERATURE UP TO 400 ~ C. THE THERMAL EXPANSION OF CALCITE FROM ROOM TEMPERATURE UP TO 400 ~ C. BY R. SRINIVASAN (Department of Physics, Indian Institute of Science, Bangalore) Received July 20, 1955 (Communicated by Prof. R. S.

More information

THE INFLUENCE OF OPTICAL ACTIVITY ON LIGHT SCATTERING IN CRYSTALS

THE INFLUENCE OF OPTICAL ACTIVITY ON LIGHT SCATTERING IN CRYSTALS THE INFLUENCE OF OPTICAL ACTIVITY ON LIGHT SCATTERING IN CRYSTALS Part II. Sodium Chlorate By V. CHANDRASEKHARAN (Pram the Department of Physics, Indian Institute of Science, Bangalore) Received November

More information

THE DISPERSION AND THERMO-OPTIC BEHAVIOUR OF VITREOUS SILICA

THE DISPERSION AND THERMO-OPTIC BEHAVIOUR OF VITREOUS SILICA THE DISPERSION AND THERMO-OPTIC BEHAVIOUR OF VITREOUS SILICA BY S. CHANDRASEKHAR (From the Raman Research Institute, Bangalore) Received August 20, 1951) (Communicated by Sir C. V. Raman, N.L.) 1. INTRODUCTION

More information

Atomic Structure. Niels Bohr Nature, March 24, 1921

Atomic Structure. Niels Bohr Nature, March 24, 1921 1 of 5 4/26/2013 12:47 AM Atomic Structure Niels Bohr Nature, March 24, 1921 In a letter to NATURE of November 25 last Dr. Norman Campbell discusses the problem of the possible consistency of the assumptions

More information

RECIPROCITY THEOREM IN COLLOID OPTICS. 1. Introduction.

RECIPROCITY THEOREM IN COLLOID OPTICS. 1. Introduction. RECIPROCITY THEOREM IN COLLOID OPTICS. (Case of Orientated Particles.) B'Y R. S. KRISHNAN. (From the Department o~ Physics, Indian Institute oÿ Science, Bangalore.) ReceŸ February 5, 1938. (Communicated

More information

ULTRASONIC VELOCITIES IN BINARY LIQUID MIXTURES NEAR THEIR CRITICAL SOLUTION TEMPERATURE

ULTRASONIC VELOCITIES IN BINARY LIQUID MIXTURES NEAR THEIR CRITICAL SOLUTION TEMPERATURE ULTRASONIC VELOCITIES IN BINARY LIQUID MIXTURES NEAR THEIR CRITICAL SOLUTION TEMPERATURE BY C. G. BALACHANDRAN (Department of Physics, Indian Institute of Science, Bangalore-3) Received October 19. 1955

More information

Labor and Capital Before the Law

Labor and Capital Before the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1884 Labor and Capital Before the Law Thomas M. Cooley University of Michigan Law

More information

Analytical study for mixing rules for refractive index and data analysis for some binary liquid mixtures

Analytical study for mixing rules for refractive index and data analysis for some binary liquid mixtures Analytical study for mixing rules for refractive index and data analysis for some binary liquid mixtures Sheeraz Akbar Assistant professor, Department of Physics, Vssd College,Kanpur,U.P.India ABSTRACT

More information

Spinning Electrons and the Structure of Spectra

Spinning Electrons and the Structure of Spectra Spinning Electrons and the Structure of Spectra Nature, vol. 117, p. 264-265 February 20, 1926 So far as we know, the idea of a quantised spinning of the electron was put forward for the first time by

More information

The molecular scattering of light

The molecular scattering of light SIR C HANDRASEKHARA V. RA M A N The molecular scattering of light Nobel Lecture, December 11, 1930 The colour of the sea In the history of science, we often find that the study of some natural phenomenon

More information

INVESTIGATION OF THE DEGREE OF PERFECTION OF A CRYSTAL BY MEANS OF POLARIZED X-RAYS BY S. RAMASESHAN AND G. N. RAMACHANDRAN, F.A.Sc.

INVESTIGATION OF THE DEGREE OF PERFECTION OF A CRYSTAL BY MEANS OF POLARIZED X-RAYS BY S. RAMASESHAN AND G. N. RAMACHANDRAN, F.A.Sc. INVESTIGATION OF THE DEGREE OF PERFECTION OF A CRYSTAL BY MEANS OF POLARIZED X-RAYS BY S. RAMASESHAN AND G. N. RAMACHANDRAN, F.A.Sc.* (Department of Physics, Indian Institute of Science, Bangalore 3) Received

More information

appreciably. The interference pattern so formed in the liquid was photographed by a suitable arrangement and the fringe width was measured 10

appreciably. The interference pattern so formed in the liquid was photographed by a suitable arrangement and the fringe width was measured 10 ULTRASONIC VELOCITIES IN BINARY MIXTURES BY C. G. BALACHANDRAN (Department of Physics, Indian Institute of Science, Bangalore -3) Received October 15 v 1953 Ultrasonic velocities and their variation with

More information

STUDY OF THE OPTICAL PROPERTIES

STUDY OF THE OPTICAL PROPERTIES STUDY OF THE OPTICAL PROPERTIES OF GELS Part II. Thorium Arsenate Gels BY MATA PRASAD AND S. GURUSWAMY (From the Chemical Laboratories, Royal Institute of Science, Bombay) Received August 17, 194 IN a

More information

INTERFEROMETRIC STUDIES OF LIGHT SCATTERING IN GASES BY DR. C. S. VENKATESWARAN

INTERFEROMETRIC STUDIES OF LIGHT SCATTERING IN GASES BY DR. C. S. VENKATESWARAN INTERFEROMETRIC STUDIES OF LIGHT SCATTERING IN GASES BY DR. C. S. VENKATESWARAN (From the Department of Physics, Indian Institute of Science, Bangalore) Received April 25, 1942 (Communicated by Sir C.

More information

The Scattering o f Slow Alpha Particles hy Helium.

The Scattering o f Slow Alpha Particles hy Helium. 380 The Scattering o f Slow Alpha Particles hy Helium. By P. M. S. B lackett, M.A., and F. C. Champion, B.A., Hutchinson Research Student, St. John s College, Cambridge. (Communicated by Sir Ernest Rutherford,

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS

NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS SECTION A: SHORT QUESTIONS 1(i) 2 210 4 206 84Po! 2He + 82Pb Initial mass m i = 209.983 amu Final mass m f = 209.977 amu Candidates do not successfully

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

FORBIDDEN HYPERFINE TRANSITIONS IN ELECTRON SPIN RESONANCE OF Mn 2+ IN NaCl SINGLE CRYSTAL

FORBIDDEN HYPERFINE TRANSITIONS IN ELECTRON SPIN RESONANCE OF Mn 2+ IN NaCl SINGLE CRYSTAL FORBIDDEN HYPERFINE TRANSITIONS IN ELECTRON SPIN RESONANCE OF Mn 2+ IN NaCl SINGLE CRYSTAL BY K. N. SHRIVASTAVA AND P'UTCHA VENKATESWARLU, F.A.Sc. (Department of Physics, Indian Institute of Technology,

More information

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis Name Manraj Gill (Partner: Tanner Adams, Lab Section: 102) Introduction In this experiment, we use chromatography and mass spectrometry

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

SPECTROSCOPIC STUDY OF LUMINESCENCE PATTERNS IN DIAMOND BY ANNA MANI. Received August 21, 1944 (Communicated by Sir C. V. Raman, Kt., F.R.S., N.L.

SPECTROSCOPIC STUDY OF LUMINESCENCE PATTERNS IN DIAMOND BY ANNA MANI. Received August 21, 1944 (Communicated by Sir C. V. Raman, Kt., F.R.S., N.L. SPECTROSCOPIC STUDY OF LUMINESCENCE PATTERNS IN DIAMOND BY ANNA MANI (From the Department of Physics, Indian Institute of Science, Bangalore) Received August 21, 1944 (Communicated by Sir C. V. Raman,

More information

quantum theory. In a recent number of the Physical Reviews Kemble

quantum theory. In a recent number of the Physical Reviews Kemble 420 PHYSICS: THE OCCURRENCE OF HARMONICS IN THE INFRA-RED ABSORPTION SPECTRA OF DIATOMIC GASES By James B. Brinsmade and Edwin C. Kemble JEFFERSON PHYSICAL LABORATORY. HARVARD UNIVERSITY Communicated by

More information

SPECTRA OF SOME BORON COMPOUNDS.

SPECTRA OF SOME BORON COMPOUNDS. THE RAMAN SECTRA OF SOME BORON COMOUNS. (Methyl Borate, Ethyl Borate, Boron Tri-Bromide and Boric Acid.) BY R. ANANTHAKRISHNAN. (From the cpartmelzt of hysics, hzdia~~ Institute of ScicJzcc, Ban.qalore.)

More information

CBSE Examination Paper

CBSE Examination Paper CBSE Examination Paper Time allowed : 3 hours Maximum marks: 70 General Instructions: Same as CBSE Examination Paper SET I 1. Using the concept of force between two infinitely long parallel current carrying

More information

Elements, compounds or mixtures? (1)

Elements, compounds or mixtures? (1) Elements, compounds or mixtures? (1) n science, it is important to know the difference between elements, compounds and mixtures. Try to explain what you think each of these words means: 1. An element is

More information

ON THE GEOMETRY OF THE QUANTUM REFLECTION OF X-RAYS IN DIAMOND By P. RAMA PISHAROTY

ON THE GEOMETRY OF THE QUANTUM REFLECTION OF X-RAYS IN DIAMOND By P. RAMA PISHAROTY ON THE GEOMETRY OF THE QUANTUM REFLECTION OF X-RAYS IN DIAMOND By P. RAMA PISHAROTY (From the Department of Physics, Indian Institute of Science, Bangalore) Received June 27, 1941 (Communicated by Sir

More information

CBSE_2014_SET_3 Physics

CBSE_2014_SET_3 Physics CBSE_2014_SET_3 Physics 1. A conducting loop is held below a current carrying wire PQ as shown. Predict the direction of the induced current in the loop when the current in the wire is constantly increasing.

More information

THE TETRAHEDRAL CARBON ATOM AND THE STRUCTURE OF DIAMOND*

THE TETRAHEDRAL CARBON ATOM AND THE STRUCTURE OF DIAMOND* THE TETRAHEDRAL CARBON ATOM AND THE STRUCTURE OF DIAMOND* BY SIR C. V. RAMAN (Memoir No. 104 from the Raman Research Institute, Bangalore 6) 1. INTRODUCTION MY address to the Academy this year concerns

More information

(2, CARBONYL GROUP. C=-C double bond, (xx)2 a pair forming the second bond. The xx electrons MECHANISM OF LONG WA VE-LENGTH ABSORPTION OF THE

(2, CARBONYL GROUP. C=-C double bond, (xx)2 a pair forming the second bond. The xx electrons MECHANISM OF LONG WA VE-LENGTH ABSORPTION OF THE 312 PHYSICS: MCMURR Y AND MULLIKEN PROC. N. A. S. ' In accordance with the rule that isobars nearly never differ by one in their charge numbers, table 1 contains only three nuclei with both symbols, p

More information

THE FREQUENCY SPECTRUM OF THE DIAMOND LATTICE

THE FREQUENCY SPECTRUM OF THE DIAMOND LATTICE THE FREQUENCY SPECTRUM OF THE DIAMOND LATTICE By L. V. CHELAM (From the Department of Physics, Indian Institute of Science, Bangalore) R.ceived November 2, 1943 (Communicated by Sir C. V. Raman, xt., F.R.S.,

More information

DIELECTRIC CONSTANTS OF CRYSTALS III BY D. A. A. S. NARAYANA RAO

DIELECTRIC CONSTANTS OF CRYSTALS III BY D. A. A. S. NARAYANA RAO DIELECTRIC CONSTANTS OF CRYSTALS III BY D. A. A. S. NARAYANA RAO (Department of Physic, Andhra University, Waltair) Received May 25, 1949 (Communicated by Prof. S. Bhagavantam, F.A.sc.) 1. INTRODUCTION

More information

Study and analysis of various mixing rules of refractive index for some liquid mixtures

Study and analysis of various mixing rules of refractive index for some liquid mixtures Study and analysis of various mixing rules of refractive index for some liquid mixtures Sheeraz Akbar Assistant professor, Department of Physics, Vssd College, Kanpur,U.P.,INDIA. Abstract. In present paper

More information

ELASTIC AND PHOTOELASTIC PROPERTIES OF SOME OPTICAL GLASSES

ELASTIC AND PHOTOELASTIC PROPERTIES OF SOME OPTICAL GLASSES ELASTIC AND PHOTOELASTIC PROPERTIES OF SOME OPTICAL GLASSES BY K. VEDAM (From the Department of Ph isles, Indian Institute of Science, Bangalore) Receiveed February 21, 1950 (Communicated by Prof. R. S.

More information

ELECTRODYNAMICS OF CONTINUOUS MEDIA

ELECTRODYNAMICS OF CONTINUOUS MEDIA ELECTRODYNAMICS OF CONTINUOUS MEDIA by L. D. LANDAU and E. M. LIFSHITZ Institute of Physical Problems, USSR Academy of Sciences Volume 8 of Course of Theoretical Physics Translated from the Russian by

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics Physics Paper - V : ELECTROMAGNETIC THEORY AND MODERN OPTICS (DPHY 21) Answer any Five questions 1) Discuss the phenomenon of reflection and refraction of electromagnetic waves at a plane interface between

More information

:O:Cl:O:. I. :O:Cl:O: :O:Cl:O: Only the electrons in the incomplete shells are indicated. The unsymmetrical

:O:Cl:O:. I. :O:Cl:O: :O:Cl:O: Only the electrons in the incomplete shells are indicated. The unsymmetrical VOL. 19, 1933 CHEMISTRY: L. 0. BROCKWA Y 303 With ammonia it forms a monoammine and a pentammine. Methyl gallium dichloride monoammine does not melt up to 800. Its vapor pressure is below 0.01 mm. at 250.

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Chemistry B11 Chapter 6 Gases, Liquids, and Solids

Chemistry B11 Chapter 6 Gases, Liquids, and Solids Chapter 6 Gases, Liquids, and Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive forces

More information

LECTURE 4 Variation of enthalpy with temperature

LECTURE 4 Variation of enthalpy with temperature LECTURE 4 Variation of enthalpy with temperature So far, we can only work at 25 C. Like c v we define a constant pressure heat capacity, c p, as the amount of heat energy needed to raise the temperature

More information

WHITE-LIGHT INTERFERENCE FRINGES WITH A THICK GLASS PLA TE IN ONE PA TH. PART II

WHITE-LIGHT INTERFERENCE FRINGES WITH A THICK GLASS PLA TE IN ONE PA TH. PART II 216 PHYSICS: W. N. BIRCHB Y PROC. N. A. S. 1 Th. Lyman, Astrophys. J., 60, No. 1, July, 1924. 2 H. B. Dorgelo and T. H. Abbink, Zeitschr. Physik, 37, 667, 1926. 3 A. Fowler, Proc. Roy. Soc., A91, 208,

More information

On the rotating electron

On the rotating electron Sopra l elettrone rotante, Nouv. Cim. (8) 3 (196), 6-35. On the rotating electron Note by FRANCO RASETI and ENRICO FERMI Translated by D. H. Delphenich The measurable elements of the electron are its electric

More information

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases.

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases. digitalteachers.co.ug Chemical bonding This chapter teaches the different types and names of bonds that exist in substances that keep their constituent particles together. We will understand how these

More information

Saunders) in line spectra. In applying this hypothesis to the structure. (1S, 2p, etc.), corresponding to those used (notation of Russell and

Saunders) in line spectra. In applying this hypothesis to the structure. (1S, 2p, etc.), corresponding to those used (notation of Russell and 158 PHYSICS: R. S. MULLIKEN 7 K. T. Compton and L. A. Turner, Phil. Mag., 48, 360 (1924); Physic. Rev., 25, 606 (1925); Compton, McCurdy and Turner, Physic. Rev., 24, 608 (1924); etc. 8 E. Hulthen, Nature,

More information

Physics 3312 Lecture 7 February 6, 2019

Physics 3312 Lecture 7 February 6, 2019 Physics 3312 Lecture 7 February 6, 2019 LAST TIME: Reviewed thick lenses and lens systems, examples, chromatic aberration and its reduction, aberration function, spherical aberration How do we reduce spherical

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

(a) Conventional molecular-orbital method, without configuration interaction. (b) Thomas-Fermi statistical method.

(a) Conventional molecular-orbital method, without configuration interaction. (b) Thomas-Fermi statistical method. 372 PHYSICS: COULSON, MARCH AND ALTMANN PROC. N. A. S. T-ELECTRONS AND a-electrons* By C. A. COULSON,t N. H. MARCHi: AND S. ALTMANN WHEATSTONE PHYSICs DEPARTMENT, KING'S COLLEGE, LONDON, ENGLAND Communicated

More information

CBSE Annual Examination Question Paper 2013

CBSE Annual Examination Question Paper 2013 CBSE Annual Examination Question Paper 2013 PHYSICS (THEY) Time allowed: 3 hours] [Maximum marks: 70 General Instructions: (i) All questions are compulsory. (ii) There are 29 questions in total. Question

More information

Optics. n n. sin c. sin

Optics. n n. sin c. sin Optics Geometrical optics (model) Light-ray: extremely thin parallel light beam Using this model, the explanation of several optical phenomena can be given as the solution of simple geometric problems.

More information

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2 Chemistry Notes v Polarity Experiment Ø Things involved Polarity Solubility Dispersion Ø Polarity Shaving cream has soap steric acid Water is polar Food coloring is polar/ionic because dissolved Like dissolves

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

9. The two strands in DNA are held together by. A. dispersion forces B. dipole-dipole forces C. hydrogen bonding D. ion-dipole forces E.

9. The two strands in DNA are held together by. A. dispersion forces B. dipole-dipole forces C. hydrogen bonding D. ion-dipole forces E. hemistry 400 omework 11, hapter 11 I. Multiple hoice 1. The molecules in a sample of pure liquid dichloromethane, 2 l 2, experience which of the following intermolecular forces? I. dispersion forces II.

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11-13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x-direction y x z Components

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

Theoretical evaluation of internal pressure in ternary and sub-binary liquid mixtures at various temperatures

Theoretical evaluation of internal pressure in ternary and sub-binary liquid mixtures at various temperatures Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 4 (0) 8-95 ISSN 99-3843 Theoretical evaluation of internal pressure in ternary and sub-binary liquid mixtures

More information

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope Optical Mineralogy Optical Mineralogy Use of the petrographic microscope John Winter, Whitman College with some slides Jane Selverstone, University of New Mexico, 2003 Why use the microscope?? Identify

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 2 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 2-6. Paraphrase: How

More information

Highenergy Nuclear Optics of Polarized Particles

Highenergy Nuclear Optics of Polarized Particles Highenergy Nuclear Optics of Polarized Particles Vladimir G. Baryshevsky Research Institute for Nuclear Problems Belarusian State University 1> World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

Lyotropic liquid crystalline phase in binary mixtures of Cetostearyl alcohol and Dimethyl sulfoxide

Lyotropic liquid crystalline phase in binary mixtures of Cetostearyl alcohol and Dimethyl sulfoxide Research Inventy: International Journal 0f Engineering And Science Vol.3, Issue 12 (December 2013), PP 45-49 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Lyotropic liquid crystalline

More information

Lecture 4: Polarisation of light, introduction

Lecture 4: Polarisation of light, introduction Lecture 4: Polarisation of light, introduction Lecture aims to explain: 1. Light as a transverse electro-magnetic wave 2. Importance of polarisation of light 3. Linearly polarised light 4. Natural light

More information

Optical Parametric Generation

Optical Parametric Generation x (2) Parametric Processes 27 Optical Parametric Generation Spontaneous parametric down-conversion occurs when a pump photon at v P spontaneously splits into two photons called the signal at v S, and the

More information

800 and 900. Apparently little change in the energy of the tertiary. From the results of the experiments with a silver radiator and tungsten

800 and 900. Apparently little change in the energy of the tertiary. From the results of the experiments with a silver radiator and tungsten VOL. 10, 1924 PHYSICS: BOWEN AND MILLIKAN 199 according to the Compton equation should produce this effect between 800 and 900. Apparently little change in the energy of the tertiary radiation from carbon

More information

The Liquid Vapor Interface

The Liquid Vapor Interface Howard University Digital Howard @ Howard University Faculty Reprints 4-1-1932 The Liquid Vapor Interface Leon J. Shereshefsky Follow this and additional works at: http://dh.howard.edu/reprints Part of

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

NATIONAL ACADEMY OF SCIENCES

NATIONAL ACADEMY OF SCIENCES PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES Volume 13 May 15, 1927 Number 5 A QUANTITATIVE TREATMENT OF DEVIATIONS FROM RAOULT'S LAW By JOzL H. HILDBBRAND CHEMICAL LABORATORY, UNIVERSIrY OF CALIFORNIA

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Intermolecular Forces in Solids, Liquids, and Gases What Do You See?

Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Section 2 Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Learning Outcomes In this section you will Describe how the size and shape of molecules affect their physical state. Classify

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

RAMAN SPECTRA AND HYDROXYL FREQUENCIES OF SOME FATTY ACIDS

RAMAN SPECTRA AND HYDROXYL FREQUENCIES OF SOME FATTY ACIDS RAMAN SPECTRA AND HYDROXYL FREQUENCES OF SOME FATTY ACDS BY BSHAMBHAR DAYAL SAKSENA (From the Department ofphysics, ndian nstitute of Science, Bangalore) Received April 26, 1940 (Communicated by Sir C.

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

X-ray determination of centrosymmetry in three felspars. 1

X-ray determination of centrosymmetry in three felspars. 1 759 X-ray determination of centrosymmetry in three felspars. 1 By S. W. BAILEY, R. B. FERUUSO~, and W. It. TAYLOR. Crystallographic Laboratory, Cavendish Laboratory, Cambridge. [Read May 16, 1951.] T Introduction.

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

Why do We Trust X-ray Crystallography?

Why do We Trust X-ray Crystallography? Why do We Trust X-ray Crystallography? Andrew D Bond All chemists know that X-ray crystallography is the gold standard characterisation technique: an X-ray crystal structure provides definitive proof of

More information

MATERIAL STUDY IN GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL

MATERIAL STUDY IN GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL 8 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 5 7, 0 0 6 MATERIAL STUDY IN 7.8-1.4 GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL Daniela IONESCU

More information

DIFFRACTION OF LIGHT BY ULTRASONIC WAVES. BY RAM RATAN AGGARWAL (Delhi)

DIFFRACTION OF LIGHT BY ULTRASONIC WAVES. BY RAM RATAN AGGARWAL (Delhi) DIFFRACTION OF LIGHT BY ULTRASONIC WAVES (Deduction of the Different Theories from the Generalised Theory of Raman and Nath) BY RAM RATAN AGGARWAL (Delhi) Received March 1, 1910 (Communicated by Sir C.

More information

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization Nilsson Model Spherical Shell Model Deformed Shell Model Anisotropic Harmonic Oscillator Nilsson Model o Nilsson Hamiltonian o Choice of Basis o Matrix Elements and Diagonaliation o Examples. Nilsson diagrams

More information

polarisation of Light

polarisation of Light Basic concepts to understand polarisation of Light Polarization of Light Nature of light: light waves are transverse in nature i. e. the waves propagates in a direction perpendicular to the direction of

More information

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Chap. 4. Electromagnetic Propagation in Anisotropic Media Chap. 4. Electromagnetic Propagation in Anisotropic Media - Optical properties depend on the direction of propagation and the polarization of the light. - Crystals such as calcite, quartz, KDP, and liquid

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Introductory experiments ualism of wave and particle L Physics Leaflets P6.1.5.1 iffraction of electrons in a polycrystalline lattice (ebye-scherrer diffraction) Objects of the

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

(Communlcatcd at thc meeting of November ).

(Communlcatcd at thc meeting of November ). Physics. - On the magnetic susceptibility of oxygen as function of temperature and density. By H. R. WOLTJER. C. W. COPPOOLSE and E. C. WERSMA. (Communication N. 201d from the Physical Laboratory at Leiden).

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

SECOND REVISION SCIENCE (PHYSICS AND CHEMISTRY) MAX MARKS :100. PHYSICS 50 marks. I) Choose the correct answer (1x11=11)

SECOND REVISION SCIENCE (PHYSICS AND CHEMISTRY) MAX MARKS :100. PHYSICS 50 marks. I) Choose the correct answer (1x11=11) w om wom om w w w w SECOND REVISION SCIENCE (PHYSICS AND CHEMISTRY) MAX MARKS :100 wom wom wom PHYSICS 50 marks w w wom wom I) Choose the correct answer (1x11=11) 1. The Screw Gauge is used to measure

More information

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Grading Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Maximum total = 39 points Pass if total >= 20 points Fail if total

More information

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT 9 Dielectrics 9.1 INTRODUCTION A dielectric is an insulating material in which all the electrons are tightly bound to the nuclei of the atoms and there are no free electrons available for the conduction

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e

5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e 5.4 Bond Enthalpies Bond breaking is endothermic and bond making is exothermic. Bond making produces greater stability because the resulting products have a lower energy state. bond making bond breaking

More information

THE ROTATORY DISPERSION OF BENZIL BY S. CHANDRASEKHAR

THE ROTATORY DISPERSION OF BENZIL BY S. CHANDRASEKHAR THE ROTATORY DISPERSION OF BENZIL BY S. CHANDRASEKHAR (Memoir No. 51 of the Raman Research Institute, Bangalore) Received May 5, 1954 (Communicated by Sir C. V. Raman, F.R.S., N.L.) 1. INTRODUCTION BENZIL

More information

Let the longest wavelength of Balmer series is

Let the longest wavelength of Balmer series is 1: If the radius of first Bohr orbit of H-atom is x, then de-broglie wavelength of electron in 3 rd orbit is nearly: (A) 2 x (B) 6 x (C) 9x x (D) 3 3h Solution: mvr 3 = 2 9 x 3h mv = mv = 1 2 h = = 6 x

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

THERMAL EXPANSION OF CRYSTALS

THERMAL EXPANSION OF CRYSTALS THERMAL EXPANSION OF CRYSTALS Part V. Hmmatite BY S. S. SHARMA From the Del~artment of Physics, Indian Institute of Science, Bangalore) Received September 4, 1950 (Communicated by Prof. R. S. Krishnan,

More information

PHYSICS FORM 5 PHYSICS OF THE ATOM

PHYSICS FORM 5 PHYSICS OF THE ATOM The Shell Model and The Periodic Table PHYSICS The Rutherford-Bohr model of the atom shed light on the arrangement of the periodic table of the elements. The orbits which electrons were allowed to occupy

More information

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results. Chapter 11: Measurement and data processing and analysis 11.1 Uncertainty and error in measurement and results All measurement has a limit of precision and accuracy, and this must be taken into account

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information