NON-MARKOVIAN DIFFUSION OF A QUANTUM PARTICLE IN A FLUCTUATING MEDIUM

Size: px
Start display at page:

Download "NON-MARKOVIAN DIFFUSION OF A QUANTUM PARTICLE IN A FLUCTUATING MEDIUM"

Transcription

1 JOURNAL DE PHYSIQUE Colloque C7, suppl6ment au nolo, Tome 46, octobre 1985 page C7-35 NON-MARKOVIAN DIFFUSION OF A QUANTUM PARTICLE IN A FLUCTUATING MEDIUM P. Reineker and K. Kassner Abtei lung Theoretische Physik, Universittit illm, Ulm, F. R. G. Abstract - A model for diffusion of a quantum particle on a fluctuating lattice is considered. The Hamiltonian contains a coherent transfer matrix element between nearest neighbors and local energy fluctuations described by a dichotomic Markov process with coloured noise. The diffusion constant is calculated up to the fourth order in J. The result is compared to recent findings of Kitahara-Haus and Inaba. Anderson localization emerges in the l i m i t of static fluctuations. The dynamics of electronic excitations interacting with vibrations is of importance in various fields of condensed matter physics Examples are the investigation of optical and spin resonance line shapes, of relaxation phenomena or of charge and energy transport phenomena. Because the full quantum mechanical problem is difficult to treat, its Hamiltonian is often replaced by a stochastic process /4,5/ modeling the vibrations. In the Haken-Strobl model for the coupled coherent and incoherent exciton motion local and non-local fluctuations are allowed for in the stochastic part and described by a Gaussian 6 correlated (white noise) Markov process. With this Hamiltonian the diffusion constant /7,9,10/ and the time dependence of the mean square'displacement of the particle have been derived The same results have been obtained subsequently in The influence of exponentially decaying correlation functions (coloured noise) has been investigated in 1171 by expanding the diffusion constant in powers of the correlation time. In a recent approach the stochastic part was represented by a dichotomic Markov process 1181 with exponentially decaying correlation functions. Within this model an approximate analytical expression for the diffusion tensor was obtained by considering only diagonal elements and their nearest neighbors in the density matrix 1191, which may be justified in the case of strong fluctuations with rapidly decaying correlation functions. In a following paper 101 the diffusion constant was calculated numerically using the dynamical coherent potential method. In this letter we use the same model, but the method of solution is quite different from those used in /19,0/ because we use an expansion in powers of the coherent part of the Hamiltonian. The mean square displacement is finally described by a continued fraction the convergence behaviour of which is analyzed with respect to the amplitude of the fluctuations. Anderson localization is obtained in the l i m i t of static fluctuations. Article published online by EDP Sciences and available at

2 C7-36 JOURNAL DE PHYSIQUE The Hamiltonian of the model H = H. + Hl(t) is given by In> describes a state localized at site n. In the coherent part H. of the Hamilto- nran J describes the particle transfer between neighboring sites; n runs over all sites, over nearest neighbors only. hn(t) in the stochastic part Hl(t) is a clas- sical fluctuating quantity with <h (t)>z 0 (angular brackets denote stochastic averaging) and correlation functions " with tl t t3,t4,..., t is characteristic 1181 for a dichotomic P A describes the strength of the fluctuations and y the decay rate. Markov process. Using the disentanglement theorem from the equation of motion for the density operator of the particle 6 = -i[~,p] equations determining the Laplace transform of the - mean square displacement <R (S)> are derived (for details see 11,1). Explicitly we obtain ^ <R(s)>=J/s C where the matrix K ^ ^ a$'% (S) aa' afar -- A (S) is determined from {S + ;(S)} w(s) = 1. (5) This equation has the structure of equatins determining Green's functions with playing the role of a self-energy. After z has been obtained up to second order in J, (5) has been solved analytically 11 for a linear chain. The diffusion constant, correct to fourth order in J, is calculated from 1 - D = lim s <R (S)> s-to and represented in Fig.. For more complicated lattices, however, it is more convenient to derive recurrence relations for the Fean square displacement start!ng from (5) (with the second-order approximation for :(S) ) and the definition of <R'(s)>. To that end it is useful to define (all the sums run over nearest neighbors) 0 (6) - It is obvious that <R (S)> = Ro(s). We furthermore define lattice sums 5, = C 6(0,a +a a ) which describe the number of ways of retur n al,a,...,an ning to the origin after n nearest neighbor steps and obtain (details of the derivation will be published in // )

3 Subtracting two consecutive equations we have unxrn - (x-on4j) - 4' = 0 with an = (n+l) ~,+~/(n+3) The functions rp(j,s), x(j,s) and $(J,s) have been calculated in 11. For the following calculation of the diffusion constant, however, we need and give them below for S = 0 only. At the moment we have tg know that x(j,s) contains terms independent of J whereas $(J,s) is proportional to J and thus a small quantity for small J. The system of equations (9) is solved by a continued fraction 131. Using (8) for n=o, the fact that gl=z (number of nearest neighbors), the con- nection between Ro(s) and the mean square displacement, and (6) the diffusion constant is given by with y-3 qo = l i m q(j,s) = J l' s+o xo = lim x(j,s) = l' + zq 0 C - ($ A +73y+4a 7 Y } s+o 1 where r-' = (y/a+y-l). To evaluate (10) in N-th order approximation we have to know ol...an for the lattice under consideration which are determined by the c~...<~+~. It is easy to give combinatorial formulae for these lattice sums. For a linear chain Zn we have ( = ( ) and for a square lattice C = (:). In the case of a simple cubic or a bodyncenteped cubic lattice the an may Be calculated up to N = 30 within some seconds of CPU time on a minicomputer. For a face centered cubic lattice, however, one has to evaluate 8 nested sums which makes the calculation rather time consuming. Truncating the continued fractions by neglecting the 4J0 term in the second denominator of (10) gives This result may be compared with expressions (1,13) by Kitahara and Haus 1171 and by Inaba 1191, respectively, 8. after expanding all res Its up to fourth order in J. For a linear chain (z=) the terms proportional to J In (11,13) are identical, whereas in (1) a term - y-l is missing. In the expression proportional to J~ both in (1) and in (13) terms are missing. For z > only (11) and (13) can be compared. The expressions do not agree because Inaba's result is proportional to z whereas (9) contains a contribution proportional to z. The reason for this difference is that in Inaba's treatment all the memory of jumps of the diffusing particle beyond nearest neighbors ist lost, whereas our result contains memory effects of closed paths consisting of four jumps (to a nearest neighbor each).

4 JOURNAL DE PHYSIQUE Fig. 1 - D/(Ja ) as a function of y/j for several values of A/J for a linear chain (z = ).. Kitahara- Haus /15/; -----: Inaba /17/; -: eq. (9) of this paper. Single points: solution of the stochastic Schrodinger equation /17/. Fig. - Several approximants of the continued fraction (8) for the diffusion constant as compared to the solution /0/ of (,4) for a linear chain. For A/J = 1 this solution does not exist over the whole range of y/~.... approximation (9). Only the third and fifth approximants are plotted for A/> > 1. Fig. 1 illustrates the difference between the three results in the case of a linear chain. It shows the reduced diffusion constant D/(a J) corresponding to (11-13) as a function of the reduced switching rate y/j for several values of A/J. The figure shows that approximation (1) becomes rather poor for small values of y/j and that the other approximations agree pretty well for large values of A/J. The single points together with characteristic error bars represent solutions of the stochastic Schrodinger equation obtained by Inaba 101. Fig. shows (11) and additional approximants of the continued fraction (10) together with the solution obtained from (5). The figure shows that for A/J = 1 the latter solution does not exist over the whole range of y/j. In the same interval the continued fraction diverges as is seen from the behaviour of the plotted approximants. The figure shows also that for A/J 1.5 there is convergence over the whole range of y/j and that already the fifth approximant gives a rather good description. A rather crude estimate 11 in order to investigate the convergence behaviour of the continued fraction (10) shows that it converges for A ~ / > J z(z+l) ~ independent of the switching rate y/j. For a linear chain (z=) we expect convergence for A/J > V@.4. From Fig. we see that there is perfect convergence even for A/J 1.5. l I In the case of convergence we can consider the limit y/j+o, i.e. we approach the case of a lattice with static random potential fluctuations (Anderson problem/4/). The figures show that the diffusion constant vanishes for y/j -t 0. This means that in the case of static fluctuations the particle is immobile, i.e. we obtain Anderson localization /4/. To the knowledge of the authors this is the first proof of Anderson localization starting from a time dependent stochastic model with coloured noise. For large enough values of A/J the continued fraction result (10) for the diffusion constant converges also for higher dimensional lattices and shows Anderson localization for y/j + 0. These investigations are represented in detail in //.

5 REFERENCES Silbey, R., Ann. Rev. Phys. Chem. 7 (1976) 03 - Kenkre, V.M., Springer Tracts in Modern Physics 9 (198) 1 Reineker, P,, Springer Tracts in Modern Physics 3 (198) 111 Anderson, P.W., J. Phys. Soc. 9 (1954) 316 Kubo, R., and Tornita, K., J. Phys. Soc. Jap. - 9 (1954) 888 Haken, H., and Strobl, G., in: The Triplet State, ed. by Zahlan, A., (Cambridge, England, 1967) Haken, H., and Reineker, P., Z. Physik 49 (197) 53 Haken, H., and Strobl, G., Z. Physik 6 (1973) 135 Reineker, P,, and Kuhne, R., Z. Physik B (1975) Kuhne, R., and Reineker, P.,. Physik B (1975) 01 Schwarzer, E., and Haken, H., Phys. Lett. 4A (197) Reineker, P., Phys. Lett. %A (1973) 385 Reineker, P.,. Physik 61 (1973) 187 Ovchinnikov, A.A., and Erikrnan, N.S., Sov. Phys. JETP 40 (1975) 733 Madhukar, A., and Post, W., Phys. Rev. Lett (1977) 144; - 40 (1978) 70 Rips, I.B., Theor. Math, Phys. 40 (1979) 74 - Kitahara, K., and Haus, J.W.,. Physik B3 (1979) 419 Bourett, R.C., Frisch, U., and Pouquet, A., Physica 65 (1973) Inaba, Y., J. Phys. Soc. Jap. (1981) 473 Inaba, Y., J. Phys. Soc. Jap. 5 (1983) 3144 Kassner, K., and Reineker, P., Z. Physik B59 (1985) 357 Kassner, K., and Reineker, P., Z. Physik BE,in print Wall,H.S., Continued Fractions (Chelsea, New York 1973) p. 17 Anderson, P.W., Phys. Rev. 109 (1958) 149

Coherent and incoherent motion in a one-dimensional lattice

Coherent and incoherent motion in a one-dimensional lattice PHYSICAL REVIEW B VOLUME 62, UMBER 6 Coherent and incoherent motion in a one-dimensional lattice AUGUST 2-II M. A. Palenberg and R. J. Silbey Department of Chemistry and Center for Materials Science and

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 29 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 29 Mar 2006 Conductance fluctuations in the localized regime A. M. Somoza, J. Prior and M. Ortuño arxiv:cond-mat/0603796v1 [cond-mat.dis-nn] 29 Mar 2006 Departamento de Física, Universidad de Murcia, Murcia 30.071,

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

Department of Electrical and Electronic Engineering, Ege University, Bornova 3500, Izmir, Turkey

Department of Electrical and Electronic Engineering, Ege University, Bornova 3500, Izmir, Turkey The effect of anisotropy on the absorption spectrum and the density of states of two-dimensional Frenkel exciton systems with Gaussian diagonal disorder I. Avgin a and D. L. Huber b,* a Department of Electrical

More information

THE KINETIC OF THE ATOMIC RELAXATION INDUCED BY LASER NOISE

THE KINETIC OF THE ATOMIC RELAXATION INDUCED BY LASER NOISE THE KINETIC OF THE ATOMIC RELAXATION INDUCED BY LASER NOISE O. El Akramine and A. Makhoute * UFR Physique Atomique, Moléculaire & Optique Appliquée Université Moulay Ismail, Faculté des Sciences, B.P.

More information

Many-Body Localization. Geoffrey Ji

Many-Body Localization. Geoffrey Ji Many-Body Localization Geoffrey Ji Outline Aside: Quantum thermalization; ETH Single-particle (Anderson) localization Many-body localization Some phenomenology (l-bit model) Numerics & Experiments Thermalization

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Bound states of two particles confined to parallel two-dimensional layers and interacting via dipole-dipole or dipole-charge laws

Bound states of two particles confined to parallel two-dimensional layers and interacting via dipole-dipole or dipole-charge laws PHYSICAL REVIEW B VOLUME 55, NUMBER 8 15 FEBRUARY 1997-II Bound states of two particles confined to parallel two-dimensional layers and interacting via dipole-dipole or dipole-charge laws V. I. Yudson

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 76 4 MARCH 1996 NUMBER 10 Finite-Size Scaling and Universality above the Upper Critical Dimensionality Erik Luijten* and Henk W. J. Blöte Faculty of Applied Physics, Delft

More information

Higher-order C n dispersion coefficients for hydrogen

Higher-order C n dispersion coefficients for hydrogen Higher-order C n dispersion coefficients for hydrogen J Mitroy* and M W J Bromley Faculty of Technology, Charles Darwin University, Darwin NT 0909, Australia Received 2 November 2004; published 11 March

More information

NOISE-INDUCED EXTREMA IN TIME-DEPENDENT GINSBURG-LANDAU SYSTEMS LESTER INGBER. Operations Research Code 55. Naval Postgraduate School

NOISE-INDUCED EXTREMA IN TIME-DEPENDENT GINSBURG-LANDAU SYSTEMS LESTER INGBER. Operations Research Code 55. Naval Postgraduate School MATHEMATICAL MODELLING NOISE-INDUCED EXTREMA IN TIME-DEPENDENT GINSBURG-LANDAU SYSTEMS LESTER INGBER Operations Research Code 55 Naval Postgraduate School Monterey, California 93943-5100 and Physical Studies

More information

(G). This remains probably true in most random magnets. It raises the question of. On correlation functions in random magnets LETTER TO THE EDITOR

(G). This remains probably true in most random magnets. It raises the question of. On correlation functions in random magnets LETTER TO THE EDITOR J. Phys. C: Solid State Phys., 14 (1981) L539-L544. Printed in Great Britain LETTER TO THE EDITOR On correlation functions in random magnets Bernard Derridai and Henk Hilhorst$ t Service de Physique ThCorique,

More information

Chapter 2 Energy Transfer Review

Chapter 2 Energy Transfer Review Chapter 2 Energy Transfer Review In this chapter, we discuss the basic concepts of excitation energy transfer, making the distinction between radiative and nonradiative, and giving a brief overview on

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Evaporation/Condensation of Ising Droplets

Evaporation/Condensation of Ising Droplets , Elmar Bittner and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany E-mail: andreas.nussbaumer@itp.uni-leipzig.de Recently Biskup et

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999 Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/9909323v1 [cond-mat.stat-mech] 22 Sep 1999 B. Zheng FB Physik, Universität Halle, 06099 Halle, Germany Abstract Numerically we

More information

Quantum Master Equations for the Electron Transfer Problem

Quantum Master Equations for the Electron Transfer Problem 20/01/2010 Quantum Master Equations for the Electron Transfer Problem Seminarvortrag Dekohaerenz und Dissipation in Quantensystemen Antonio A. Gentile The general transport problem in micro/mesoscopic

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London IQIS2008, Camerino (Italy), October 26th 2008 Dephasing Assisted Transport: Quantum Networks and Biomolecules Susana F. Huelga University of Hertfordshire Collaboration: Imperial College London Work supported

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud Notes on Spin Operators and the Heisenberg Model Physics 880.06: Winter, 003-4 David G. Stroud In these notes I give a brief discussion of spin-1/ operators and their use in the Heisenberg model. 1. Spin

More information

Single and Multiple Random Walks on Random Lattices: Excitation Trapping and Annihilation Simulations

Single and Multiple Random Walks on Random Lattices: Excitation Trapping and Annihilation Simulations Journal of Statistical Physics, Vol. 30, No. 2, 1983 Single and Multiple Random Walks on Random Lattices: Excitation Trapping and Annihilation Simulations R. Kopelman, 1 J. Hoshen, l J. S. Newhouse, 1

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

Simple Explanation of Fermi Arcs in Cuprate Pseudogaps: A Motional Narrowing Phenomenon

Simple Explanation of Fermi Arcs in Cuprate Pseudogaps: A Motional Narrowing Phenomenon Simple Explanation of Fermi Arcs in Cuprate Pseudogaps: A Motional Narrowing Phenomenon ABSTRACT: ARPES measurements on underdoped cuprates above the superconducting transition temperature exhibit the

More information

Stark effect of a rigid rotor

Stark effect of a rigid rotor J. Phys. B: At. Mol. Phys. 17 (1984) 3535-3544. Printed in Great Britain Stark effect of a rigid rotor M Cohen, Tova Feldmann and S Kais Department of Physical Chemistry, The Hebrew University, Jerusalem

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

Coherence by elevated temperature

Coherence by elevated temperature Coherence by elevated temperature Volker Meden with Dante Kennes, Alex Kashuba, Mikhail Pletyukhov, Herbert Schoeller Institut für Theorie der Statistischen Physik Goal dynamics of dissipative quantum

More information

F(t) equilibrium under H 0

F(t) equilibrium under H 0 Physics 17b: Statistical Mechanics Linear Response Theory Useful references are Callen and Greene [1], and Chandler [], chapter 16. Task To calculate the change in a measurement B t) due to the application

More information

GENERATION OF COLORED NOISE

GENERATION OF COLORED NOISE International Journal of Modern Physics C, Vol. 12, No. 6 (2001) 851 855 c World Scientific Publishing Company GENERATION OF COLORED NOISE LORENZ BARTOSCH Institut für Theoretische Physik, Johann Wolfgang

More information

The nuclear many- body problem: an open quantum systems perspec6ve. Denis Lacroix GANIL- Caen

The nuclear many- body problem: an open quantum systems perspec6ve. Denis Lacroix GANIL- Caen The nuclear many- body problem: an open quantum systems perspec6ve Denis Lacroix GANIL- Caen Coll: M. Assié, S. Ayik, Ph. Chomaz, G. Hupin, K. Washiyama Trento, Decoherence -April 2010 The nuclear many-

More information

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A. Physics Letters A 374 (2010) 1063 1067 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Macroscopic far-field observation of the sub-wavelength near-field dipole

More information

LE JOURNAL DE PHYSIQUE - LETTRES

LE JOURNAL DE PHYSIQUE - LETTRES Nous We Tome 46? 21 1 er NOVEMBRE 1985 LE JOURNAL DE PHYSIQUE - LETTRES J. Physique Lett. 46 (1985) L-985 - L-989 1 er NOVEMBRE 1985, L-985 Classification Physics Abstracts 64.70P - 05.40-75.40 Diffusion

More information

Resistance distribution in the hopping percolation model

Resistance distribution in the hopping percolation model Resistance distribution in the hopping percolation model Yakov M. Strelniker, Shlomo Havlin, Richard Berkovits, and Aviad Frydman Minerva Center, Jack and Pearl Resnick Institute of Advanced Technology,

More information

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Term-paper for PHY563 Xianfeng Rui, UIUC Physics Abstract: Three models of surface growth

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Oct 2006

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Oct 2006 arxiv:cond-mat/8v [cond-mat.stat-mech] 5 Oct Coherent dynamics on hierarchical systems Alexander Blumen, Veronika Bierbaum, and Oliver Mülken Theoretische Polymerphysik, Universität Freiburg, Hermann-Herder-Straße,

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

Pólya s Random Walk Theorem arxiv: v2 [math.pr] 18 Apr 2013

Pólya s Random Walk Theorem arxiv: v2 [math.pr] 18 Apr 2013 Pólya s Random Wal Theorem arxiv:131.3916v2 [math.pr] 18 Apr 213 Jonathan ova Abstract This note presents a proof of Pólya s random wal theorem using classical methods from special function theory and

More information

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 132-136 Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Dushyant Pradeep, U C Naithani

More information

Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples.

Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples. Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples. The data here are raw nuclear quadrupole resonance (NQR) data multiplied by temperature to compensate for

More information

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability Journal of Physics: Conference Series PAPER OPEN ACCESS Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability To cite this article: Anastasiya V Pimenova and Denis S Goldobin 2016

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

Pólya s Random Walk Theorem

Pólya s Random Walk Theorem Pólya s Random Walk Theorem Jonathan ovak Abstract. This note presents a proof of Pólya s random walk theorem using classical methods from special function theory and asymptotic analysis. 1. ITRODUCTIO.

More information

7 Spin Lattice Relaxation

7 Spin Lattice Relaxation D. Freude and J. Haase, version of April 205 7 7 Spin Lattice Relaxation The recovery of the population ratio / of the Zeeman levels and from an off equilibrium state to the Boltzmann equilibrium / exp

More information

Two-Photon Decay in Monovalent Atoms

Two-Photon Decay in Monovalent Atoms Two-Photon Decay in Monovalent Atoms W. R. Johnson Department of Physics, 225 Nieuwland Science Hall University of Notre Dame, Notre Dame, IN 46556 July 23, 2017 Abstract Two-photon decay of excited states

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 86 19 MARCH 2001 NUMBER 12 Shape of the Quantum Diffusion Front Jianxin Zhong, 1,2,3 R. B. Diener, 1 Daniel A. Steck, 1 Windell H. Oskay, 1 Mark G. Raizen, 1 E. Ward Plummer,

More information

Statistical switching kinetics in ferroelectrics

Statistical switching kinetics in ferroelectrics Statistical switching kinetics in ferroelectrics X.J. Lou Department of Materials Science and Engineering, National University of Singapore, 117574, Singapore Abstract: By assuming a more realistic nucleation

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram

Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram Raju Venugopalan BNL/Heidelberg arxiv:1310.1600 [cond-mat.stat-mech] Heidelberg Seminar, June 8 th, 2016

More information

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany JOURNAL DE PHYSIQUE IV Colloque C8, suppl6ment au Journal de Physique III, Volume 5, dkembre 1995 Structural Phase Transformation and Phonon Softening in Iron-Based Alloys H.C. Herper, E. Hoffmann, P.

More information

arxiv:gr-qc/ v1 11 Oct 1999

arxiv:gr-qc/ v1 11 Oct 1999 NIKHEF/99-026 Killing-Yano tensors, non-standard supersymmetries and an index theorem J.W. van Holten arxiv:gr-qc/9910035 v1 11 Oct 1999 Theoretical Physics Group, NIKHEF P.O. Box 41882, 1009 DB Amsterdam

More information

MICROWAVE SPECTROSCOPY

MICROWAVE SPECTROSCOPY IV. MICROWAVE SPECTROSCOPY Prof. M. W. P. Strandberg H. C. Bowers M. S. Lipsett Prof. R. L. Kyhl P. H. Carr J. J. O'Gallagher Prof. G. J. Wolga P. Fowler D. W. Oliver Dr. R. A. McFarlane W. J. C. Grant

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 23 Feb 1998

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 23 Feb 1998 Multiplicative processes and power laws arxiv:cond-mat/978231v2 [cond-mat.stat-mech] 23 Feb 1998 Didier Sornette 1,2 1 Laboratoire de Physique de la Matière Condensée, CNRS UMR6632 Université des Sciences,

More information

Quantum molecular dynamics study of the pressure dependence of the ammonia inversion transition

Quantum molecular dynamics study of the pressure dependence of the ammonia inversion transition Quantum molecular dynamics study of the pressure dependence of the ammonia inversion transition I.M. Herbauts and D.J. Dunstan, Physics Department, Queen Mary, University of London, London E 4NS, England.

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005 Moment Equations for a Spatially Extended System of Two Competing Species arxiv:cond-mat/0510104v1 [cond-mat.stat-mech] 5 Oct 2005 D. Valenti a, L. Schimansky-Geier b, X. Sailer b, and B. Spagnolo a a

More information

Kinetics of the scavenger reaction

Kinetics of the scavenger reaction J. Phys. A: Math. Gen. 17 (1984) L451-L455. Printed in Great Britain LETTER TO THE EDITOR Kinetics of the scavenger reaction S Redner and K Kang Center for Polymer Studiest and Department of Physics, Boston

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information

Quantum annealing for problems with ground-state degeneracy

Quantum annealing for problems with ground-state degeneracy Proceedings of the International Workshop on Statistical-Mechanical Informatics September 14 17, 2008, Sendai, Japan Quantum annealing for problems with ground-state degeneracy Yoshiki Matsuda 1, Hidetoshi

More information

221A Lecture Notes Convergence of Perturbation Theory

221A Lecture Notes Convergence of Perturbation Theory A Lecture Notes Convergence of Perturbation Theory Asymptotic Series An asymptotic series in a parameter ɛ of a function is given in a power series f(ɛ) = f n ɛ n () n=0 where the series actually does

More information

Haydock s recursive solution of self-adjoint problems. Discrete spectrum

Haydock s recursive solution of self-adjoint problems. Discrete spectrum Haydock s recursive solution of self-adjoint problems. Discrete spectrum Alexander Moroz Wave-scattering.com wavescattering@yahoo.com January 3, 2015 Alexander Moroz (WS) Recursive solution January 3,

More information

ORGANIC MOLECULAR CRYSTALS

ORGANIC MOLECULAR CRYSTALS ORGANIC MOLECULAR CRYSTALS Interaction, Localization, and Transport Phenomena Edgar A. Silinsh Institute of Physical Energetics Latvian Academy of Sciences, Riga Vladislav Cäpek Institute of Physics of

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Springer Series in Materials Science 88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Bearbeitet von Ping Sheng Neuausgabe 2006. Buch. xv, 329 S. Hardcover ISBN 978 3 540 29155

More information

Critical slowing down and dispersion of avalanche upconversion dynamics

Critical slowing down and dispersion of avalanche upconversion dynamics PHYSICAL REVIEW B VOLUME 55, NUMBER 14 1 APRIL 1997-II Critical slowing down and dispersion of avalanche upconversion dynamics Q. Shu and S. C. Rand Division of Applied Physics, 1049 Randall Laboratory,

More information

Neighbor Tables Long-Range Potentials

Neighbor Tables Long-Range Potentials Neighbor Tables Long-Range Potentials Today we learn how we can handle long range potentials. Neighbor tables Long-range potential Ewald sums MSE485/PHY466/CSE485 1 Periodic distances Minimum Image Convention:

More information

Clusters and Percolation

Clusters and Percolation Chapter 6 Clusters and Percolation c 2012 by W. Klein, Harvey Gould, and Jan Tobochnik 5 November 2012 6.1 Introduction In this chapter we continue our investigation of nucleation near the spinodal. We

More information

Analysis of Nonlinear Dynamics by Square Matrix Method

Analysis of Nonlinear Dynamics by Square Matrix Method Analysis of Nonlinear Dynamics by Square Matrix Method Li Hua Yu Brookhaven National Laboratory NOCE, Arcidosso, Sep. 2017 Write one turn map of Taylor expansion as square matrix Simplest example of nonlinear

More information

4 Results of the static and dynamic light scattering measurements

4 Results of the static and dynamic light scattering measurements 4 Results of the static and dynamic light scattering measurements 4 Results of the static and dynamic light scattering measurements In this section we present results of statistic and dynamic light scattering

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

THE problem of phase noise and its influence on oscillators

THE problem of phase noise and its influence on oscillators IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 5, MAY 2007 435 Phase Diffusion Coefficient for Oscillators Perturbed by Colored Noise Fergal O Doherty and James P. Gleeson Abstract

More information

arxiv:cond-mat/ v1 7 Nov 1997

arxiv:cond-mat/ v1 7 Nov 1997 Stepwise quantum decay of self-localized solitons V.Hizhnyakov and D.Nevedrov Institute of Theoretical Physics, University of Tartu, Tähe, EE Tartu, Estonia. Institute of Physics, Riia 1, EE Tartu, Estonia.

More information

arxiv:cond-mat/ v1 17 Aug 1994

arxiv:cond-mat/ v1 17 Aug 1994 Universality in the One-Dimensional Self-Organized Critical Forest-Fire Model Barbara Drossel, Siegfried Clar, and Franz Schwabl Institut für Theoretische Physik, arxiv:cond-mat/9408046v1 17 Aug 1994 Physik-Department

More information

Wigner function description of a qubit-oscillator system

Wigner function description of a qubit-oscillator system Low Temperature Physics/Fizika Nizkikh Temperatur, 013, v. 39, No. 3, pp. 37 377 James Allen and A.M. Zagoskin Loughborough University, Loughborough, Leics LE11 3TU, UK E-mail: A.Zagoskin@eboro.ac.uk Received

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Femtosecond Quantum Control for Quantum Computing and Quantum Networks. Caroline Gollub

Femtosecond Quantum Control for Quantum Computing and Quantum Networks. Caroline Gollub Femtosecond Quantum Control for Quantum Computing and Quantum Networks Caroline Gollub Outline Quantum Control Quantum Computing with Vibrational Qubits Concept & IR gates Raman Quantum Computing Control

More information

Excitation of high angular momentum Rydberg states

Excitation of high angular momentum Rydberg states J. Phys. B: At. Mol. Phys. 19 (1986) L461-L465. Printed in Great Britain LE ITER TO THE EDITOR Excitation of high angular momentum Rydberg states W A Molanderi, C R Stroud Jr and John A Yeazell The Institute

More information

Principles of Magnetic Resonance

Principles of Magnetic Resonance С. Р. Slichter Principles of Magnetic Resonance Third Enlarged and Updated Edition With 185 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Contents 1. Elements of Resonance

More information

Lines of Renormalization Group Fixed Points for Fluid and Crystalline Membranes.

Lines of Renormalization Group Fixed Points for Fluid and Crystalline Membranes. EUROPHYSICS LETTERS 1 October 1988 Europhys. Lett., 7 (3), pp. 255-261 (1988) Lines of Renormalization Group Fixed Points for Fluid and Crystalline Membranes. R. LIPOWSKY Institut für Festkörperforschung

More information

Mean-field theory for arrays of Josephson-coupled wires

Mean-field theory for arrays of Josephson-coupled wires PHYSICAL REVIEW B VOLUME 58, NUMBER 14 Mean-field theory for arrays of Josephson-coupled wires J. Kent Harbaugh and D. Stroud Department of Physics, the Ohio State University, Columbus, Ohio 43210 Received

More information

Title Neutron Scattering and Collective O Fluctuation (I) Author(s) Kanaya, Toshiji Citation Bulletin of the Institute for Chemi University (1986), 64(2): 47-53 Issue Date 1986-07-25 URL http://hdl.handle.net/2433/77140

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method Chin. Phys. B Vol. 21, No. 1 212 133 The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method He Ying 何英, Tao Qiu-Gong 陶求功, and Yang Yan-Fang 杨艳芳 Department

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

ON QUARK ATOMS, MOLECULES AND CRYSTALS * 3. Department of Nuclear Physics. Weizmann Institute of Science. Abstract

ON QUARK ATOMS, MOLECULES AND CRYSTALS * 3. Department of Nuclear Physics. Weizmann Institute of Science. Abstract thhtiiibeeutg WIS-20/75-Ph ON QUARK ATOMS, MOLECULES AND CRYSTALS * 3 Harry J. Lipkin Department of Nuclear Physics Weizmann Institute of Science Rehovot, Israel Abstract The existence of exotic states

More information