LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

Size: px
Start display at page:

Download "LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding"

Transcription

1 LINEAR SYSTEMS

2 Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display Outputs Number of isomerizations post-synaptic conductance Search time

3 Linear Systems 3 To a first approximation, we can often model these relationships as linear systems. This makes it much easier to Identify these systems (next topic) Make predictions e.g., given a new input x, the output will be y given an observed output y, the input must have been x

4 Don t get carried away 4 Clearly the brain cannot be one big linear system: We do not simply resonate with our environment. We have to make decisions: this involves the nonlinear mapping of observations to categorical variables. However, many subsystems can be approximated as linear.

5 What is a linear system? 5 Consider a system T that maps inputs x to outputs y. The system is linear if it satisfies the principle of superposition: Additivity T ( α x + βx ) 2 = αt ( x ) + βt ( x ) 2 Homogeneity

6 Shift Invariance 6 We will typically be concerned with inputs x defined over time t and/or space u. A system T is shift-invariant with respect to one of these variables if a shift in the input along the variable produces an identical shift in the output: y(t) = T x(t) y(t s) = T x(t s)

7 Continuous and Discrete Signals 7 Most signals are discrete at a fine scale, and our measurements are always discrete. However, we can often approximate these as continuous, and this is sometimes convenient mathematically.

8 Pulses and Steps 8 Δ Discrete pulse δ Δ (t) = Δ Δ if t < Δ otherwise lim δ Δ Δ (t) Dirac delta function δ(t) = if t = otherwise Paul Dirac t u(t) = t δ(s) ds Unit step u(t) = if t < if t

9 Representing a signal with impulses 9 = x(t) k = x ( kδ)δ ( Δ t kδ) Δ x(t) = lim Δ x ( kδ)δ ( Δ t kδ) Δ = x(s)δ(t s)ds k =

10 Convolution and the Impulse Response Function The superposition principle is very powerful. It means that we can characterize a linear system T completely by its response to a unit impulse. In particular, we can use the impulse response function to predict the response of the system to any input. Impulse T Impulse Response

11 Convolution and the Impulse Response Function y(t) = T[x(t)] = T x(s)δ(t s)ds = T lim Δ k = x( kδ)δ Δ t kδ ( ) Δ = lim Δ k = T x( kδ)δ Δ t kδ ( ) Δ (Additivity) = T x(s)δ(t s) ds = x(s)t δ(t s) ds (Homogeneity)

12 2 Convolution and the Impulse Response Function y(t) = x(s)t δ(t s) ds Let h(t) = T δ(t) represent the impulse response function. Then y(t) = x(s)h(t s)ds x(t) h(t) where signifies convolution. Impulse Impulses Impulse Response Each Impulse Creates a Scaled and Shifted Impulse Response For example The sum of all the impulse responses is the final system response

13 Properties of Convolution 3 x y = y x ( x y ) z = x y z (commutative) ( ) (associative) ( x z) + ( y z) = ( x + y ) z (distributive)

14 Linear Shift-Invariant Systems 4 A system is linear and shift-invariant if and only if the output is a weighted sum of the input. past present future /8 /4 /2 /2 /4 /8 input (impulse) weights output (impulse response) input (step) /8 /4 /2 weights /2 3/4 7/8 7/8 7/8 7/8 output (step response)

15 Fourier Series 5 We have already seen that any signal x(t) can be expressed exactly as an infinite sum of impulses. It turns out that any signal can alternatively be expressed exactly as an infinite sum of sinusoids. x(t) = A f sin( 2πft + φ f )df = A ω sin( ωt + φ ω )dω This is known as a Fourier series. Joseph Fourier Fourier Series Approximations Original Squarewave 4 Term Approximation Term Approximation 6 Term Approximation

16 Fourier Transforms 6 The expansion of a signal in terms of sinusoids can be more neatly expressed using complex numbers: x(t) = X(f )e j 2πft df where e j 2πft = cos 2πft + j sin 2πft (Euler's equation) Inverse Fourier transform x(t) = F X(f ) X(f) can be computed from x(t) using X(f ) = x(t)e j 2πft dt Fourier transform X(f ) = F x(t)

17 Fourier Transforms 7 x(t) Signal Amplitude of Fourier Transform X(f) real part cosine sine imaginary part x(t) X(f) amplitude Time (sec) 4 Frequency (Hz) 8 phase Frequency (Hz) Frequency (Hz) π/2

18 Some Properties of Fourier Transforms 8 The Fourier transform is a linear system. Thus F ( α x (t) + βx 2 (t)) = α F ( x (t)) + β F ( x 2 (t)) Convolution property: F ( h(t) x(t) ) = F ( h(t) ) F ( x(t) ) = H(f ) X(f ) Differentiation property: F d dt x(t) = 2πf F ( x(t) )

19 Why Fourier transforms? 9 When we feed an impulse into a shiftinvariant linear system, we get out a potentially complicated function (the impulse response). Impulse Impulse Response In contrast, when we feed a sinusoid into a shift-invariant linear system, we always get out another sinusoid of the same frequency, though generally different amplitude and phase. Thus to identify the system, all we need to do is stimulate with different sinusoids of known frequency, amplitude and phase, and record the amplitude and phase of each corresponding output sinusoid. Sinusoidal Inputs Scaled and Shifted sinusoidal outputs scaling shifting Frequency Description of the system x x x frequency x frequency x x

20 Linear Systems Identification 2 Linear Systems Logic Measure the impulse response Space/time method Input Stimulus Express as sum of scaled and shifted impulses Calculate the response to each impulse Sum the impulse responses to determine the output Express as sum of scaled and shifted sinusoids Calculate the response to each sinusoid Sum the sinusoidal responses to determine the output Measure the sinusoidal responses Frequency method

21 Example: retinal ganglion cell model Response amplitude Spatial frequency (cpd)

22 Different forms of linear system 22 x(ω) A h(ω) y(ω) x(ω) h (ω) h (ω) 2 : y (ω) y (ω) 2 B h (ω) N y (ω) N x(ω) + y(ω) f(ω) C

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows:

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows: The Dirac delta function There is a function called the pulse: { if t > Π(t) = 2 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

System Identification & Parameter Estimation

System Identification & Parameter Estimation System Identification & Parameter Estimation Wb3: SIPE lecture Correlation functions in time & frequency domain Alfred C. Schouten, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE // Delft University

More information

Fourier Series and Transforms. Revision Lecture

Fourier Series and Transforms. Revision Lecture E. (5-6) : / 3 Periodic signals can be written as a sum of sine and cosine waves: u(t) u(t) = a + n= (a ncosπnft+b n sinπnft) T = + T/3 T/ T +.65sin(πFt) -.6sin(πFt) +.6sin(πFt) + -.3cos(πFt) + T/ Fundamental

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt =

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt = APPENDIX A THE Z TRANSFORM One of the most useful techniques in engineering or scientific analysis is transforming a problem from the time domain to the frequency domain ( 3). Using a Fourier or Laplace

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example Introduction to Fourier ransforms Lecture 7 ELE 3: Signals and Systems Fourier transform as a limit of the Fourier series Inverse Fourier transform: he Fourier integral theorem Prof. Paul Cuff Princeton

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 Name: Instructions: The examination lasts for 75 minutes and is closed book, closed notes. No electronic devices are permitted, including

More information

a k cos kω 0 t + b k sin kω 0 t (1) k=1

a k cos kω 0 t + b k sin kω 0 t (1) k=1 MOAC worksheet Fourier series, Fourier transform, & Sampling Working through the following exercises you will glean a quick overview/review of a few essential ideas that you will need in the moac course.

More information

2.1 Basic Concepts Basic operations on signals Classication of signals

2.1 Basic Concepts Basic operations on signals Classication of signals Haberle³me Sistemlerine Giri³ (ELE 361) 9 Eylül 2017 TOBB Ekonomi ve Teknoloji Üniversitesi, Güz 2017-18 Dr. A. Melda Yüksel Turgut & Tolga Girici Lecture Notes Chapter 2 Signals and Linear Systems 2.1

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5 Signal and systems p. 1/5 Signal and systems Linear Systems Luigi Palopoli palopoli@dit.unitn.it Wrap-Up Signal and systems p. 2/5 Signal and systems p. 3/5 Fourier Series We have see that is a signal

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

X(t)e 2πi nt t dt + 1 T

X(t)e 2πi nt t dt + 1 T HOMEWORK 31 I) Use the Fourier-Euler formulae to show that, if X(t) is T -periodic function which admits a Fourier series decomposition X(t) = n= c n exp (πi n ) T t, then (1) if X(t) is even c n are all

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Objectives: Be able to Fourier Transform Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Filters with a Single Sinusoidal Input: Suppose

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE) 3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic

More information

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) R(x)

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 24 g.s.mcdonald@salford.ac.uk 1. Theory

More information

Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY

Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY Learning outcomes After this lecture, the student should understand what a linear system is, including linearity conditions,

More information

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1)

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1) Ver 88 E. Fourier Series and Transforms 4 Key: [A] easy... [E]hard Questions from RBH textbook: 4., 4.8. E. Fourier Series and Transforms Problem Sheet Lecture. [B] Using the geometric progression formula,

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at Chapter 2 FOURIER TRANSFORMS 2.1 Introduction The Fourier series expresses any periodic function into a sum of sinusoids. The Fourier transform is the extension of this idea to non-periodic functions by

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

( ) f (k) = FT (R(x)) = R(k)

( ) f (k) = FT (R(x)) = R(k) Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) = R(x)

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Each of these functions represents a signal in terms of its spectral components in the frequency domain.

Each of these functions represents a signal in terms of its spectral components in the frequency domain. N INTRODUCTION TO SPECTRL FUNCTIONS Revision B By Tom Irvine Email: tomirvine@aol.com March 3, 000 INTRODUCTION This tutorial presents the Fourier transform. It also discusses the power spectral density

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

A6523 Linear, Shift-invariant Systems and Fourier Transforms

A6523 Linear, Shift-invariant Systems and Fourier Transforms A6523 Linear, Shift-invariant Systems and Fourier Transforms Linear systems underly much of what happens in nature and are used in instrumentation to make measurements of various kinds. We will define

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org July 14, 2018 Frame # 1 Slide # 1 A. Antoniou

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Representing a Signal

Representing a Signal The Fourier Series Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity and timeinvariance of the system and represents the

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

9.2 The Input-Output Description of a System

9.2 The Input-Output Description of a System Lecture Notes on Control Systems/D. Ghose/212 22 9.2 The Input-Output Description of a System The input-output description of a system can be obtained by first defining a delta function, the representation

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6A. The Fourier Transform. By Tom Irvine

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6A. The Fourier Transform. By Tom Irvine SHOCK ND VIBRTION RESPONSE SPECTR COURSE Unit 6. The Fourier Transform By Tom Irvine Introduction Stationary vibration signals can be placed along a continuum in terms of the their qualitative characteristics.

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Signals and Systems I Have Known and Loved. (Lecture notes for CSE 3451) Andrew W. Eckford

Signals and Systems I Have Known and Loved. (Lecture notes for CSE 3451) Andrew W. Eckford Signals and Systems I Have Known and Loved (Lecture notes for CSE 3451) Andrew W. Eckford Department of Electrical Engineering and Computer Science York University, Toronto, Ontario, Canada Version: December

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

Summary of Fourier Transform Properties

Summary of Fourier Transform Properties Summary of Fourier ransform Properties Frank R. Kschischang he Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of oronto January 7, 207 Definition and Some echnicalities

More information

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions: ECE 30 Division, all 2008 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

FROM ANALOGUE TO DIGITAL

FROM ANALOGUE TO DIGITAL SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary

More information

Linear Systems Theory Handout

Linear Systems Theory Handout Linear Systems Theory Handout David Heeger, Stanford University Matteo Carandini, ETH/University of Zurich Characterizing the complete input-output properties of a system by exhaustive measurement is usually

More information

CLTI Differential Equations (3A) Young Won Lim 6/4/15

CLTI Differential Equations (3A) Young Won Lim 6/4/15 CLTI Differential Equations (3A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 One degree of freedom systems in real life 2 1 Reduction of a system to a one dof system Example

More information

Representation of Signals & Systems

Representation of Signals & Systems Representation of Signals & Systems Reference: Chapter 2,Communication Systems, Simon Haykin. Hilbert Transform Fourier transform frequency content of a signal (frequency selectivity designing frequency-selective

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

Dr. David A. Clifton Group Leader Computational Health Informatics (CHI) Lab Lecturer in Engineering Science, Balliol College

Dr. David A. Clifton Group Leader Computational Health Informatics (CHI) Lab Lecturer in Engineering Science, Balliol College Dr. David A. Clifton Group Leader Computational Health Informatics (CHI) Lab Lecturer in Engineering Science, Balliol College 1. Introduction to Fourier analysis, the Fourier series 2. Sampling and Aliasing

More information

EECE 3620: Linear Time-Invariant Systems: Chapter 2

EECE 3620: Linear Time-Invariant Systems: Chapter 2 EECE 3620: Linear Time-Invariant Systems: Chapter 2 Prof. K. Chandra ECE, UMASS Lowell September 7, 2016 1 Continuous Time Systems In the context of this course, a system can represent a simple or complex

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

Mathematical Foundations of Signal Processing

Mathematical Foundations of Signal Processing Mathematical Foundations of Signal Processing Module 4: Continuous-Time Systems and Signals Benjamín Béjar Haro Mihailo Kolundžija Reza Parhizkar Adam Scholefield October 24, 2016 Continuous Time Signals

More information

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES 13.42 READING 6: SPECTRUM OF A RANDOM PROCESS SPRING 24 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. STATIONARY AND ERGODIC RANDOM PROCESSES Given the random process y(ζ, t) we assume that the expected value

More information

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Lecture 12. AO Control Theory

Lecture 12. AO Control Theory Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = e jkω0t = = x(te jkω0t dt = e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period and fundamental

More information

Introduction ODEs and Linear Systems

Introduction ODEs and Linear Systems BENG 221 Mathematical Methods in Bioengineering ODEs and Linear Systems Gert Cauwenberghs Department of Bioengineering UC San Diego 1.1 Course Objectives 1. Acquire methods for quantitative analysis and

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year 2017-2018 1 Outline Systems modeling: input/output approach of LTI systems. Convolution

More information