Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff

Size: px
Start display at page:

Download "Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff"

Transcription

1 Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff David Gerard Department of Statistics University of Washington May 2, 2013 David Gerard (UW) May /4

2 Recall: General Social Survey data Respondent s Income Highest degree obtained CHILD Number of children P Parent s income when respondent was 16 P Max(mother s degree, father s degree, na.rm = T) PCHILD Number of siblings + 1 AGE Age of respondent David Gerard (UW) May /4

3 Recall: Which do we choose? or i =β 0 + β 1 CHILD i + β 2 i + β 3 AGE i + β 4 PCHILD i + β 5 P i + β 6 P i + ɛ i CHILD i Pois(exp{β 0 + β 1 i + β 2 i + β 3 AGE i + β 4 PCHILD i + β 5 P i + β 6 P i }) David Gerard (UW) May /4

4 Will Sandwich Help? Response CHILD NA 1.103(0.112) 7.025(<0.001) CHILD 0.005( ) NA (0.056) Response AGE PCHILD P P 0.335(<0.001) 0.284(0.407) 4.070(0.001) 1.399(0.115) CHILD 0.037(<0.001) 0.021(0.080) (0.195) (0.204) David Gerard (UW) May /4

5 Will Sandwich Help? Response CHILD NA 1.103(0.112) 7.025(<0.001) CHILD 0.005( ) NA (0.056) Response AGE PCHILD P P 0.335(<0.001) 0.284(0.407) 4.070(0.001) 1.399(0.115) CHILD 0.037(<0.001) 0.021(0.080) (0.195) (0.204) Using a sandwich estimator we have: Response CHILD... NA 1.103(0.108)... CHILD 0.005( ) NA... David Gerard (UW) May /4

6 Recall: Setup Let y i,j be the value of the j th variable taken on by the i th observational unit. Gaussian Copula Sampling Model z 1,..., z n C i.i.d. multivariate normal(0, C) y i,j = F 1 j [Φ(z i,j )] Estimate association parameters without having to estimate marginals. Do this by only using the partial ordering induced by the data: y k,j < y i,j z k,j < z i,j. A partial ordering is a total ordering without the totality condition (i.e., some elements may be incomparable). David Gerard (UW) May /4

7 The Extended Rank Likelihood Let D be the set of Z := (z i,j ) s that satisfy the partial ordering. Use the following marginal likelihood for inference: Pr(Z D C, F 1,..., F p ) = p(z C)dZ = Pr(Z D) D David Gerard (UW) May /4

8 Gibbs Sampler Full conditionals of the z i,j s are easy to derive, so we can implement a Gibb s sampler (using covariance matrix rather than correlation matrix, but doesn t matter for estimation). 1 Sample z i,j Z [ i, j], V from a truncated normal with the bounds set by the partial ordering and the conditional mean and variance found in the usual way: σ 2 j = V [j,j] V [j, j] V 1 [ j, j] V [ j,j] and µ = V [j, j] V [ j, j] Z T [i, j]. 2 Sample V from an inverse-wishart distribution (if you use the conjugate prior). 3 Let C [i,j] = V [i,j] / V [i,i] V [j,j] David Gerard (UW) May /4

9 Some Trace Plots CHILD C ij C ij scan scan David Gerard (UW) May /4

10 95% Posterior Credible Intervals CHILD P P PCHILD C ij Regression Coefficient CHILD P P PCHILD AGE CHILD P P PCHILD AGE CHILD P P PCHILD AGE CHILD P P PCHILD AGE CHILD P P PCHILD AGE CHILD P P PCHILD AGE David Gerard (UW) May /4

11 Visualizing Conditional Dependencies of GSS data P - + P + CHILD + PCHILD - Figure: Reduced conditional dependence graph for the General Social Survey data. David Gerard (UW) May /4

12 Posterior Predictive We can also sample from a posterior predictive distribution to do inference on y s. Compare to empirical distributions for model checking. 1 sample C p(c Z D); 2 sample z multivariate normal(0, C); 3 1 set y j = ˆF j (Φ(z j )). David Gerard (UW) May /4

13 Posterior Predictive and Empirical distributions of given P Pr( P = 1), n =28 Predictive Empirical Pr( P = 3), n =276 Predictive Empirical Pr( P = 5), n = Pr( P = 2), n =110 Predictive Empirical Pr( P = 4), n =97 Predictive Empirical Predictive Empirical David Gerard (UW) May /4

14 Posterior Predictive and Empirical distributions of given and P P n= Pr( Deg=0,P) P n= Pr( Deg=1,P) P n= Pr( Deg=2,P) P n= Pr( Deg=3,P) P n= Pr( Deg=4,P) David Gerard (UW) May /4

15 Partial Sufficiency The paper proves that ranks are G-sufficient and L-Sufficient when we have continuous marginals. However, when the data are discrete the partial ordering does not have either of these properties. David Gerard (UW) May /4

16 Groups Definition A collection G of 1-1 transformations of X (the sample space) is a group if 1 For all g 1, g 2 G, g 1 g 2 G 2 For all g G, g 1 G. Definition Two points x 1, x 2 X are equivalent if there exists a g G such that x 1 = gx 2. The sets of equivalent points are the orbits of G. Definition A function M is said to be maximally invariant if it is in 1-1 correspondence with the orbits of G. i.e. M(gx) = M(x) for all g G and M(x 1 ) = M(x 2 ) x 2 = gx 1 for some g G. David Gerard (UW) May /4

17 Groups G induces a group Ḡ over the parameter space. Let Ḡ = {ḡ : Ω Ω s.t. ḡθ = θ if X P θ and gx P θ }. There are also maximally invariant parameters for Ḡ. David Gerard (UW) May /4

18 G-Sufficiency Under a group of transformations, G, the maximally invariant statistic is called G-sufficient for the maximally invariant parameter. The ranks are the maximally invariant statistics under the group of continuous strictly increasing functions [Lehmann and Romano, 2005, pp ]. You can also put the correlation matrix in a 1-1 correspondence with the induced group Ḡ s orbits (but only if the marginals are continuous). Hence, the ranks are G-sufficient for the correlation matrix. Intuition: if we assume the marginals are unknown, then applying strictly increasing continuous functions to the data should not change the estimation problem David Gerard (UW) May /4

19 Simple Example Let X 1,..., X n i.i.d.n(µ, σ 2 ), Ω = {(µ, σ) : µ R, σ 2 > 0} and X = R. Let G = {g : g(x) = x + a1, a R} Then { g(x) = ( (X 1 ) + a, (..., X n + )} a) s.t. X i i.i.d. N(µ + a, σ 2 ) and µ µ + a Ḡ = ḡ : ḡ =. σ σ Orbits of Ω under Ḡ are defined by σ. So σ is the maximally invariant parameter. Orbits of X under G are defined by the differences from the mean (X 1 X,..., X n X ), so the differences are G-sufficient for σ and inference should only be based on the differences. Can extend these ideas to minimal G-sufficient ( maximal invariant reduction of minimal sufficient statistics ) [Barnard, 1963]. Here, s 2. David Gerard (UW) May /4

20 L-Sufficiency For {F 1,..., F p } F the marginal distributions, a statistic t(y) is L-sufficient for C if 1 t(y 0 ) = t(y 1 ) sup {F1,...,F p} F p(y 0 C, F 1,..., F p ) = sup {F1,...,F p} F p(y 1 C, F 1,..., F p ); and 2 p(t(y) C, F 1,..., F p ) = p(t(y) C) If there are no nuisance parameters, L-sufficiency becomes full sufficiency. Intuition: partition generated by L-sufficient statistic is at least as fine as the partition generated by the M.L.E. of C [Rémon, 1984] (i.e. MLE is function of ranks alone). David Gerard (UW) May /4

21 Future Work Develop maximum likelihood approach using the extended rank likelihood. Lots of trouble with this. [Pettitt, 1982] used an approximation for the rank likelihood in the standard multivariate normal setting. Run simulation study against the competitors [Genest et al., 1995] (just plugged in ECDF); [Olsson, 1979] (estimate threshholding values when number of categories is known) Develop technique for other copulas, then simulate and see what info is lost by using the wrong copula. David Gerard (UW) May /4

22 References Barnard, G. A. (1963). Some logical aspects of the fiducial argument. Journal of the Royal Statistical Society. Series B (Methodological), pages Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82(3): Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation. The Annals of Applied Statistics, pages Lehmann, E. E. L. and Romano, J. P. (2005). Testing statistical hypotheses. Springer Science+ Business Media. Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4): Pettitt, A. (1982). Inference for the linear model using a likelihood based on ranks. Journal of the Royal Statistical Society. Series B (Methodological), pages Rémon, M. (1984). On a concept of partial sufficiency: L-sufficiency. International Statistical Review/Revue Internationale de Statistique, pages David Gerard (UW) May /4

Marginal Specifications and a Gaussian Copula Estimation

Marginal Specifications and a Gaussian Copula Estimation Marginal Specifications and a Gaussian Copula Estimation Kazim Azam Abstract Multivariate analysis involving random variables of different type like count, continuous or mixture of both is frequently required

More information

Semiparametric Gaussian Copula Models: Progress and Problems

Semiparametric Gaussian Copula Models: Progress and Problems Semiparametric Gaussian Copula Models: Progress and Problems Jon A. Wellner University of Washington, Seattle 2015 IMS China, Kunming July 1-4, 2015 2015 IMS China Meeting, Kunming Based on joint work

More information

Semiparametric Gaussian Copula Models: Progress and Problems

Semiparametric Gaussian Copula Models: Progress and Problems Semiparametric Gaussian Copula Models: Progress and Problems Jon A. Wellner University of Washington, Seattle European Meeting of Statisticians, Amsterdam July 6-10, 2015 EMS Meeting, Amsterdam Based on

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Jonathan Gruhl March 18, 2010 1 Introduction Researchers commonly apply item response theory (IRT) models to binary and ordinal

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Package sbgcop. May 29, 2018

Package sbgcop. May 29, 2018 Package sbgcop May 29, 2018 Title Semiparametric Bayesian Gaussian Copula Estimation and Imputation Version 0.980 Date 2018-05-25 Author Maintainer Estimation and inference for parameters

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

The sbgcop Package. March 9, 2007

The sbgcop Package. March 9, 2007 The sbgcop Package March 9, 2007 Title Semiparametric Bayesian Gaussian copula estimation Version 0.95 Date 2007-03-09 Author Maintainer This package estimates parameters of

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Sampling and incomplete network data

Sampling and incomplete network data 1/58 Sampling and incomplete network data 567 Statistical analysis of social networks Peter Hoff Statistics, University of Washington 2/58 Network sampling methods It is sometimes difficult to obtain a

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Gibbs Sampling in Endogenous Variables Models

Gibbs Sampling in Endogenous Variables Models Gibbs Sampling in Endogenous Variables Models Econ 690 Purdue University Outline 1 Motivation 2 Identification Issues 3 Posterior Simulation #1 4 Posterior Simulation #2 Motivation In this lecture we take

More information

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility American Economic Review: Papers & Proceedings 2016, 106(5): 400 404 http://dx.doi.org/10.1257/aer.p20161082 Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility By Gary Chamberlain*

More information

Multivariate Analysis and Likelihood Inference

Multivariate Analysis and Likelihood Inference Multivariate Analysis and Likelihood Inference Outline 1 Joint Distribution of Random Variables 2 Principal Component Analysis (PCA) 3 Multivariate Normal Distribution 4 Likelihood Inference Joint density

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i, Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models STA 345: Multivariate Analysis Department of Statistical Science Duke University, Durham, NC, USA Robert L. Wolpert 1 Conditional Dependence Two real-valued or vector-valued

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Optimal exact tests for complex alternative hypotheses on cross tabulated data

Optimal exact tests for complex alternative hypotheses on cross tabulated data Optimal exact tests for complex alternative hypotheses on cross tabulated data Daniel Yekutieli Statistics and OR Tel Aviv University CDA course 29 July 2017 Yekutieli (TAU) Optimal exact tests for complex

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Invariant HPD credible sets and MAP estimators

Invariant HPD credible sets and MAP estimators Bayesian Analysis (007), Number 4, pp. 681 69 Invariant HPD credible sets and MAP estimators Pierre Druilhet and Jean-Michel Marin Abstract. MAP estimators and HPD credible sets are often criticized in

More information

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling Min-ge Xie Department of Statistics, Rutgers University Workshop on Higher-Order Asymptotics

More information

Bayesian inference for multivariate extreme value distributions

Bayesian inference for multivariate extreme value distributions Bayesian inference for multivariate extreme value distributions Sebastian Engelke Clément Dombry, Marco Oesting Toronto, Fields Institute, May 4th, 2016 Main motivation For a parametric model Z F θ of

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration

Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration Bayes Factors, posterior predictives, short intro to RJMCMC Thermodynamic Integration Dave Campbell 2016 Bayesian Statistical Inference P(θ Y ) P(Y θ)π(θ) Once you have posterior samples you can compute

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1 Bayesian Graphical Models for Structural Vector Autoregressive Processes Daniel Ahelegbey, Monica Billio, and Roberto Cassin (2014) March 21, 2015 Bayesian Graphical Models for Structural Vector AutoregressiveMarch

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Some Curiosities Arising in Objective Bayesian Analysis

Some Curiosities Arising in Objective Bayesian Analysis . Some Curiosities Arising in Objective Bayesian Analysis Jim Berger Duke University Statistical and Applied Mathematical Institute Yale University May 15, 2009 1 Three vignettes related to John s work

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

One-parameter models

One-parameter models One-parameter models Patrick Breheny January 22 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/17 Introduction Binomial data is not the only example in which Bayesian solutions can be worked

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Robustness of a semiparametric estimator of a copula

Robustness of a semiparametric estimator of a copula Robustness of a semiparametric estimator of a copula Gunky Kim a, Mervyn J. Silvapulle b and Paramsothy Silvapulle c a Department of Econometrics and Business Statistics, Monash University, c Caulfield

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Primal-dual Covariate Balance and Minimal Double Robustness via Entropy Balancing

Primal-dual Covariate Balance and Minimal Double Robustness via Entropy Balancing Primal-dual Covariate Balance and Minimal Double Robustness via (Joint work with Daniel Percival) Department of Statistics, Stanford University JSM, August 9, 2015 Outline 1 2 3 1/18 Setting Rubin s causal

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Modification and Improvement of Empirical Likelihood for Missing Response Problem

Modification and Improvement of Empirical Likelihood for Missing Response Problem UW Biostatistics Working Paper Series 12-30-2010 Modification and Improvement of Empirical Likelihood for Missing Response Problem Kwun Chuen Gary Chan University of Washington - Seattle Campus, kcgchan@u.washington.edu

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2016 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths

Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths for New Developments in Nonparametric and Semiparametric Statistics, Joint Statistical Meetings; Vancouver, BC,

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information

Gibbs Sampling in Latent Variable Models #1

Gibbs Sampling in Latent Variable Models #1 Gibbs Sampling in Latent Variable Models #1 Econ 690 Purdue University Outline 1 Data augmentation 2 Probit Model Probit Application A Panel Probit Panel Probit 3 The Tobit Model Example: Female Labor

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Multivariate Linear Models

Multivariate Linear Models Multivariate Linear Models Stanley Sawyer Washington University November 7, 2001 1. Introduction. Suppose that we have n observations, each of which has d components. For example, we may have d measurements

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2017 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information

Fiducial Inference and Generalizations

Fiducial Inference and Generalizations Fiducial Inference and Generalizations Jan Hannig Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Hari Iyer Department of Statistics, Colorado State University

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Parameter Estimation December 14, 2015 Overview 1 Motivation 2 3 4 What did we have so far? 1 Representations: how do we model the problem? (directed/undirected). 2 Inference: given a model and partially

More information

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis Weilan Yang wyang@stat.wisc.edu May. 2015 1 / 20 Background CATE i = E(Y i (Z 1 ) Y i (Z 0 ) X i ) 2 / 20 Background

More information

Inference for a Population Proportion

Inference for a Population Proportion Al Nosedal. University of Toronto. November 11, 2015 Statistical inference is drawing conclusions about an entire population based on data in a sample drawn from that population. From both frequentist

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

A Study into Mechanisms of Attitudinal Scale Conversion: A Randomized Stochastic Ordering Approach

A Study into Mechanisms of Attitudinal Scale Conversion: A Randomized Stochastic Ordering Approach A Study into Mechanisms of Attitudinal Scale Conversion: A Randomized Stochastic Ordering Approach Zvi Gilula (Hebrew University) Robert McCulloch (Arizona State) Ya acov Ritov (University of Michigan)

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

High Dimensional Empirical Likelihood for Generalized Estimating Equations with Dependent Data

High Dimensional Empirical Likelihood for Generalized Estimating Equations with Dependent Data High Dimensional Empirical Likelihood for Generalized Estimating Equations with Dependent Data Song Xi CHEN Guanghua School of Management and Center for Statistical Science, Peking University Department

More information

Module 4: Bayesian Methods Lecture 9 A: Default prior selection. Outline

Module 4: Bayesian Methods Lecture 9 A: Default prior selection. Outline Module 4: Bayesian Methods Lecture 9 A: Default prior selection Peter Ho Departments of Statistics and Biostatistics University of Washington Outline Je reys prior Unit information priors Empirical Bayes

More information

4 Invariant Statistical Decision Problems

4 Invariant Statistical Decision Problems 4 Invariant Statistical Decision Problems 4.1 Invariant decision problems Let G be a group of measurable transformations from the sample space X into itself. The group operation is composition. Note that

More information

Comment on Article by Scutari

Comment on Article by Scutari Bayesian Analysis (2013) 8, Number 3, pp. 543 548 Comment on Article by Scutari Hao Wang Scutari s paper studies properties of the distribution of graphs ppgq. This is an interesting angle because it differs

More information

Topics in Graphical Models. Statistical Machine Learning Ryan Haunfelder

Topics in Graphical Models. Statistical Machine Learning Ryan Haunfelder Topics in Statistical Machine Learning Loglinear Models When all of the measured variables are discrete we can create a contingency table and model expected counts using log-linear models. Recall that

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

10. Linear Models and Maximum Likelihood Estimation

10. Linear Models and Maximum Likelihood Estimation 10. Linear Models and Maximum Likelihood Estimation ECE 830, Spring 2017 Rebecca Willett 1 / 34 Primary Goal General problem statement: We observe y i iid pθ, θ Θ and the goal is to determine the θ that

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

An Extended BIC for Model Selection

An Extended BIC for Model Selection An Extended BIC for Model Selection at the JSM meeting 2007 - Salt Lake City Surajit Ray Boston University (Dept of Mathematics and Statistics) Joint work with James Berger, Duke University; Susie Bayarri,

More information

Rank Regression with Normal Residuals using the Gibbs Sampler

Rank Regression with Normal Residuals using the Gibbs Sampler Rank Regression with Normal Residuals using the Gibbs Sampler Stephen P Smith email: hucklebird@aol.com, 2018 Abstract Yu (2000) described the use of the Gibbs sampler to estimate regression parameters

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information