NLU: Semantic parsing

Size: px
Start display at page:

Download "NLU: Semantic parsing"

Transcription

1 NLU: Semantic parsing Adam Lopez slide credits: Chris Dyer, Nathan Schneider March 30, 2018 School of Informatics University of Edinburgh

2 Recall: meaning representations Sam likes Casey likes(sam, Casey) Anna s dog Mr. PeanutButter misses her misses(mrpb, Anna) dog(mrpb) Kim likes everyone x.likes(x, Kim)

3 Recall: meaning representations Meaning representations are verifiable, unambiguous, canonical. Predicate-argument structure is a good match for FOL, as well as structures with argument-like elements (e.g. NPs) Determiners, quantifiers (e.g. everyone, anyone ), and negation can be expressed in first order logic.

4 Representing the meaning of arbitrary NL is hard Much of natural language is unverifiable, ambiguous, non-canonical. What is the finite set of predicates? When do two words map to the same predicate? When are homonyms mapped to different predicates? Can we decompose lexical meanings into a finite set of predicates (possibly composed)? What is the finite set of constants?

5 Easier: representing a closed domain Example: GEOQUERY dataset What states border Texas? λx. state(x) borders(x,texas) What is the largest state? argmax(λx. state(x) λx.size(x)) Semantic parsing is the problem of returning a logical form for an input natural language sentence.

6 Pairs of NL sentences with structured MR can be collected Example: IFTTT dataset (Quirk et al. 2015)

7 WikiTableQuestions

8 similar information powers Google s knowledge graph

9 Viewing MR as a string, semantic parsing is just conditional language modeling p(y 1,...,y y x 1,...,x x ) Model using standard sequence models

10 Viewing MR as a string, semantic parsing is just conditional language modeling p(y 1,...,y y x 1,...,x x ) Model using standard sequence models with one additional element

11 x 1 x 2 x 3 x 4 Ich möchte ein Bier

12 ! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier

13 h 1 h 2 h 3 h 4! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier

14 f i =[h i ;! h i ] h 1 h 2 h 3 h 4! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier

15 f i =[h i ;! h i ] h 1 h 2 h 3 h 4! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier

16 f i =[h i ;! h i ] h 1 h 2 h 3 h 4! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier

17 f i =[h i ;! h i ] h 1 h 2 h 3 h 4! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier

18 f i =[h i ;! h i ] h 1 h 2 h 3 h 4 F 2 R 2n f! h 1! h 2! h 3! h 4 x 1 x 2 x 3 x 4 Ich möchte ein Bier Ich möchte ein Bier

19 0 Ich möchte ein Bier

20 0 z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

21 0 z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

22 I'd 0 z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

23 I'd like 0 I'd z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

24 I'd like a 0 I'd like z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

25 I'd like a beer 0 I'd like a z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

26 I'd like a beer STOP stop 0 I'd like a beer z } { Attention history: a > 1 a > 2 a > 3 a > 4 a > 5 Ich möchte ein Bier

27 English-French English-German

28 Since logical forms are treelike, can use treelstm decoder

29 Model learns to translate words into predicates they invoke

30 Abstract meaning PENMAN notation representation (AMR) The edges (ARG0 and ARG1) are relations Each node in the graph has a variable! They are labeled with concepts! d / dog means d is an instance of dog! The dog is eating a bone (e / eat-01 :ARG0 (d / dog) :ARG1 (b / bone)) e/eat-01 ARG0 ARG1 d/dog b/bone 7

31 Abstract meaning Reentrancy representation (AMR) What if something is referenced multiple times? Notice how dog has two incoming roles now. To do this in PENMAN format, repeat the variable. We call this a reentrancy. (want-01 :ARG0 (d / dog) :ARG1 (e / eat-01 :ARG0 d! :ARG1 (b / bone))) w/want-01 The dog wants to eat the bone ARG1 ARG0 e/eat-01 ARG0 ARG1 d/dog b/bone 9

32 Coreference Bob wants Anna to give him a job. Q: who does him refer to?

33 Coreference Charles just graduated, and now Bob wants Anna to give him a job. Q: who does him refer to?

34 Metonymy Westminster decided to distribute funds throughout England, Wales, Northern Island, and Scotland

35 Metonymy Westminster decided to distribute funds throughout England, Wales, Northern Island, and Scotland decided(westminster, )

36 Metonymy Westminster decided to distribute funds throughout England, Wales, Northern Island, and Scotland decided(westminster, ) decided(parliament, )

37 Implicature That cake looks delicious

38 Implicature That cake looks delicious What Rogelio was really thinking: I would like a piece of that cake.

39 Even more phenomena Abbreviations (e.g. National Health Service=NHS) Nicknames (JLaw=Jennifer Lawrence) Metaphor (crime is a virus infecting the city) Time expressions and change of state Many others

40 Summary In many cases, meaning representation can be captured in firstorder logic. But wide-coverage meaning representation is hard; closed domains are easier, and can sometimes be harvested automatically. This leads to a proliferation of domain-specific MRs. Trainable alternative to compositional approaches: encoderdecoder neural models. The encoder and decoder can be mixed and matched: RNN, top-down tree RNN, etc. Works well on small, closed domains if we have training data, but there are many unsolved phenomena/ problems in semantics.

Abstract Meaning Representation. Computational Linguistics Emory University Jinho D. Choi

Abstract Meaning Representation. Computational Linguistics Emory University Jinho D. Choi Abstract Meaning Representation Computational Linguistics Emory University D. Abstract Meaning Representation Introduced in 1998. The dog will eat the bone. The dog ate the bone. agent eat patient A dog

More information

A Discriminative Model for Semantics-to-String Translation

A Discriminative Model for Semantics-to-String Translation A Discriminative Model for Semantics-to-String Translation Aleš Tamchyna 1 and Chris Quirk 2 and Michel Galley 2 1 Charles University in Prague 2 Microsoft Research July 30, 2015 Tamchyna, Quirk, Galley

More information

A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions

A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions Wei Lu and Hwee Tou Ng National University of Singapore 1/26 The Task (Logical Form) λx 0.state(x 0

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Introduction to Semantic Parsing with CCG

Introduction to Semantic Parsing with CCG Introduction to Semantic Parsing with CCG Kilian Evang Heinrich-Heine-Universität Düsseldorf 2018-04-24 Table of contents 1 Introduction to CCG Categorial Grammar (CG) Combinatory Categorial Grammar (CCG)

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Bringing machine learning & compositional semantics together: central concepts

Bringing machine learning & compositional semantics together: central concepts Bringing machine learning & compositional semantics together: central concepts https://githubcom/cgpotts/annualreview-complearning Chris Potts Stanford Linguistics CS 244U: Natural language understanding

More information

Better Conditional Language Modeling. Chris Dyer

Better Conditional Language Modeling. Chris Dyer Better Conditional Language Modeling Chris Dyer Conditional LMs A conditional language model assigns probabilities to sequences of words, w =(w 1,w 2,...,w`), given some conditioning context, x. As with

More information

Cross-lingual Semantic Parsing

Cross-lingual Semantic Parsing Cross-lingual Semantic Parsing Part I: 11 Dimensions of Semantic Parsing Kilian Evang University of Düsseldorf 1 / 94 Abbreviations NL natural language e.g., English, Bulgarian NLU natural language utterance

More information

Parts 3-6 are EXAMPLES for cse634

Parts 3-6 are EXAMPLES for cse634 1 Parts 3-6 are EXAMPLES for cse634 FINAL TEST CSE 352 ARTIFICIAL INTELLIGENCE Fall 2008 There are 6 pages in this exam. Please make sure you have all of them INTRODUCTION Philosophical AI Questions Q1.

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Top Down Intro to Neural Semantic Parsing. Ofir

Top Down Intro to Neural Semantic Parsing. Ofir Top Down Intro to Neural Semantic Parsing Ofir Plan 1. Intro to NNs and RNNs Short! 2. Model 1: seq2seq Meaty! 3. Model 2: seq2tree 4. How to improve these models with attention Important! 5. Results &

More information

A proof theoretical account of polarity items and monotonic inference.

A proof theoretical account of polarity items and monotonic inference. A proof theoretical account of polarity items and monotonic inference. Raffaella Bernardi UiL OTS, University of Utrecht e-mail: Raffaella.Bernardi@let.uu.nl Url: http://www.let.uu.nl/ Raffaella.Bernardi/personal

More information

Deduction by Daniel Bonevac. Chapter 3 Truth Trees

Deduction by Daniel Bonevac. Chapter 3 Truth Trees Deduction by Daniel Bonevac Chapter 3 Truth Trees Truth trees Truth trees provide an alternate decision procedure for assessing validity, logical equivalence, satisfiability and other logical properties

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method Overview CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL Agenda for today: Semantic argument method for proving FOL validity Işıl Dillig Important properties of FOL

More information

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write:

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write: Languages A language is a set (usually infinite) of strings, also known as sentences Each string consists of a sequence of symbols taken from some alphabet An alphabet, V, is a finite set of symbols, e.g.

More information

Solving Equations by Adding and Subtracting

Solving Equations by Adding and Subtracting SECTION 2.1 Solving Equations by Adding and Subtracting 2.1 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the addition property to solve equations 3. Determine whether

More information

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs Natural Language Understanding Lecture 12: Recurrent Neural Networks and LSTMs Recap: probability, language models, and feedforward networks Simple Recurrent Networks Adam Lopez Credits: Mirella Lapata

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Logic: The Big Picture

Logic: The Big Picture Logic: The Big Picture A typical logic is described in terms of syntax: what are the legitimate formulas semantics: under what circumstances is a formula true proof theory/ axiomatization: rules for proving

More information

Discriminative Training

Discriminative Training Discriminative Training February 19, 2013 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder

More information

CRF Word Alignment & Noisy Channel Translation

CRF Word Alignment & Noisy Channel Translation CRF Word Alignment & Noisy Channel Translation January 31, 2013 Last Time... X p( Translation)= p(, Translation) Alignment Alignment Last Time... X p( Translation)= p(, Translation) Alignment X Alignment

More information

Driving Semantic Parsing from the World s Response

Driving Semantic Parsing from the World s Response Driving Semantic Parsing from the World s Response James Clarke, Dan Goldwasser, Ming-Wei Chang, Dan Roth Cognitive Computation Group University of Illinois at Urbana-Champaign CoNLL 2010 Clarke, Goldwasser,

More information

Recurrent neural network grammars

Recurrent neural network grammars Widespread phenomenon: Polarity items can only appear in certain contexts Recurrent neural network grammars lide credits: Chris Dyer, Adhiguna Kuncoro Example: anybody is a polarity item that tends to

More information

Lecture 15: Recurrent Neural Nets

Lecture 15: Recurrent Neural Nets Lecture 15: Recurrent Neural Nets Roger Grosse 1 Introduction Most of the prediction tasks we ve looked at have involved pretty simple kinds of outputs, such as real values or discrete categories. But

More information

Predicates, Quantifiers and Nested Quantifiers

Predicates, Quantifiers and Nested Quantifiers Predicates, Quantifiers and Nested Quantifiers Predicates Recall the example of a non-proposition in our first presentation: 2x=1. Let us call this expression P(x). P(x) is not a proposition because x

More information

PROPOSITIONAL LOGIC. VL Logik: WS 2018/19

PROPOSITIONAL LOGIC. VL Logik: WS 2018/19 PROPOSITIONAL LOGIC VL Logik: WS 2018/19 (Version 2018.2) Martina Seidl (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation BOX Game: Rules 1. The game board

More information

Sharpening the empirical claims of generative syntax through formalization

Sharpening the empirical claims of generative syntax through formalization Sharpening the empirical claims of generative syntax through formalization Tim Hunter University of Minnesota, Twin Cities NASSLLI, June 2014 Part 1: Grammars and cognitive hypotheses What is a grammar?

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 59/259 Lecture 4: Text classification 3 (Sept 5, 207) David Bamman, UC Berkeley . https://www.forbes.com/sites/kevinmurnane/206/04/0/what-is-deep-learning-and-how-is-it-useful

More information

CSC321 Lecture 15: Recurrent Neural Networks

CSC321 Lecture 15: Recurrent Neural Networks CSC321 Lecture 15: Recurrent Neural Networks Roger Grosse Roger Grosse CSC321 Lecture 15: Recurrent Neural Networks 1 / 26 Overview Sometimes we re interested in predicting sequences Speech-to-text and

More information

Ling 98a: The Meaning of Negation (Week 5)

Ling 98a: The Meaning of Negation (Week 5) Yimei Xiang yxiang@fas.harvard.edu 15 October 2013 1 Review Negation in propositional logic, oppositions, term logic of Aristotle Presuppositions Projection and accommodation Three-valued logic External/internal

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Final Exam (100 points)

Final Exam (100 points) Final Exam (100 points) Honor Code: Each question is worth 10 points. There is one bonus question worth 5 points. In contrast to the homework assignments, you may not collaborate on this final exam. You

More information

Surface Reasoning Lecture 2: Logic and Grammar

Surface Reasoning Lecture 2: Logic and Grammar Surface Reasoning Lecture 2: Logic and Grammar Thomas Icard June 18-22, 2012 Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 1 Categorial Grammar Combinatory Categorial Grammar Lambek Calculus

More information

Propositional Logic and Semantics

Propositional Logic and Semantics Propositional Logic and Semantics English is naturally ambiguous. For example, consider the following employee (non)recommendations and their ambiguity in the English language: I can assure you that no

More information

Lecture 5: Semantic Parsing, CCGs, and Structured Classification

Lecture 5: Semantic Parsing, CCGs, and Structured Classification Lecture 5: Semantic Parsing, CCGs, and Structured Classification Kyle Richardson kyle@ims.uni-stuttgart.de May 12, 2016 Lecture Plan paper: Zettlemoyer and Collins (2012) general topics: (P)CCGs, compositional

More information

Moreno Mitrović. The Saarland Lectures on Formal Semantics

Moreno Mitrović. The Saarland Lectures on Formal Semantics ,, 3 Moreno Mitrović The Saarland Lectures on Formal Semantics λ- λ- λ- ( λ- ) Before we move onto this, let's recall our f -notation for intransitive verbs 1/33 λ- ( λ- ) Before we move onto this, let's

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

Bound and Free Variables. Theorems and Proofs. More valid formulas involving quantifiers:

Bound and Free Variables. Theorems and Proofs. More valid formulas involving quantifiers: Bound and Free Variables More valid formulas involving quantifiers: xp(x) x P(x) Replacing P by P, we get: x P(x) x P(x) Therefore x P(x) xp(x) Similarly, we have xp(x) x P(x) x P(x) xp(x) i(i 2 > i) is

More information

A Logic Primer. Stavros Tripakis University of California, Berkeley

A Logic Primer. Stavros Tripakis University of California, Berkeley EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2015 A Logic Primer Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 144/244,

More information

Semantics and Pragmatics of NLP

Semantics and Pragmatics of NLP Semantics and Pragmatics of NLP Alex Ewan School of Informatics University of Edinburgh 28 January 2008 1 2 3 Taking Stock We have: Introduced syntax and semantics for FOL plus lambdas. Represented FOL

More information

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning.

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning. 3: Logic Why logic? Logic about inference or argument Start from assumptions or axioms Make deductions according to rules of reasoning Logic 3-1 Why logic? (continued) If I don t buy a lottery ticket on

More information

Quantification in the predicate calculus

Quantification in the predicate calculus Quantification in the predicate calculus PHIL 43916 eptember 5, 2012 1. The problem posed by quantified sentences... 1 2. yntax of PC... 2 3. Bound and free iables... 3 4. Models and assignments... 4 5.

More information

Predicate Logic 1. The Need for Predicate Logic. The Need for Predicate Logic. The Need for Predicate Logic. The Need for Predicate Logic

Predicate Logic 1. The Need for Predicate Logic. The Need for Predicate Logic. The Need for Predicate Logic. The Need for Predicate Logic Predicate Logic 1 Background to Logic Paradigm Joseph Spring School of Computer Science This Lecture We consider the following topics: The Closed World Assumption Predicates in Extension The Universal

More information

Discriminative Training. March 4, 2014

Discriminative Training. March 4, 2014 Discriminative Training March 4, 2014 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder e =

More information

AN ABSTRACT OF THE DISSERTATION OF

AN ABSTRACT OF THE DISSERTATION OF AN ABSTRACT OF THE DISSERTATION OF Kai Zhao for the degree of Doctor of Philosophy in Computer Science presented on May 30, 2017. Title: Structured Learning with Latent Variables: Theory and Algorithms

More information

Why Learning Logic? Logic. Propositional Logic. Compound Propositions

Why Learning Logic? Logic. Propositional Logic. Compound Propositions Logic Objectives Propositions and compound propositions Negation, conjunction, disjunction, and exclusive or Implication and biconditional Logic equivalence and satisfiability Application of propositional

More information

173 Logic and Prolog 2013 With Answers and FFQ

173 Logic and Prolog 2013 With Answers and FFQ 173 Logic and Prolog 2013 With Answers and FFQ Please write your name on the bluebook. You may have two sides of handwritten notes. There are 75 points (minutes) total. Stay cool and please write neatly.

More information

Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale

Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale Noah Smith c 2017 University of Washington nasmith@cs.washington.edu May 22, 2017 1 / 30 To-Do List Online

More information

Quasi-Second-Order Parsing for 1-Endpoint-Crossing, Pagenumber-2 Graphs

Quasi-Second-Order Parsing for 1-Endpoint-Crossing, Pagenumber-2 Graphs Quasi-Second-Order Parsing for 1-Endpoint-Crossing, Pagenumber-2 Graphs Junjie Cao, Sheng Huang, Weiwei Sun, Xiaojun Wan Institute of Computer Science and Technology Peking University September 5, 2017

More information

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al. Google arxiv:1609.08144v2 Reviewed by : Bill

More information

Introduction to first-order logic:

Introduction to first-order logic: Introduction to first-order logic: First-order structures and languages. Terms and formulae in first-order logic. Interpretations, truth, validity, and satisfaction. Valentin Goranko DTU Informatics September

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Spring 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

Announcements Multiple & Mixed Quantifiers Understanding Quantification. Quantification What We ve Done. Outline. William Starr

Announcements Multiple & Mixed Quantifiers Understanding Quantification. Quantification What We ve Done. Outline. William Starr Announcements 04.02 Multiple & Mixed Quantifiers Understanding Quantification 1 HW9 is due next Tuesday William Starr 04.02.09 William Starr Multiple & Mixed Quantifiers (Phil 201.02) Rutgers University

More information

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this. Chapter 12 Synchronous CFGs Synchronous context-free grammars are a generalization of CFGs that generate pairs of related strings instead of single strings. They are useful in many situations where one

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

a. Develop a fragment of English that contains quantificational NPs. b. Develop a translation base from that fragment to Politics+λ

a. Develop a fragment of English that contains quantificational NPs. b. Develop a translation base from that fragment to Politics+λ An Algebraic Approach to Quantification and Lambda Abstraction: Applications to the Analysis of English (1) Ingredients on the Table a. A logical language with both quantification and lambda abstraction

More information

Intermediate Logic. First-Order Logic

Intermediate Logic. First-Order Logic Intermediate Logic Lecture Four First-Order Logic Rob Trueman rob.trueman@york.ac.uk University of York Introducing First-Order Logic First-Order Logic Introducing First-Order Logic Names Predicates Quantifiers

More information

Introduction to Semantics. Common Nouns and Adjectives in Predicate Position 1

Introduction to Semantics. Common Nouns and Adjectives in Predicate Position 1 Common Nouns and Adjectives in Predicate Position 1 (1) The Lexicon of Our System at Present a. Proper Names: [[ Barack ]] = Barack b. Intransitive Verbs: [[ smokes ]] = [ λx : x D e. IF x smokes THEN

More information

Announcements CompSci 102 Discrete Math for Computer Science

Announcements CompSci 102 Discrete Math for Computer Science Announcements CompSci 102 Discrete Math for Computer Science Read for next time Chap. 1.4-1.6 Recitation 1 is tomorrow Homework will be posted by Friday January 19, 2012 Today more logic Prof. Rodger Most

More information

Predicate Logic: Introduction and Translations

Predicate Logic: Introduction and Translations Predicate Logic: Introduction and Translations Alice Gao Lecture 10 Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek 1/29 Outline Predicate

More information

Quantification What We ve Done. Multiple & Mixed Quantifiers Understanding Quantification. William Starr

Quantification What We ve Done. Multiple & Mixed Quantifiers Understanding Quantification. William Starr What We ve Done Multiple & Mixed Quantifiers Understanding William Starr 11.01.11 1 So far, we ve learned what and mean Recall the semantics and game rules Both based onsatisfaction 2 Use and for translation

More information

a. ~p : if p is T, then ~p is F, and vice versa

a. ~p : if p is T, then ~p is F, and vice versa Lecture 10: Propositional Logic II Philosophy 130 3 & 8 November 2016 O Rourke & Gibson I. Administrative A. Group papers back to you on November 3. B. Questions? II. The Meaning of the Conditional III.

More information

Requirements Validation. Content. What the standards say (*) ?? Validation, Verification, Accreditation!! Correctness and completeness

Requirements Validation. Content. What the standards say (*) ?? Validation, Verification, Accreditation!! Correctness and completeness Requirements Validation Requirements Management Requirements Validation?? Validation, Verification, Accreditation!! Check if evrything is OK With respect to what? Mesurement associated with requirements

More information

A Logic Primer. Stavros Tripakis University of California, Berkeley. Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2014 A Logic Primer 1 / 35

A Logic Primer. Stavros Tripakis University of California, Berkeley. Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2014 A Logic Primer 1 / 35 EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2014 A Logic Primer Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 144/244,

More information

Proseminar on Semantic Theory Fall 2013 Ling 720 Problem Set on the Analysis of Quantification: Answers and Notes

Proseminar on Semantic Theory Fall 2013 Ling 720 Problem Set on the Analysis of Quantification: Answers and Notes Problem Set on the Analysis of Quantification: Answers and Notes 1. Notes on the Answers In Section 2, I have copied some illustrative answers from the problem sets submitted to me. In this section, I

More information

Lecture 11: Proofs, Games, and Alternation

Lecture 11: Proofs, Games, and Alternation IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 11: Proofs, Games, and Alternation David Mix Barrington and Alexis Maciel July 31, 2000

More information

Adam Blank Spring 2017 CSE 311. Foundations of Computing I

Adam Blank Spring 2017 CSE 311. Foundations of Computing I Adam Blank Spring 2017 CSE 311 Foundations of Computing I Pre-Lecture Problem Suppose that p, and p (q r) are true. Is q true? Can you prove it with equivalences? CSE 311: Foundations of Computing Lecture

More information

Ling 130 Notes: Syntax and Semantics of Propositional Logic

Ling 130 Notes: Syntax and Semantics of Propositional Logic Ling 130 Notes: Syntax and Semantics of Propositional Logic Sophia A. Malamud January 21, 2011 1 Preliminaries. Goals: Motivate propositional logic syntax and inferencing. Feel comfortable manipulating

More information

Introduction to Semantics. The Formalization of Meaning 1

Introduction to Semantics. The Formalization of Meaning 1 The Formalization of Meaning 1 1. Obtaining a System That Derives Truth Conditions (1) The Goal of Our Enterprise To develop a system that, for every sentence S of English, derives the truth-conditions

More information

Ella failed to drop the class. Ella dropped the class.

Ella failed to drop the class. Ella dropped the class. Propositional logic In many cases, a sentence is built up from one or more simpler sentences. To see what follows from such a complicated sentence, it is helpful to distinguish the simpler sentences from

More information

Sequence Modeling with Neural Networks

Sequence Modeling with Neural Networks Sequence Modeling with Neural Networks Harini Suresh y 0 y 1 y 2 s 0 s 1 s 2... x 0 x 1 x 2 hat is a sequence? This morning I took the dog for a walk. sentence medical signals speech waveform Successes

More information

CS103 Handout 22 Fall 2012 November 30, 2012 Problem Set 9

CS103 Handout 22 Fall 2012 November 30, 2012 Problem Set 9 CS103 Handout 22 Fall 2012 November 30, 2012 Problem Set 9 In this final problem set of the quarter, you will explore the limits of what can be computed efficiently. What problems do we believe are computationally

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) Also called Predicate Logic or Predicate Calculus 2. First-Order Logic (FOL) FOL Syntax variables x, y, z, constants a, b, c, functions f, g, h, terms variables, constants or n-ary

More information

CPSC 121: Models of Computation

CPSC 121: Models of Computation CPSC 121: Models of Computation Unit 6 Rewriting Predicate Logic Statements Based on slides by Patrice Belleville and Steve Wolfman Coming Up Pre-class quiz #7 is due Wednesday October 25th at 9:00 pm.

More information

EXERCISE 10 SOLUTIONS

EXERCISE 10 SOLUTIONS CSE541 EXERCISE 10 SOLUTIONS Covers Chapters 10, 11, 12 Read and learn all examples and exercises in the chapters as well! QUESTION 1 Let GL be the Gentzen style proof system for classical logic defined

More information

Mathematical Logic Part Three

Mathematical Logic Part Three Mathematical Logic Part Three Recap from Last Time What is First-Order Logic? First-order logic is a logical system for reasoning about properties of objects. Augments the logical connectives from propositional

More information

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

Logic for Computer Science - Week 2 The Syntax of Propositional Logic

Logic for Computer Science - Week 2 The Syntax of Propositional Logic Logic for Computer Science - Week 2 The Syntax of Propositional Logic Ștefan Ciobâcă November 30, 2017 1 An Introduction to Logical Formulae In the previous lecture, we have seen what makes an argument

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Pushpak Bhattacharyya CSE Dept, IIT Patna and Bombay LSTM 15 jun, 2017 lgsoft:nlp:lstm:pushpak 1 Recap 15 jun, 2017 lgsoft:nlp:lstm:pushpak 2 Feedforward Network and Backpropagation

More information

Theory of Computation CS3102 Spring 2014

Theory of Computation CS3102 Spring 2014 Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

Semantics and Pragmatics of NLP Pronouns

Semantics and Pragmatics of NLP Pronouns Semantics and Pragmatics of NLP Pronouns School of Informatics University of Edinburgh Outline Observations About Data 1 Observations of what factors influence the way pronouns get resolved 2 Some algorithms

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Introduction to Theoretical Computer Science

Introduction to Theoretical Computer Science Introduction to Theoretical Computer Science Zdeněk Sawa Department of Computer Science, FEI, Technical University of Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Czech republic February 11, 2018 Z.

More information

Solutions to Exercises (Sections )

Solutions to Exercises (Sections ) s to Exercises (Sections 1.1-1.10) Section 1.1 Exercise 1.1.1: Identifying propositions (a) Have a nice day. : Command, not a proposition. (b) The soup is cold. : Proposition. Negation: The soup is not

More information

Mathematical Preliminaries. Sipser pages 1-28

Mathematical Preliminaries. Sipser pages 1-28 Mathematical Preliminaries Sipser pages 1-28 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007. Fall 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

564 Lecture 25 Nov. 23, Continuing note on presuppositional vs. nonpresuppositional dets.

564 Lecture 25 Nov. 23, Continuing note on presuppositional vs. nonpresuppositional dets. 564 Lecture 25 Nov. 23, 1999 1 Continuing note on presuppositional vs. nonpresuppositional dets. Here's the argument about the nonpresupp vs. presupp analysis of "every" that I couldn't reconstruct last

More information

Hybrid Logic Dependency Semantics

Hybrid Logic Dependency Semantics Hybrid Logic Dependency Semantics What goes into the OpenCCG surface realiser? Lecture 2 January 22, 2013 Brief recap - What is NLG? How computer programs can be made to produce (high-quality) natural

More information

Word Alignment III: Fertility Models & CRFs. February 3, 2015

Word Alignment III: Fertility Models & CRFs. February 3, 2015 Word Alignment III: Fertility Models & CRFs February 3, 2015 Last Time... X p( Translation)= p(, Translation) Alignment = X Alignment Alignment p( p( Alignment) Translation Alignment) {z } {z } X z } {

More information

Knowledge Representation and Reasoning

Knowledge Representation and Reasoning Knowledge Representation and Reasoning Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel Objectives Knowledge Representation in Logic The

More information

Computational Models - Lecture 3

Computational Models - Lecture 3 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models - Lecture 3 Equivalence of regular expressions and regular languages (lukewarm leftover

More information

Andrew/CS ID: Midterm Solutions, Fall 2006

Andrew/CS ID: Midterm Solutions, Fall 2006 Name: Andrew/CS ID: 15-780 Midterm Solutions, Fall 2006 November 15, 2006 Place your name and your andrew/cs email address on the front page. The exam is open-book, open-notes, no electronics other than

More information

IBM Model 1 for Machine Translation

IBM Model 1 for Machine Translation IBM Model 1 for Machine Translation Micha Elsner March 28, 2014 2 Machine translation A key area of computational linguistics Bar-Hillel points out that human-like translation requires understanding of

More information

Syllogistic Logic and its Extensions

Syllogistic Logic and its Extensions 1/31 Syllogistic Logic and its Extensions Larry Moss, Indiana University NASSLLI 2014 2/31 Logic and Language: Traditional Syllogisms All men are mortal. Socrates is a man. Socrates is mortal. Some men

More information

CS103 Handout 12 Winter February 4, 2013 Practice Midterm Exam

CS103 Handout 12 Winter February 4, 2013 Practice Midterm Exam CS103 Handout 12 Winter 2012-2013 February 4, 2013 Practice Midterm Exam This midterm exam is open-book, open-note, open-computer, but closed-network. This means that if you want to have your laptop with

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 2.1 Logical Form and Logical Equivalence Copyright Cengage Learning. All rights reserved. Logical Form

More information

Probability Review. September 25, 2015

Probability Review. September 25, 2015 Probability Review September 25, 2015 We need a tool to 1) Formulate a model of some phenomenon. 2) Learn an instance of the model from data. 3) Use it to infer outputs from new inputs. Why Probability?

More information

Lecture Notes on From Rules to Propositions

Lecture Notes on From Rules to Propositions Lecture Notes on From Rules to Propositions 15-816: Substructural Logics Frank Pfenning Lecture 2 September 1, 2016 We review the ideas of ephemeral truth and linear inference with another example from

More information