Crash course Verification of Finite Automata CTL model-checking

Size: px
Start display at page:

Download "Crash course Verification of Finite Automata CTL model-checking"

Transcription

1 Crash course Verification of Finite Automata CTL model-checking Exercise session Xiaoxi He 1

2 Reminders Big picture Objective Verify properties over DES models Formal method Absolute guarantee! Problem Combinatorial explosion Huge amount of states, computationally intractable Solution Work with sets of states Symbolic Model-Checking (O)BDDs 2

3 Reminders First exercise session Equivalence between sets and Boolean equations BBD representation of Boolean functions 3

4 Let see what you remember! 4

5 5

6 Today s menu 1. Reachability of states 2. Comparison of automata 3. Formulation and verification of CTL properties Can be formulated as reachability problems 6

7 Reachability of states Fairly simple 1. Start from the initial set of states, 2. Compute all states you can transition to in one hop (one transition), The successor states, 3. Join the two sets, 4. Iterate from 2. until you reach a fix point. 5. Done! Is this guarantee to terminate? 7

8 Reachability of states Fairly simple 1. Start from the initial set of states, 2. Compute all states you can transition to in one hop (one transition), The successor states, 3. Join the two sets, 4. Iterate from 2. until you reach a fix point. 5. Done! Is this guarantee to terminate? Only if you have a finite model!! How can we formalize this problem? 8

9 Formalization of reachable states δδ XX EE XXX EE qq qqq qq qq E XX δδ E XXX qqq qq XX qq XX, δδ qq, qq iiii dddddddddddddd ψψ δδ qq, qq = 1 qq XX qq XX, δδ qq, qq iiii dddddddddddddd qq XX, ψψ δδ qq, qq = 0 9

10 Formalization of reachable states δδ XX EE XXX EE qq qqq E XX qq E Q = Suc(Q,δδ) δδ What is Q? Q XXX qq QQ qq XX qq XX, ψψ δδ qq, qq = 1 satisfies qqq Not sufficient! We also need that qq belongs to QQ qq QQ or equivalently ψψ QQ qq = 1 10

11 Formalization of reachable states δδ XX EE XXX EE qq qqq E XX qq E Q = Suc(Q,δδ) δδ What is Q? Q qqq XXX qq QQ qq XX, ψψ QQ qq = 1 and ψψ δδ qq, qq = 1 qq XX, ψψ QQ qq ψψ δδ qq, qq = 1 QQ = SSSSSS QQ, δδ = qq qq XX, ψψ QQ qq ψψ δδ qq, qq = 1} 11

12 Formalization of reachable states δδ XX EE XXX EE qq qqq E XX qq E Q = Suc(Q,δδ) δδ Q qqq XXX QQ = SSSSSS QQ, δδ = qq qq XX, ψψ QQ qq ψψ δδ qq, qq = 1} ψψ QQQ = ψψ QQ ψψ δδ QQ RR : set of reachable states QQ RR = QQ 0 ii 0 SSSSSS(QQ ii, δδ) ψψ QQRR = ψψ QQ0 ii 0 ψψ QQii ψψ δδ 12 Again, finite union if finite model

13 Comparison of automata Two automata are equivalent Computation of the joint transition function, Same input produces same output Computation of the reachable states (method according to previous slides), Don t compare states! Get rid of the input Computation of the reachable output values, The automata are not equivalent if the following term is true, Compute QQ RR Deduce reachable outputs Test for equivalence 13

14 Formulation of CTL properties Based on atomic propositions (φφ) and quantifiers Aφφ «All φφ», φφ holds on all paths Eφφ «Exists φφ», φφ holds on at least one path Quantifiers over paths Xφφ «NeXt φφ», φφ holds on the next state Fφφ «Finally φφ», φφ holds at some state along the path Gφφ «Globally φφ», φφ holds on all states along the path φφ 1 Uφφ 2 «φφ 1 Until φφ 2», φφ 1 holds until φφ 2 holds Path-specific quantifiers 14

15 Formulation of CTL properties Proper CTL formula: {A,E} {X,F,G,U}φφ Missing Hypothesis Interpretation on CTL formula Quantifiers go by pairs, you need one of each. Transition functions are fully defined (i.e. every state has at least one successor) Automaton of interest Automaton to work with 15

16 Formulation of CTL properties EF φφ : There exists a path along which at some state φφ holds. s q φφ q EF φφ r? s? r 16

17 Formulation of CTL properties EF φφ : There exists a path along which at some state φφ holds. s q φφ q EF φφ r EF φφ s EF φφ r 17

18 Formulation of CTL properties AF φφ : On all paths, at some state φφ holds. s q φφ q AF φφ r? s? r 18

19 Formulation of CTL properties AF φφ : On all paths, at some state φφ holds. s q φφ q AF φφ r AF φφ s AF φφ r 19

20 Formulation of CTL properties AG φφ : On all paths, for all states φφ holds. q s r φφ q AG φφ r? s? 20

21 Formulation of CTL properties AG φφ : On all paths, for all states φφ holds. q s r φφ q AG φφ r AG φφ s AG φφ 21

22 Formulation of CTL properties EG φφ : There exists a path along which for all states φφ holds. q s r φφ q EG φφ r? s? 22

23 Formulation of CTL properties EG φφ : There exists a path along which for all states φφ holds. q s r φφ q EG φφ r EG φφ s EG φφ 23

24 Formulation of CTL properties φφeuψ : There exists a path along which φφ holds until Ψ holds. s Ψ φφ q q φφeuψ r? s? r 24

25 Formulation of CTL properties φφeuψ : There exists a path along which φφ holds until Ψ holds. s Ψ φφ q q φφeuψ r φφeuψ s φφeuψ r 25

26 Formulation of CTL properties φφauψ : On all paths, φφ holds until Ψ holds. s Ψ φφ q q φφauψ r? s? r 26

27 Formulation of CTL properties φφauψ : On all paths, φφ holds until Ψ holds. s Ψ φφ q q φφauψ r φφauψ s φφauψ r 27

28 Formulation of CTL properties AXφφ : On all paths, the next state satisfies φφ. EXφφ : There exists a path along which the next state satisfies φφ. s φφ q q EXφφ r? s? r 28

29 Formulation of CTL properties AXφφ : On all paths, the next state satisfies φφ. EXφφ : There exists a path along which the next state satisfies φφ. s φφ q q EXφφ r EXφφ s EXφφ r 29

30 Formulation of CTL properties AG EF φφ : On all paths and for all states, there exists a path along which at some state φφ holds. s φφ q q AG EFφφ r? s? r 30

31 Formulation of CTL properties AG EF φφ : On all paths and for all states, there exists a path along which at some state φφ holds. s φφ q q AG EFφφ r AG EFφφ s AG EFφφ r 31

32 Inverting properties is sometimes useful! AG φφ EF φφ AF φφ EG φφ EF φφ AG φφ EG φφ AF φφ On all paths, for all states φφ holds. There exists no path along which at some state φφ doesn t hold. Remark There exists other temporal logics LTL (Linear Tree Logic) CTL* = {CTL,LTL} 32

33 How to verify CTL properties? Convert the property verification into a reachability problem 1. Start from states in which the property holds; 2. Compute all predecessor states for which the property still holds true; (same as for computing successor, with the inverse the transition function) 3. If initial states set is a subset, the property is satisfied by the model. Computation specifics are described in the lecture slides. 33

34 So what is Model-Checking exactly? An algorithm Input A DES model, M Finite automata, Petri nets, Kripke machine, A logic property, φφ CTL, LTL, Output M φφ? A trace for which the property does not hold! 34

35 Crash course Verification of Finite Automata CTL model-checking Slides online on my webpage: Your turn to work! 35

36 36

37 Comparison of Finite Automata a) Express the characteristic function of the transition relation for both automaton, ψψ rr (xx, xx, uu). 37

38 Comparison of Finite Automata b) Express the joint transition function, ψψ ff. 38

39 Comparison of Finite Automata c) Express the characteristic function of the reachable states, ψψ XX (xx AA, xx BB ). 39

40 Comparison of Finite Automata d) Express the characteristic function of the reachable output, ψψ YY (xx AA, xx BB ). and 40

41 Comparison of Finite Automata e) Are the automata equivalent? Hint: Evaluate, for example, ψψ YY (0,1). Or, in a more general way, and implies Automata are not equivalent. 41

42 Temporal Logic i. EF a ii. EG a 0 iii. EX AX a iv. EF ( a AND EX NOT(a) )

43 Temporal Logic i. EF a ii. EG a 0 iii. EX AX a iv. EF ( a AND EX NOT(a) )

44 Temporal Logic i. EF a ii. EG a 0 iii. EX AX a iv. EF ( a AND EX NOT(a) )

45 Temporal Logic i. EF a ii. EG a 0 iii. EX AX a iv. EF ( a AND EX NOT(a) )

46 Temporal Logic i. EF a ii. EG a 0 iii. EX AX a iv. EF ( a AND EX NOT(a) )

47 Temporal Logic Trick AF Z not(eg not(z)) 47

48 Crash course Verification of Finite Automata CTL model-checking See you next week! 48

Crash course Verification of Finite Automata Binary Decision Diagrams

Crash course Verification of Finite Automata Binary Decision Diagrams Crash course Verification of Finite Automata Binary Decision Diagrams Exercise session 10 Xiaoxi He 1 Equivalence of representations E Sets A B A B Set algebra,, ψψ EE = 1 ψψ AA = ff ψψ BB = gg ψψ AA BB

More information

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two circuits

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar Model Checking I What are LTL and CTL? q0 or and dack dreq q0bar and 1 View circuit as a transition system (dreq, q0, dack) (dreq, q0, dack ) q0 = dreq and dack = dreq & (q0 + ( q0 & dack)) q0 or and D

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Model Checking Algorithms

Model Checking Algorithms Model Checking Algorithms Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan November 14, 2018 Bow-Yaw Wang (Academia Sinica) Model Checking Algorithms November 14, 2018 1 / 56 Outline

More information

3-Valued Abstraction-Refinement

3-Valued Abstraction-Refinement 3-Valued Abstraction-Refinement Sharon Shoham Academic College of Tel-Aviv Yaffo 1 Model Checking An efficient procedure that receives: A finite-state model describing a system A temporal logic formula

More information

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar Model Checking I What are LTL and CTL? and dack q0 or D dreq D q0bar and 1 View circuit as a transition system (dreq, q0, dack) (dreq, q0, dack ) q0 = dreq dack = dreq and (q0 or (not q0 and dack)) q0

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Verification Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Introduction The goal of verification To ensure 100% correct in functionality

More information

Algorithmic verification

Algorithmic verification Algorithmic verification Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2018 Outline Overview Model checking Symbolic execution Outline Overview Model checking Symbolic execution Program verification

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Model for reactive systems/software

Model for reactive systems/software Temporal Logics CS 5219 Abhik Roychoudhury National University of Singapore The big picture Software/ Sys. to be built (Dream) Properties to Satisfy (caution) Today s lecture System Model (Rough Idea)

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Formal Verification of Mobile Network Protocols

Formal Verification of Mobile Network Protocols Dipartimento di Informatica, Università di Pisa, Italy milazzo@di.unipi.it Pisa April 26, 2005 Introduction Modelling Systems Specifications Examples Algorithms Introduction Design validation ensuring

More information

Model Checking with CTL. Presented by Jason Simas

Model Checking with CTL. Presented by Jason Simas Model Checking with CTL Presented by Jason Simas Model Checking with CTL Based Upon: Logic in Computer Science. Huth and Ryan. 2000. (148-215) Model Checking. Clarke, Grumberg and Peled. 1999. (1-26) Content

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

PanHomc'r I'rui;* :.>r '.a'' W»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 > 5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X

More information

Lecture 3. Logic Predicates and Quantified Statements Statements with Multiple Quantifiers. Introduction to Proofs. Reading (Epp s textbook)

Lecture 3. Logic Predicates and Quantified Statements Statements with Multiple Quantifiers. Introduction to Proofs. Reading (Epp s textbook) Lecture 3 Logic Predicates and Quantified Statements Statements with Multiple Quantifiers Reading (Epp s textbook) 3.1-3.3 Introduction to Proofs Reading (Epp s textbook) 4.1-4.2 1 Propositional Functions

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 4 Ana Bove March 23rd 2018 Recap: Formal Proofs How formal should a proof be? Depends on its purpose...... but should be convincing......

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Lecture 4 Ana Bove March 24th 2017 Structural induction; Concepts of automata theory. Overview of today s lecture: Recap: Formal Proofs

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

A brief history of model checking. Ken McMillan Cadence Berkeley Labs

A brief history of model checking. Ken McMillan Cadence Berkeley Labs A brief history of model checking Ken McMillan Cadence Berkeley Labs mcmillan@cadence.com Outline Part I -- Introduction to model checking Automatic formal verification of finite-state systems Applications

More information

Course Runtime Verification

Course Runtime Verification Course Martin Leucker (ISP) Volker Stolz (Høgskolen i Bergen, NO) INF5140 / V17 Chapters of the Course Chapter 1 Recall in More Depth Chapter 2 Specification Languages on Words Chapter 3 LTL on Finite

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) Computation Tree Logic (CTL) Fazle Rabbi University of Oslo, Oslo, Norway Bergen University College, Bergen, Norway fazlr@student.matnat.uio.no, Fazle.Rabbi@hib.no May 30, 2015 Fazle Rabbi et al. (UiO,

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) March, 15, 2010 CPSC 322, Lecture 24 Slide 1 To complete your Learning about Logics Review

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path " starting at s KM," =! COMPUTATION TREE LOGIC (CTL)

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path  starting at s KM, =! COMPUTATION TREE LOGIC (CTL) Summary COMPUTATION TREE LOGIC (CTL) Slides by Alessandro Artale http://www.inf.unibz.it/ artale/ Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M.

More information

PSL Model Checking and Run-time Verification via Testers

PSL Model Checking and Run-time Verification via Testers PSL Model Checking and Run-time Verification via Testers Formal Methods 2006 Aleksandr Zaks and Amir Pnueli New York University Introduction Motivation (Why PSL?) A new property specification language,

More information

CTL Model Checking. Wishnu Prasetya.

CTL Model Checking. Wishnu Prasetya. CTL Model Checking Wishnu Prasetya wishnu@cs.uu.nl www.cs.uu.nl/docs/vakken/pv Background Example: verification of web applications à e.g. to prove existence of a path from page A to page B. Use of CTL

More information

COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS

COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS QUALITATIVE ANALYIS METHODS, OVERVIEW NET REDUCTION STRUCTURAL PROPERTIES COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS LINEAR PROGRAMMING place / transition invariants state equation

More information

Constructions on Finite Automata

Constructions on Finite Automata Constructions on Finite Automata Informatics 2A: Lecture 4 Mary Cryan School of Informatics University of Edinburgh mcryan@inf.ed.ac.uk 24 September 2018 1 / 33 Determinization The subset construction

More information

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u,

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, 1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, v, x, y, z as per the pumping theorem. 3. Prove that

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking Double Header Model Checking #1 Two Lectures Model Checking SoftwareModel Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

AVACS Automatic Verification and Analysis of Complex Systems REPORTS. of SFB/TR 14 AVACS. Editors: Board of SFB/TR 14 AVACS

AVACS Automatic Verification and Analysis of Complex Systems REPORTS. of SFB/TR 14 AVACS. Editors: Board of SFB/TR 14 AVACS AVACS Automatic Verification and Analysis of Complex Systems REPORTS of SFB/TR 14 AVACS Editors: Board of SFB/TR 14 AVACS Symbolic Model Checking for Incomplete Designs with Flexible Modeling of Unknowns

More information

Partial model checking via abstract interpretation

Partial model checking via abstract interpretation Partial model checking via abstract interpretation N. De Francesco, G. Lettieri, L. Martini, G. Vaglini Università di Pisa, Dipartimento di Ingegneria dell Informazione, sez. Informatica, Via Diotisalvi

More information

BOOLEAN ALGEBRA INTRODUCTION SUBSETS

BOOLEAN ALGEBRA INTRODUCTION SUBSETS BOOLEAN ALGEBRA M. Ragheb 1/294/2018 INTRODUCTION Modern algebra is centered around the concept of an algebraic system: A, consisting of a set of elements: ai, i=1, 2,, which are combined by a set of operations

More information

Büchi Automata and Their Determinization

Büchi Automata and Their Determinization Büchi Automata and Their Determinization Edinburgh, October 215 Plan of the Day 1. Büchi automata and their determinization 2. Infinite games 3. Rabin s Tree Theorem 4. Decidability of monadic theories

More information

Digital Systems. Validation, verification. R. Pacalet January 4, 2018

Digital Systems. Validation, verification. R. Pacalet January 4, 2018 Digital Systems Validation, verification R. Pacalet January 4, 2018 2/98 Simulation Extra design tasks Reference model Simulation environment A simulation cannot be exhaustive Can discover a bug Cannot

More information

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking CTL Model checking Assumptions:. finite number of processes, each having a finite number of finite-valued variables.. finite length of CTL formula Problem:Determine whether formula f 0 is true in a finite

More information

Learning to Verify Branching Time Properties

Learning to Verify Branching Time Properties Learning to Verify Branching Time Properties Abhay Vardhan and Mahesh Viswanathan Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA Abstract. We present a new model checking algorithm

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information

Model-Checking Games: from CTL to ATL

Model-Checking Games: from CTL to ATL Model-Checking Games: from CTL to ATL Sophie Pinchinat May 4, 2007 Introduction - Outline Model checking of CTL is PSPACE-complete Presentation of Martin Lange and Colin Stirling Model Checking Games

More information

2.3 Exercises. (a) F P(A). (Solution)

2.3 Exercises. (a) F P(A). (Solution) 2.3 Exercises 1. Analyze the logical forms of the following statements. You may use the symbols, /, =,,,,,,, and in your answers, but not,, P,,, {, }, or. (Thus, you must write out the definitions of some

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers Real Numbers Real numbers are divided into two types, rational numbers and irrational numbers I. Rational Numbers: Any number that can be expressed as the quotient of two integers. (fraction). Any number

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Introduction. Pedro Cabalar. Department of Computer Science University of Corunna, SPAIN 2013/2014

Introduction. Pedro Cabalar. Department of Computer Science University of Corunna, SPAIN 2013/2014 Introduction Pedro Cabalar Department of Computer Science University of Corunna, SPAIN cabalar@udc.es 2013/2014 P. Cabalar ( Department Introduction of Computer Science University of Corunna, SPAIN2013/2014

More information

Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove

Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove Tuesday 28 of May 2013 Total: 60 points TMV027/DIT321 registration VT13 TMV026/DIT321 registration before VT13 Exam

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Computation tree logic (CTL) is a branching-time logic that includes the propositional connectives as well as temporal connectives AX, EX, AU, EU, AG, EG, AF, and EF. The syntax

More information

Modal and temporal logic

Modal and temporal logic Modal and temporal logic N. Bezhanishvili I. Hodkinson C. Kupke Imperial College London 1 / 83 Overview Part II 1 Soundness and completeness. Canonical models. 3 lectures. 2 Finite model property. Filtrations.

More information

Principles. Model (System Requirements) Answer: Model Checker. Specification (System Property) Yes, if the model satisfies the specification

Principles. Model (System Requirements) Answer: Model Checker. Specification (System Property) Yes, if the model satisfies the specification Model Checking Princiles Model (System Requirements) Secification (System Proerty) Model Checker Answer: Yes, if the model satisfies the secification Counterexamle, otherwise Krike Model Krike Structure

More information

NPTEL Phase-II Video course on. Design Verification and Test of. Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

NPTEL Phase-II Video course on. Design Verification and Test of. Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati NPTEL Phase-II Video course on Design Verification and Test of Digital VLSI Designs Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati Module IV: Temporal Logic Lecture I: Introduction to formal methods

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Tutorial on Axiomatic Set Theory. Javier R. Movellan

Tutorial on Axiomatic Set Theory. Javier R. Movellan Tutorial on Axiomatic Set Theory Javier R. Movellan Intuitively we think of sets as collections of elements. The crucial part of this intuitive concept is that we are willing to treat sets as entities

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Linear Algebra U Kang Seoul National University U Kang 1 In This Lecture Overview of linear algebra (but, not a comprehensive survey) Focused on the subset

More information

Logic and Automata I. Wolfgang Thomas. EATCS School, Telc, July 2014

Logic and Automata I. Wolfgang Thomas. EATCS School, Telc, July 2014 Logic and Automata I EATCS School, Telc, July 2014 The Plan We present automata theory as a tool to make logic effective. Four parts: 1. Some history 2. Automata on infinite words First step: MSO-logic

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

MODEL CHECKING. Arie Gurfinkel

MODEL CHECKING. Arie Gurfinkel 1 MODEL CHECKING Arie Gurfinkel 2 Overview Kripke structures as models of computation CTL, LTL and property patterns CTL model-checking and counterexample generation State of the Art Model-Checkers 3 SW/HW

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta CSE 2001: Introduction to Theory of Computation Fall 2012 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/2001 9/6/2012 CSE

More information

Model Checking & Program Analysis

Model Checking & Program Analysis Model Checking & Program Analysis Markus Müller-Olm Dortmund University Overview Introduction Model Checking Flow Analysis Some Links between MC and FA Conclusion Apology for not giving proper credit to

More information

Lecture 2: Connecting the Three Models

Lecture 2: Connecting the Three Models IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 2: Connecting the Three Models David Mix Barrington and Alexis Maciel July 18, 2000

More information

State-Space Exploration. Stavros Tripakis University of California, Berkeley

State-Space Exploration. Stavros Tripakis University of California, Berkeley EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2014 State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE

More information

Constructions on Finite Automata

Constructions on Finite Automata Constructions on Finite Automata Informatics 2A: Lecture 4 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 23rd September, 2014 1 / 29 1 Closure properties of regular languages

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

Discrete Event Systems Solution to Exercise Sheet 3

Discrete Event Systems Solution to Exercise Sheet 3 Networked ystems Group (NG) H 27 Prof. L. Vanbever &. El-Hassany, & M. postolaki. based on Prof. R. Wattenhofer s material Discrete Event ystems olution to Exercise heet 3 Pumping Lemma [Exam] The Pumping

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

Program Analysis Part I : Sequential Programs

Program Analysis Part I : Sequential Programs Program Analysis Part I : Sequential Programs IN5170/IN9170 Models of concurrency Program Analysis, lecture 5 Fall 2018 26. 9. 2018 2 / 44 Program correctness Is my program correct? Central question for

More information

LTL and CTL. Lecture Notes by Dhananjay Raju

LTL and CTL. Lecture Notes by Dhananjay Raju LTL and CTL Lecture Notes by Dhananjay Raju draju@cs.utexas.edu 1 Linear Temporal Logic: LTL Temporal logics are a convenient way to formalise and verify properties of reactive systems. LTL is an infinite

More information

Equivalence Checking of Sequential Circuits

Equivalence Checking of Sequential Circuits Equivalence Checking of Sequential Circuits Sanjit Seshia EECS UC Berkeley With thanks to K. Keutzer, R. Rutenbar 1 Today s Lecture What we know: How to check two combinational circuits for equivalence

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

FORMAL METHODS LECTURE V: CTL MODEL CHECKING

FORMAL METHODS LECTURE V: CTL MODEL CHECKING FORMAL METHODS LECTURE V: CTL MODEL CHECKING Alessandro Artale Faculty of Computer Science Free University of Bolzano Room 2.03 artale@inf.unibz.it http://www.inf.unibz.it/ artale/ Some material (text,

More information

Automata-Theoretic LTL Model-Checking

Automata-Theoretic LTL Model-Checking Automata-Theoretic LTL Model-Checking Arie Gurfinkel arie@cmu.edu SEI/CMU Automata-Theoretic LTL Model-Checking p.1 LTL - Linear Time Logic (Pn 77) Determines Patterns on Infinite Traces Atomic Propositions

More information

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission.

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission. CSE 5 Homework Due: Monday October 9, 7 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in this

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 6 CHAPTER 2 FINITE AUTOMATA 2. Nondeterministic Finite Automata NFA 3. Finite Automata and Regular Expressions 4. Languages

More information

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta CSE 2001: Introduction to Theory of Computation Fall 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.eecs.yorku.ca/course/2001 9/10/2013

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) Nov, 2, 2012 CPSC 322, Lecture 24 Slide 1 Tracing Datalog proofs in AIspace You can trace

More information