Monte Carlo prediction o f extreme values of the combined load effects and simplified probabilistic design of ocean going ships

Size: px
Start display at page:

Download "Monte Carlo prediction o f extreme values of the combined load effects and simplified probabilistic design of ocean going ships"

Transcription

1 Harbin Engineering University Monte Carlo prediction o f extreme values of the combined load effects and simplified probabilistic design of ocean going ships Wenbo Huang College of Space and Civil Engineering Harbin Engineering University

2 Illustration of linear combination of Constants, deterministic functions of time, random variables and stochastic processes

3 Combination of stochastic processes

4 The purpose of the paper M = W σ M margin min s ct,max M = max{ M () t + M ()(0 t < t < T)} ct,max stillwater wave 1. load combination M ct,max (1) Numerical solution based on stochastic processes (2) Monte Carlo simulation (3) the theoretical probabilistic mod el for M 2. The strength of a ship beam W = min{ Wt ( ) (0 < t< T)} min based on allowable damage 3 Reliability analysis ct, max an effective method is established for reliability-based analysis and design of a ship hull beam

5 List of contents 1. Prediction of extreme values of the combined global longitudinal vertical still water and wave bending moments admiship Theoretical model Monte Carlo simulation The proposed theoretical probabilistic model suitable for the reliability analysis of a ship hull beam. 2 Strength model based on the allowable fatigue damage 3. Numerical Analysis: Prediction of extremes and Simplified reliability analysis of a ship hull girder 4. Conclusions

6 1.Combination of still water and wave loads Still water and wave loads :global vertical longitudinal still water and wave induced bending moments amidships Why: As for loads acting on a ship hull girder, the most important one is the combined global longitudinal vertical still-water and wave induced bending moments amidships because it is directly related to the reliability-based analysis and design of a ship hull beam. Hence, it firstly is necessary to develop an effective probabilistic model for the combined load.

7 Review of relevant works Global vertical longitudinal still water and wave induced bending moments Moan & Jiao [1988], Guedes Saores [1992], Wang & Moan [1996], Wenbo Huang & Moan [2005,2008,2009], M = max{ M () t + M ()(0 t < t < T)} ct,max stillwater wave load combination ψ = ( M M )/ M M M + ψ M ψ = ( M M )/ M M M + ψ M M = W σ M sw ct, wt, swt, ct, max swt, max w wt, max w c, T sw, T w, T c, T max w, T max sw sw, T max margin min s ct,max M Mmargin = Wminσ s M M = W σ M margin min s c, T max + ψ M swt, max w wt, max + ψ M w, T max sw sw, T max

8 1.1 Still water load models Distribution & Characteristic value M sw (t) t v t F ( m) exp{ ν Tλ[1 F ( m)]} M sw M sw,max F m N µ σ ( ): (, ) M sw sw sw v Tλ[1 F ( M )] = ln(1 p) sw sw sw, T sw

9 1.2 Wave load models Distribution & Characteristic value M sw (t) t v t F ( m) exp{ ν Tλ[1 F ( m)]} M w M F w,max M w m ( m) = 1 exp g v Tp [1 F ( M )] = ln(1 p) w e M wt, w q w

10 1.3 Combination model To combine SW & WL M w (t) M w,tv t w t v t f Mc,tv (m) M c,tv t v t

11 1.3 Combination model M w (t) M w,tv t v t w t Numerical solution F M ct, v ( m) = F ( m x) f ( x) dx M w 1 + N [1 F ( m x)] v M w sw t v M c,tv t { } F ( m) exp v Tλ[1 F ( m)] M sw M c ct, v v Tλ[1 F ( M )] = ln(1 p) sw M c T ct, v,

12 1.4 Monte Carlo simulation M w (t) M w,tv f Mc,tv (m) t v t w t M c,tv t v t

13 1.5 A theoretical probabilistic model Generalized extreme value (GEV) distribution { M m} = { M m M m} Pr Pr,, c,max c1 cn { F ( )} M m F mkbc = km b c 1/ k c,max (,,, ) exp{ [1 ( ) / ] } Gumbel k = 0 c F ( mbc,, ) = exp{ exp[ ( m b) / c]} c,max To fit extremes based on Numerical solution and Monte Carlo results to a theoretical probabilistic model n

14 2. Strength model based on the allowable fatigue damage η = N A T ES m [ ] FS ( s) = 1 exp (ln N0) s s NT m ( ) mq / m η = sc ln N0 Γ 1+ A q c q N T the number of stress cycles, A & m material parameters related to SN curve, s c the characteristic value of bending stress range in T 0 (N 0 ), q the shape parameter.

15 Derive the allowable characteristic stress range based on the allowable damage NT m ( ) mq / m η = sc ln N0 Γ 1+ = ηl A q s s cl NT F 1/ m 1/ m 1/ q m ( A/ NT ) snt 0 ξ 1/ m q γf = ( ηl) γ F = (ln N ) Γ 1+ = ( A/ N ) ( η ) L T 1/ m 1/ m 1/ q ξ = (ln N0) Γ 1+ γ = = m q 1/ m the fatigue allowable stress range in T years, a random load factor, a fatigue safety factor,

16 s s c c = M s cl Minimum of section modulus + M wc, hog wc, sag W M + M s ξ W γ wc, hog wc, sag NT γ W W0 = ( Mwc, hog + Mwc, sag ) ξ s F F NT γ Wmin = W0 = ( Mwc, hog + Mwc, sag ) ξ s F NT M c,hog M c,sag characteristic bending moments related to hogging & sagging; The minumum of section modulus of a ship beam is the function of M c,hog M c,sag and the fatigue allowable stress range in T years, a random load factor,a fatigue safety factor,

17 Safe Margin Equation M F mkbc km b c c,max 1/ k c,max (,,, ) = exp{ [1 ( ) / ] } γ Wmin = ( Mwc, hog + Mwc, sag ) ξ s M = W σ M margin min s c,max F NT p = km b c fm beam p f = p f ( ) fmbeam M m beam beam dm beam m = W σ beam 1/ k 1 exp{ [1 ( beam ) / ] } min s

18 3. NUMERICAL ANALYSES a) Analysis of the Monte Carlo simulation results A lot of simulations are carried out for the different kinds of ships. In each case, 200 samples are produced for extreme values of individual and combined loads in the design time of 1 and 20 years. The simulation time is different for each case, which can vary from about 5 to 40 minutes because the mean voyage times are different for different ships.

19 Parameters of loads Ship type Load conditions Bending moments Voyage durations (days) Time in port (days) sw v p Container hog Suezmax oil tanker hog sag µ sw Large tanker hog Small tanker hog Bulk carrier hog σ µ σv µ σ p The mean wave period is 8s. The shape parameter is 1, for a Suezmax oil tanker The mean wave period is 10s. The shape parameter of the Weibull distribution of the wave load is 0.89 for other ships

20 The statistics of extreme values of still water loads for 20 year Table 3. The statistics of extreme values of SWL for 20 year Statistics 20 years Container Suezmax Tanker hogging Large tanker Small tanker Bulk carrier Min Max Mean Std. Dev Skew Kurtosis

21 The statistics of extreme values of Statistics 20 years wave loads for 20 year Table 5 The statistics of extreme values of WL of 20 years Container Suezmax Tanker hogging Large tanker Small tanker Bulk carrier Min Max Mean Std. Dev Skew Kurtosis

22 The statistics of extreme values of Statistics 20 years combined loads for 20 year Table 7 The statistics of extreme values of CL 20 years Contain-er Suezmax Tanker hogging Large tanker Small tanker Bulk carrier Min Max Mean Std. Dev Skew Kurtosis

23 Fig. 3 CDF of the combined extreme value of container ship based on different models L Num. 1year R Num. 20year L Ana.G 1year R Ana.G 20year L Ana.Ev2 1yearl R Ana.Ev2 20year L Monte. 1year R Monte. 20year

24 Fig. 4 CDF of the combined extreme value of bulk carrier based on different models (upper talils) L Num. 1year R Num. 20year L Ana.G 1year R Ana.G 20year L Ana.Ev2 1year R Ana.Ev2 20year L Monte. 1year R Monte. 20year

25 Fig. 5 CDF of the combined extreme value of large tanker based on different models (upper talils) L Num. 1year R Num. 20year L Ana.G 1year R Ana.G 20year L Ana.Ev2 1year R Ana.Ev2 20year R Monte. 1year L Monte. 20year

26 L Num. 1year R Num. 20year L Ana.G 1year R Ana.G 20year L Ana.Ev2 1year R Ana.Ev2 20year L Monte. 1year R Monte. 20year Fig. 6 CDF of combined hogging extreme values of Suezmax oil tanker based on different models

27 Fig. 7 CDF of the combined sagging extreme value of Suezmax oil tanker based on different models L Num. 1year R Num. 20year L Ana.G 1year R Ana.G 20year L Ana.Ev2 1year R Ana.Ev2 20year L Monte. 1year R Monte. 20year

28 Fig. 8 CDF of the combined extreme value of small tanker based on different models L Num. 1year R Num. 20year L Ana.G 1year R Ana.G 20year L Ana.Ev2 1year R Ana.Ev2 20year L Monte. 1year R Monte. 20year

29 TypeⅡ:Recommended theoretical probabilistic model for the combined extreme loads: It is very hard to give a good reason why TypeⅡextreme value distribution is much better than TypeⅠmodel for the example cases. The possible reasons are as follows; a) the domain of definition of TypeⅡmodel is much suitable for modelling the distribution of the combined extreme value than TypeⅠmodel; b) the parent distribution of the combined extreme value may have a polynomial tail.

30 Comparison of extremes by numerical and Monte Carlo simulation 1yrs. Cer. hog SuT hog SuT sag LT hog ST hog BC hog MC M ct Num M ct

31 Comparison of extremes by numerical and Monte Carlo simulation 20 year Cer. hog SuT hog SuT sag LT hog ST hog BC hog MC M ct Num M ct

32 Reliability based analysis and design of a ship hull beam Table 4 Probabilities of failure vs σ s η L η L σ s 250Mpa 300Mpa 390Mpa e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-007

33 4. CONCLUSIONS Based on Poisson models, a systematic Monte Carlo simulation is developed to estimate extreme values of the combined load effects of ocean-going ships. The extreme values simulated are compared with those based on the theoretical methods (Huang & Moan 2008). The numerical analyses show that the results based on the two methods agree with very well but the numerical solutions are on the conservative side. Moreover, the empirical distribution of the combined extreme values based on the Monte Carlo simulation can be well fitted to the GEV distribution (the theoretical distribution model of TypeⅡ), which will be very convenient for the reliability analyses of the ship hull beam.

34 4. CONCLUSIONS By considering the effect of fatigue damage on the bending capacity of a ship hull beam, the strength model of a ship hull beam is established, which is very convenient to use in the reliability-based analysis and design of a ship hull beam because it is simply based on the main dimension of a ship under design. Finally, with the developed load and strength modes, the reliability analysis and design of a ship hull beam are carried out. Hence, an effective method is established for reliabilitybased analysis and design of a ship hull beam

35 REFERENCES [1] Mansour, A.E. & Thayamballi, A. 1993, Probability based ship design loads and load combinations. Ship Structure Committee, SSC-373, Washington, DC, USA [2] Moan, T., Jiao, G., 1988, Characteristic still water load effects of production ships, Report MK/R 104/88, Norwegian institute of technology, Trondheim Norway. [3] Guedes Soares, C., 1992, Combination of primary load effects in ship structures, Probabilistic Engineering Mechanics 7: [4] Wang, X. & Moan, T., 1996, Stochastic and deterministic of still water and wave bending moments in ships, Marine Structures 9: [5] Huang, W. & Moan, T., 2005, Combination of global still-water and wave load effects for reliability-based design of floating production, storage and offloading (FPSO) vessels, Applied Ocean Research 27: [6] Huang, W. & Moan, T., 2008, Analytical method of combining global longitudinal loads for ocean-going ships, Probabilistic Engineering Mechanics 23: [7] Huang W., Moan T., 2009, Load combination factors suitable for probabilistic and semiprobabilistic design of ocean-going ships, Proceedings of the tenth international conference on structural safety and reliability (ICOSSAR2009), OSAKA, JAPAN, SEPTEMBER. [8] Huang, Wenbo, 2010, Simplified Combination of still water and wave loads with the emphasis in considering a general Weibull Characteristic of wave loads, Proceedings Of OMAE2010, June 6-11, Shanghai, China.

36 REFERENCES [9] O.,F., Hughes, 1988, Ship structure design-a rationally-based, computer-aided, optimization approach, Wiley, USA. [10] Guedes Soares, C. & Moan, T., 1988, Statistical analysis of still water load effects in ship structures, SNAME 96: [11] Wen, Y.K., 1990, Structural load modelling and combination for performance and safety evaluation, Amsterdam: Elsevier. [12] Guedes Soares, C. & Moan, T., 1991, Model uncertainty in the long-term distribution of waveinduced bending moments for fatigue design of ship structures, Marine Structures 4: [13] Naess, A., 1999, Extreme response of nonlinear structures with low damping subjected to stochastic loadings, Journal of offshore mechanics and arctic engineering 121: [14] Turkstra, C.J. & Madsen, H.O., 1980, Load combination in codified structural design, J. Struct. Div. Proc. ASCE 106(12): [15] Larrabee, R.D. & Cornell, C.A., 1981, Combination of various load processes, J Struct Div. ASCE 107: [16] Rackwitz, R., Fiessler, B., 1976, Note on discrete safety checking when using non-normal stochastic models for basic variables, Load Project Working Session, MIT, Cambridge, MA, June. [17] Coles, S., 2001, An introduction to statistical modelling of extreme value, London:Springer- Verlag. [18] Gaspar B. Guedes Soares G. 2012, Hull girder reliability using a Monte Carlo based simulation method, Probabilistic Engineering Mechanics,

37 Harbin Engineering University Thank you very much! Wenbo Huang College of Space and Civil Engineering Harbin Engineering University

QUANTIFYING THE EFFECT OF INSPECTIONS IN SHIPS CONSIDERING THE SPATIAL VARIABILITY OF CORROSION

QUANTIFYING THE EFFECT OF INSPECTIONS IN SHIPS CONSIDERING THE SPATIAL VARIABILITY OF CORROSION QUANTIFYING THE EFFECT OF INSPECTIONS IN SHIPS CONSIDERING THE SPATIAL VARIABILITY OF CORROSION Hyun-Joong Kim, Engineering Risk Analysis Group, Technische Universität München, Germany Daniel Straub, Engineering

More information

Reliability Analysis and Updating of Inspected Ship Structures subject to Spatially Variable Corrosion

Reliability Analysis and Updating of Inspected Ship Structures subject to Spatially Variable Corrosion Reliability Analysis and Updating of Inspected Ship Structures subject to Spatially Variable Corrosion Hyun-Joong Kim a und Daniel Straub a a Engineering Risk Analysis Group, Technische Universität München,

More information

THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER

THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER 94 Paper present at International Conference on Diagnosis and Prediction in Mechanical Engineering Systems (DIPRE 07) 26-27 October 2007, Galati, Romania THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER

More information

Evaluating Corrosion Wastage and Structural Safety of Aging Ships

Evaluating Corrosion Wastage and Structural Safety of Aging Ships Evaluating Corrosion Wastage and Structural Safety of Aging Ships Lyuben Ivanov, Ge Wang, Ah Kuan Seah - American Bureau of Shipping Presented at the Pacific 24 International Maritime Conference (PACIFIC

More information

Structural reliability assessment of accidentally damaged oil tanker

Structural reliability assessment of accidentally damaged oil tanker Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Structural reliability assessment of accidentally damaged

More information

EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY

EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY Published in Proceedings of the L00 (Response of Structures to Extreme Loading) Conference, Toronto, August 00. EFFICIENT MODELS FOR WIND TURBINE ETREME LOADS USING INVERSE RELIABILITY K. Saranyasoontorn

More information

ABS TECHNICAL PAPERS 2008 PROBABILISTIC PRESENTATION OF THE STILL WATER LOADS. WHICH WAY AHEAD?

ABS TECHNICAL PAPERS 2008 PROBABILISTIC PRESENTATION OF THE STILL WATER LOADS. WHICH WAY AHEAD? Proceedings of the 7th International Conference on Offshore Mechanics and Arctic Engineering OMAE008 June 15-0, 008, Estoril, Portugal OMAE008-57011 PROBABILISTIC PRESENTATION OF THE STILL WATER LOADS.

More information

INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT

INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT TECHNICAL REPORT NO. 73 INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT Authors: Dr Marian Bogdaniuk Dr Monika Warmowska Gdańsk, 2016 Technical Report No. 73 3 CONTENTS PURPOSE

More information

ABS TECHNICAL PAPERS 2004 STRUCTURAL RELIABILITY APPLICATIONS IN DEVELOPING RISK-BASED INSPECTION PLANS FOR A FLOATING PRODUCTION INSTALLATION

ABS TECHNICAL PAPERS 2004 STRUCTURAL RELIABILITY APPLICATIONS IN DEVELOPING RISK-BASED INSPECTION PLANS FOR A FLOATING PRODUCTION INSTALLATION Proceedings of OMAE 24 23nd International Conference on Offshore Mechanics and Arctic Engineering Vancouver, Canada 24 OMAE 24-59 STRUCTURAL RELIABILITY APPLICATIONS IN DEVELOPING RISK-BASED INSPECTION

More information

Optimal Design of FPSO Vessels

Optimal Design of FPSO Vessels November 2, 201 Optimal Design of FPSO Vessels Ezebuchi Akandu PhD, MTech, BTech, COREN, RINA, MNSE Department of Marine Engineering, Rivers State University, Port Harcourt, Nigeria akandu.ezebuchi@ust.edu.ng

More information

However, reliability analysis is not limited to calculation of the probability of failure.

However, reliability analysis is not limited to calculation of the probability of failure. Probabilistic Analysis probabilistic analysis methods, including the first and second-order reliability methods, Monte Carlo simulation, Importance sampling, Latin Hypercube sampling, and stochastic expansions

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

D. Benasciutti a, R. Tovo b

D. Benasciutti a, R. Tovo b «A COMPREHENSIVE APPROACH TO FATIGUE UNDER RANDOM LOADING: non-gaussian and non-stationary loading investigations» D. Benasciutti a, R. Tovo b a DIEGM, Dipartimento di Ingegneria Elettrica Gestionale Meccanica,

More information

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information

Safety Envelope for Load Tolerance and Its Application to Fatigue Reliability Design

Safety Envelope for Load Tolerance and Its Application to Fatigue Reliability Design Safety Envelope for Load Tolerance and Its Application to Fatigue Reliability Design Haoyu Wang * and Nam H. Kim University of Florida, Gainesville, FL 32611 Yoon-Jun Kim Caterpillar Inc., Peoria, IL 61656

More information

Structural reliability analysis with implicit limit state functions

Structural reliability analysis with implicit limit state functions J. Miranda Structural reliability analysis with implicit limit state functions 1 Structural reliability analysis with implicit limit state functions Jorge Miranda Instituto Superior Técnico, University

More information

PROBABILISTIC VULNERABILITY ASSESSMENT TOOL FOR SURFACE SHIP UNDER EXTREME DYNAMIC LOADS

PROBABILISTIC VULNERABILITY ASSESSMENT TOOL FOR SURFACE SHIP UNDER EXTREME DYNAMIC LOADS PROBABILISTIC VULNERABILITY ASSESSMENT TOOL FOR SURFACE SHIP UNDER EXTREME DYNAMIC LOADS Jim Lua 1 (M) Applied Mechanics Department A&T Engineering Technology Center An Anteon Company 240 Oral School Road

More information

Fatigue reliability analysis of jacket-type offshore wind turbine considering inspection and repair

Fatigue reliability analysis of jacket-type offshore wind turbine considering inspection and repair Fatigue reliability analysis of jacket-type offshore wind turbine considering inspection and repair W.B. Dong, Z. Gao 2 and T. Moan 3 Centre for Ships and Ocean Structures(CeSOS), Norwegian University

More information

ENHANCED MONTE CARLO FOR RELIABILITY-BASED DESIGN AND CALIBRATION

ENHANCED MONTE CARLO FOR RELIABILITY-BASED DESIGN AND CALIBRATION COMPDYN 2011 ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25-28 May 2011 ENHANCED

More information

The 10 th international Energy Conference (IEC 2014)

The 10 th international Energy Conference (IEC 2014) Ultimate Limit State Assessments of Steel Plates for Spar-Type Floating Offshore Wind Turbines 1. Sajad Rahmdel 1) 2. Hyerin Kwon 2) 3. Seonghun Park 3) 1), 2), 3) School of Mechanical Engineering, Pusan

More information

Structural reliability analysis of rotor blades in ultimate loading

Structural reliability analysis of rotor blades in ultimate loading EWEA 2011 Brussels, Belgium: Europe s Premier Wind Energy Event Structural reliability analysis of rotor blades in ultimate loading K. C. Bacharoudis 1, D. J. Lekou 2, T. P. Philippidis 1 1. University

More information

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Lecture 1: Introduction Course Objectives: The focus of this course is on gaining understanding on how to make an

More information

Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave

Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave Rogue Waves 2004 1 Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave C. Guedes Soares, N. Fonseca, R. Pascoal Unit of Marine Engineering and Technology, Technical

More information

Load Resistant Factor Calibration for Tunnel

Load Resistant Factor Calibration for Tunnel Load Resistant Factor Calibration for Tunnel * S. Hooman. Ghasemi 1) *11) Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, 34158, Iran. 1 Hooman.Ghasemi@auburn.edu ABSTRACT

More information

Basics of Uncertainty Analysis

Basics of Uncertainty Analysis Basics of Uncertainty Analysis Chapter Six Basics of Uncertainty Analysis 6.1 Introduction As shown in Fig. 6.1, analysis models are used to predict the performances or behaviors of a product under design.

More information

4.2 Partial factor method based on the design value approach

4.2 Partial factor method based on the design value approach 4.2 Partial factor method based on the design value approach 2 nd draft Milan Holicky & Miroslav Sykora* * Czech Technical University in Prague, Klokner Institute, Prague, Czech Republic e-mail: milan.holicky@klok.cvut.cz;

More information

RELIABILITY-BASED FATIGUE INSPECTION PLANNING OF FIXED OFFSHORE STRUCTURES

RELIABILITY-BASED FATIGUE INSPECTION PLANNING OF FIXED OFFSHORE STRUCTURES RELIABILITY-BASED FATIGUE INSPECTION PLANNING OF FIXED OFFSHORE STRUCTURES Luis Volnei Sudati Sagrilo, Edison Castro Prates de Lima, COPPE/UFRJ Carlos Cunha Dias Henriques, Sergio Guillermo Hormazabal

More information

2028. Life estimation of the beam with normal distribution parameters and subjected to cyclic load

2028. Life estimation of the beam with normal distribution parameters and subjected to cyclic load 2028. Life estimation of the beam with normal distribution parameters and subjected to cyclic load Changyou Li 1, Xuchu Wang 2, Wei Wang 3, Yimin Zhang 4, Song Guo 5 1, 2, 3, 4 School of Mechanical Engineering

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2011 32th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10124 APPLYING STRIP THEORY BASED LINEAR SEAKEEPING

More information

Modelling trends in the ocean wave climate for dimensioning of ships

Modelling trends in the ocean wave climate for dimensioning of ships Modelling trends in the ocean wave climate for dimensioning of ships STK1100 lecture, University of Oslo Erik Vanem Motivation and background 2 Ocean waves and maritime safety Ships and other marine structures

More information

RELIABILITY-BASED INSPECTION PLANNING WITH APPLICATION TO DECK STRUCTURE THICKNESS MEASUREMENT OF CORRODED AGING TANKERS.

RELIABILITY-BASED INSPECTION PLANNING WITH APPLICATION TO DECK STRUCTURE THICKNESS MEASUREMENT OF CORRODED AGING TANKERS. RELIABILITY-BASED INSPECTION PLANNING WITH APPLICATION TO DECK STRUCTURE THICKNESS MEASUREMENT OF CORRODED AGING TANKERS by Jinting Guo A dissertation submitted in partial fulfillment of the requirements

More information

Bridge System Performance Assessment from Structural Health Monitoring: A Case Study

Bridge System Performance Assessment from Structural Health Monitoring: A Case Study Bridge System Performance Assessment from Structural Health Monitoring: A Case Study Ming Liu, M.ASCE 1 ; Dan M. Frangopol, F.ASCE 2 ; and Sunyong Kim 3 Abstract: Based on the long-term monitored strain

More information

Managing risk. Špačková O., Straub D. (in print): Cost-benefit analysis for optimization of risk protection under budget constraints. Risk Analysis.

Managing risk. Špačková O., Straub D. (in print): Cost-benefit analysis for optimization of risk protection under budget constraints. Risk Analysis. 2 3 Managing risk Špačková O., Straub D. (in print): Cost-benefit analysis for optimization of risk protection under budget constraints. Risk Analysis. 4 Decision Straub D. (2014): Engineering Risk Assessment.

More information

Uncertain Structural Reliability Analysis

Uncertain Structural Reliability Analysis Uncertain Structural Reliability Analysis Yi Miao School of Civil Engineering, Tongji University, Shanghai 200092, China 474989741@qq.com Abstract: The reliability of structure is already applied in some

More information

Conversion of an Oil Tanker into FPSO. Strength Analysis using ABS Rules

Conversion of an Oil Tanker into FPSO. Strength Analysis using ABS Rules National Technical University of Athens School of Naval Architecture & Marine Engineering Division of Marine Structures Conversion of an Oil Tanker into FPSO. Strength Analysis using ABS Rules Diploma

More information

Ultimate shear strength of FPSO stiffened panels after supply vessel collision

Ultimate shear strength of FPSO stiffened panels after supply vessel collision Ultimate shear strength of FPSO stiffened panels after supply vessel collision Nicolau Antonio dos Santos Rizzo PETROBRAS Rio de Janeiro Brazil Marcelo Caire SINTEF do Brasil Rio de Janeiro Brazil Carlos

More information

INVESTIGATING PARENT DISTRIBUTION OF TYPHOON-GENERATED ANNUAL MAXIMUM WAVE HEIGHT AND SAMPLE DISTRIBUTION OF RETURN WAVE HEIGHT ON THE EAST CHINA SEA

INVESTIGATING PARENT DISTRIBUTION OF TYPHOON-GENERATED ANNUAL MAXIMUM WAVE HEIGHT AND SAMPLE DISTRIBUTION OF RETURN WAVE HEIGHT ON THE EAST CHINA SEA INVESTIGATING PARENT DISTRIBUTION OF TYPHOON-GENERATED ANNUAL MAXIMUM WAVE HEIGHT AND SAMPLE DISTRIBUTION OF RETURN WAVE HEIGHT ON THE EAST CHINA SEA Masataka YAMAGUCHI Graduate School of Science and Engineering,

More information

Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness

Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness Hsein Juang Glenn Professor of Civil Engineering Clemson University 1 2 Outline of Presentation Background

More information

Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements

Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements 1 Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements Biao Su Department of Marine Technology, NTNU January 7 th, 2013 Author CeSOS Centre for Ships and

More information

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Qianwen HUANG 1 ; Jia LIU 1 ; Cong ZHANG 1,2 ; inping YAN 1,2 1 Reliability Engineering Institute,

More information

A Comparative Study on Fatigue Damage using a Wave Load Sequence Model

A Comparative Study on Fatigue Damage using a Wave Load Sequence Model 6th Engineering, Science and Technology Conference (207) Volume 208 Conference Paper A Comparative Study on Fatigue Damage using a Wave Load Sequence Model Luis De Gracia, Naoki Osawa, Hitoi Tamaru 2,

More information

Fourth-Moment Standardization for Structural Reliability Assessment

Fourth-Moment Standardization for Structural Reliability Assessment Fourth-Moment Standardization for Structural Reliability Assessment Yan-Gang Zhao, M.ASCE 1 ; and Zhao-Hui Lu Abstract: In structural reliability analysis, the uncertainties related to resistance and load

More information

Reliability based design procedure for better survivability of intact and damaged ships

Reliability based design procedure for better survivability of intact and damaged ships Reliability based design procedure for better survivability of intact and damaged ships Prof. P. K. Das, PhD, C Eng., FRINA, FIStructE, FIMarEST,MBCS Director ASRAnet Ltd. Lecture for Maritime Faculty

More information

SEISMIC RELIABILITY ANALYSIS OF BASE-ISOLATED BUILDINGS

SEISMIC RELIABILITY ANALYSIS OF BASE-ISOLATED BUILDINGS International Symposium on Engineering under Uncertainty: Safety Assessment and Management January 4 to 6, 2012 Paper No.: CNP 070 SEISMIC RELIABILITY ANALYSIS OF BASE-ISOLATED BUILDINGS M.C. Jacob 1,

More information

Reliability-Based Design Guidelines for Fatigue of Ship Structures

Reliability-Based Design Guidelines for Fatigue of Ship Structures Reliability-Based Design Guidelines for Fatigue of hip tructures Bilal M. Ayyub, Ibrahim A. Assakkaf 2, David P. Kihl 3, and Michael W. ieve 4 ABTRACT Marine and offshore structures are subjected to fatigue

More information

Safe Struck Ship (3S):Software Package for Structural analysis of collision between ships

Safe Struck Ship (3S):Software Package for Structural analysis of collision between ships Port Said Engineering Research Journal Faculty of Engineering - Port Said University Volume 16 No. 2 pp.: 68:79 Safe Struck Ship (3S):Software Package for Structural analysis of collision between ships

More information

A probabilistic method to predict fatigue crack initiation

A probabilistic method to predict fatigue crack initiation International Journal of Fracture (2006) 137:9 17 DOI 10.1007/s10704-005-3074-0 Springer 2006 A probabilistic method to predict fatigue crack initiation SALIL. S. KULKARNI, L. SUN, B. MORAN, S. KRISHNASWAMY

More information

System Reliability Analysis Using Tail Modeling

System Reliability Analysis Using Tail Modeling System Reliability Analysis Using Tail Modeling Palaniappn Ramu 1, Nam H. Kim 2 and Raphael T. Haftka 3 University of Florida, Gainesville, Florida, 32611 and Nestor V. Queipo 4 University of Zulia, Maracaibo,

More information

Polynomial chaos expansions for structural reliability analysis

Polynomial chaos expansions for structural reliability analysis DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for structural reliability analysis B. Sudret & S. Marelli Incl.

More information

A Simple Third-Moment Method for Structural Reliability

A Simple Third-Moment Method for Structural Reliability A Simple Third-Moment Method for Structural Reliability Yan-Gang Zhao* 1, Zhao-Hui Lu 2 and Tetsuro Ono 3 1 Associate Professor, Nagoya Institute of Technology, Japan 2 Graduate Student, Nagoya Institute

More information

Nonlocal model for size effect in quasibrittle failure based on extreme value statistics

Nonlocal model for size effect in quasibrittle failure based on extreme value statistics Structural Safety and Reliability, Corotis et al. (eds), 2001 Swets & Zeitinger, ISBN 90 5809 197 X Nonlocal model for size effect in quasibrittle failure based on extreme value statistics Z.P. Bažant

More information

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Sensitivity and Reliability Analysis of Nonlinear Frame Structures Sensitivity and Reliability Analysis of Nonlinear Frame Structures Michael H. Scott Associate Professor School of Civil and Construction Engineering Applied Mathematics and Computation Seminar April 8,

More information

Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure csnak, 015 Int. J. Nav. Archit. Ocean Eng. (015) 7:399~408 http://dx.doi.org/10.1515/ijnaoe-015-008 pissn: 09-678, eissn: 09-6790 Ultimate uniaxial compressive strength of stiffened panel with opening

More information

Residual. r 2. damage extents. considering probabilistic. collision- and. developed to

Residual. r 2. damage extents. considering probabilistic. collision- and. developed to csnak, 2014 Int. J. Nav. N Archit. Ocean Eng. (2014) 6:14~266 http://dx.doi.org/10.2478/ijnaoe-2013-01600 pissn: 2092-6782, eissn: 2092-67900 Residual ultimate strength of a very large crude carrier considering

More information

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d Validation of a time-domain numerical approach for determining forces and moments in floaters by using measured data of a semi-submersible wind turbine model test Chenyu Luan a,b,c, Valentin Chabaud a,d,

More information

Use of Simulation in Structural Reliability

Use of Simulation in Structural Reliability Structures 008: Crossing Borders 008 ASCE Use of Simulation in Structural Reliability Author: abio Biondini, Department of Structural Engineering, Politecnico di Milano, P.za L. Da Vinci 3, 033 Milan,

More information

ASME 2013 IDETC/CIE 2013 Paper number: DETC A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS

ASME 2013 IDETC/CIE 2013 Paper number: DETC A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS ASME 2013 IDETC/CIE 2013 Paper number: DETC2013-12033 A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS Zhen Hu, Xiaoping Du Department of Mechanical & Aerospace Engineering

More information

Numerical simulation of ice-induced loads on ships and comparison with field measurements. Biao Su Department of Marine Technology, NTNU May 28, 2013

Numerical simulation of ice-induced loads on ships and comparison with field measurements. Biao Su Department of Marine Technology, NTNU May 28, 2013 Numerical simulation of ice-induced loads on ships and comparison with field measurements Biao Su Department of Marine Technology, NTNU May 28, 2013 Motivation Ice hull interaction Local ice load Global

More information

Comparing L-Moments and Conventional Moments to Model Current Speeds in the North Sea

Comparing L-Moments and Conventional Moments to Model Current Speeds in the North Sea Iowa State University From the SelectedWorks of Cameron A. MacKenzie 2011 Comparing L-Moments and Conventional Moments to Model Current Speeds in the North Sea Cameron A. MacKenzie, iowa Steven R. Winterstein

More information

Information Updating in Infrastructure Systems

Information Updating in Infrastructure Systems University of Washington, Seattle Civil and Environmental Engineering April 10, 2008 Information Updating in Infrastructure Systems Subject to Multiple Hazards Daniel Straub University of California, Berkeley

More information

Institute for Statics und Dynamics of Structures Fuzzy probabilistic safety assessment

Institute for Statics und Dynamics of Structures Fuzzy probabilistic safety assessment Institute for Statics und Dynamics of Structures Fuzzy probabilistic safety assessment Bernd Möller Fuzzy probabilistic safety assessment randomness fuzzy randomness fuzzyness failure Fuzzy- Probabilistik

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 1.010 Uncertainty in Engineering Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Example Application 12

More information

Extreme value distributions for nonlinear transformations of vector Gaussian processes

Extreme value distributions for nonlinear transformations of vector Gaussian processes Probabilistic Engineering Mechanics 22 (27) 136 149 www.elsevier.com/locate/probengmech Extreme value distributions for nonlinear transformations of vector Gaussian processes Sayan Gupta, P.H.A.J.M. van

More information

Stress concentration factor in plates with transverse butt-weld misalignment

Stress concentration factor in plates with transverse butt-weld misalignment Journal of Constructional Steel Research 52 (1999) 159 170 www.elsevier.com/locate/jcsr Stress concentration factor in plates with transverse butt-weld misalignment Weicheng Cui a,*, Zhengquan Wan b, Alaa

More information

Experimental studies of springing and whipping of container vessels

Experimental studies of springing and whipping of container vessels Experimental studies of springing and whipping of container vessels Ole Andreas Hermundstad CeSOS Highlights and AMOS Visions Conference 27-29th May 2013 in Trondheim Outline Background and motivation

More information

Multi-level seismic damage analysis of RC framed structures. *Jianguang Yue 1)

Multi-level seismic damage analysis of RC framed structures. *Jianguang Yue 1) Multi-level seismic damage analysis of RC framed structures *Jianguang Yue 1) 1) College of Civil Engineering, Nanjing Tech University, Nanjing 2118, China 1) jgyue@njtech.edu.cn ABSTRACT A comprehensive

More information

SUGGESTED ANALYTICAL MODEL FOR LIVE LOADS

SUGGESTED ANALYTICAL MODEL FOR LIVE LOADS SUGGESTED ANALYTICAL MODEL FOR LIVE LOADS A. B. Khalil, Ph. D. Assistance Professor Cairo University M. A. Ahmed, Ph.D. Assistance Professor Cairo University M. A. El-Reedy, Ph. D. Structure Engineer Email:elreedyma@yahoo.com

More information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering Written Preliminary Examination Information Faculty: Professors W. Neu, O. Hughes, A. Brown, M. Allen Test

More information

Copyright. Hsin-Yang Chung

Copyright. Hsin-Yang Chung Copyright by Hsin-Yang Chung 2004 The Dissertation Committee for Hsin-Yang Chung Certifies that this is the approved version of the following dissertation: FATIGUE RELIABILITY AND OPTIMAL INSPECTION STRATEGIES

More information

AN EXTREME-VALUE ESTIMATING METHOD OF NON- GAUSSIAN WIND PRESSURE

AN EXTREME-VALUE ESTIMATING METHOD OF NON- GAUSSIAN WIND PRESSURE The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan AN EXTREME-VALUE ESTIMATING METHOD OF NON- GAUSSIAN WIND PRESSURE Yong Quan 1 Ming Gu 2 Yukio Tamura 3 Bin Chen

More information

ABSTRACT. Professor Bilal M. Ayyub, Department of Environment and Civil Engineering

ABSTRACT. Professor Bilal M. Ayyub, Department of Environment and Civil Engineering ABSTRACT Title of Document: ESTIMATION OF EXTREME BENDING MOMENTS ON SHIPS FROM LIFETIME FATIGUE LOADS David H. Webb, Masters of Science, 2012 Directed By: Professor Bilal M. Ayyub, Department of Environment

More information

Fatigue Reliability and Effective Turbulence Models in Wind Farms

Fatigue Reliability and Effective Turbulence Models in Wind Farms Downloaded from vbn.aau.dk on: marts 28, 2019 Aalborg Universitet Fatigue Reliability and Effective Turbulence Models in Wind Farms Sørensen, John Dalsgaard; Frandsen, S.; Tarp-Johansen, N.J. Published

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

ULTIMATE STRENGTH OF SQUARE PLATE WITH RECTANGULAR OPENING UNDER AXIAL COMPRESSION

ULTIMATE STRENGTH OF SQUARE PLATE WITH RECTANGULAR OPENING UNDER AXIAL COMPRESSION Journal of Naval Architecture and Marine Engineering June, 2007 http://jname.8m.net ULTIMATE STRENGTH OF SQUARE PLATE WITH RECTANGULAR OPENING UNDER AXIAL COMPRESSION M. Suneel Kumar 1*, P. Alagusundaramoorthy

More information

Stochastic Renewal Processes in Structural Reliability Analysis:

Stochastic Renewal Processes in Structural Reliability Analysis: Stochastic Renewal Processes in Structural Reliability Analysis: An Overview of Models and Applications Professor and Industrial Research Chair Department of Civil and Environmental Engineering University

More information

New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics

New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics Armen Der Kiureghian President, American University of Armenia Taisei Professor of Civil Engineering Emeritus

More information

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES NTNU Faculty of Engineering Science and Technology Department of Marine Technology EXERCISE 4 TMR 495 DESIGN OF OFFSHORE STRUCTURES Distr. Date: 9 th Feb 4 Sign: Q. Chen Mandatory Exercise This exercise

More information

Competitive comparison of load combination models

Competitive comparison of load combination models Czech Technical University in Prague, Klokner Institute Competitive comparison of load combination models Milan Holicky and Miroslav Sykora Czech Technical University in Prague, Klokner Institute Introduction

More information

SSC-459 RELIABILITY-BASED PERFORMANCE ASSESSMENT OF DAMAGED SHIPS

SSC-459 RELIABILITY-BASED PERFORMANCE ASSESSMENT OF DAMAGED SHIPS NTIS # PB2011- SSC-459 RELIABILITY-BASED PERFORMANCE ASSESSMENT OF DAMAGED SHIPS This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2011

More information

PERFORMANCE-BASED DESIGN APPLIED FOR A BEAM SUBJECTED TO COMBINED STRESS

PERFORMANCE-BASED DESIGN APPLIED FOR A BEAM SUBJECTED TO COMBINED STRESS TOME VI (year 008) FASCICULE (ISSN 1584 665) PERFORMANCE-BASED DESIGN APPLIED FOR A BEAM SUBJECTED TO COMBINED STRESS Karel FRYDRÝŠEK Department of Mechanics of Materials Faculty of Mechanical Engineering

More information

PROBABILISTIC MODEL OF ULTIMATE STRENGTH REDUCTION OF GROUNDED SHIP

PROBABILISTIC MODEL OF ULTIMATE STRENGTH REDUCTION OF GROUNDED SHIP Branka BUŽANČIĆ PRIMORAC, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 3, HR-1 Split, Croatia, branka@fesb.hr Joško PARUNOV, Faculty

More information

Keywords: Reliability; Monte Carlo method; Simulation; R.C.C Column Design

Keywords: Reliability; Monte Carlo method; Simulation; R.C.C Column Design Monte Carlo Simulation Technique For Reliability Assessment Of R.C.C. Columns Sukanti Rout*, Santosh Kumar Sahoo**, Bidyadhar Basa*** *(Department Civil Engineering, SOA University, Bhubaneswar-30) **

More information

A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT ENVIRONMENTS USING INVERSE RELIABILITY

A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT ENVIRONMENTS USING INVERSE RELIABILITY AIAA--5 A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT ENVIRONMENTS USING INVERSE RELIABILITY Korn Saranyasoontorn Lance Manuel Department of Civil Engineering, University of Texas at Austin, Austin,

More information

MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE

MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE Journal of Marine Science and Technology, Vol., No., pp. -8 () MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE Jui-Hsiang Hsu*, ***, Cherng-Shing Lin**, and Chang-Bin Huang*** Key words:

More information

Module 8. Lecture 5: Reliability analysis

Module 8. Lecture 5: Reliability analysis Lecture 5: Reliability analysis Reliability It is defined as the probability of non-failure, p s, at which the resistance of the system exceeds the load; where P() denotes the probability. The failure

More information

Model Calibration under Uncertainty: Matching Distribution Information

Model Calibration under Uncertainty: Matching Distribution Information Model Calibration under Uncertainty: Matching Distribution Information Laura P. Swiler, Brian M. Adams, and Michael S. Eldred September 11, 008 AIAA Multidisciplinary Analysis and Optimization Conference

More information

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES Studia Geotechnica et Mechanica, Vol. XXXII, No. 2, 2010 CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES JERZY BAUER Institute of Mining, Wrocław University

More information

THIRD-MOMENT STANDARDIZATION FOR STRUCTURAL RELIABILITY ANALYSIS

THIRD-MOMENT STANDARDIZATION FOR STRUCTURAL RELIABILITY ANALYSIS THIRD-MOMENT STANDARDIZATION FOR STRUCTURAL RELIABILITY ANALYSIS By Yan-Gang Zhao and Tetsuro Ono ABSTRACT: First- and second-order reliability methods are generally considered to be among the most useful

More information

Risk Assessment of Highway Bridges: A Reliability-based Approach

Risk Assessment of Highway Bridges: A Reliability-based Approach Risk Assessment of Highway Bridges: A Reliability-based Approach by Reynaldo M. Jr., PhD Indiana University-Purdue University Fort Wayne pablor@ipfw.edu Abstract: Many countries are currently experiencing

More information

Experiment and Finite Analysis on Resonant Bending Fatigue of Marine Risers

Experiment and Finite Analysis on Resonant Bending Fatigue of Marine Risers Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 015, 9, 05-1 05 Open Access Experiment and Finite Analysis on Resonant Bending Fatigue of Marine Risers Fang

More information

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway OMAE 2002-28435 ESTIMATION OF EXTREME RESPONSE AND FATIGUE DAMAGE FOR COLLIDING

More information

Analytical Predictions of the Air Gap Response of Floating Structures

Analytical Predictions of the Air Gap Response of Floating Structures Lance Manuel Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712 e-mail: lmanuel@mail.utexas.edu Bert Sweetman Steven R. Winterstein Department of Civil and Environmental Engineering,

More information

Reliability Analysis of a Tunnel Design with RELY

Reliability Analysis of a Tunnel Design with RELY Reliability Analysis of a Tunnel Design with RELY W.Betz, I. Papaioannou, M. Eckl, H. Heidkamp, D.Straub Reliability-based structural design Eurocode 0 partial safety factors probabilistic techniques decrease

More information

Modeling issues of the FRP detachment phenomenon

Modeling issues of the FRP detachment phenomenon Modeling issues of the FRP detachment phenomenon Elio Sacco in collaboration with: J. Toti, S. Marfia and E. Grande 1 Dipartimento di ngegneria Civile e Meccanica Università di Cassino e del Lazio Meridionale

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

Robustness - Offshore Wind Energy Converters

Robustness - Offshore Wind Energy Converters Robustness of Structures - February 4-5, 2008, Zurich 1-14 Robustness - Offshore Wind Energy Converters Sebastian Thöns Risk and Safety, Institute of Structural Engineering (IBK) ETH Zurich Division VII.2:

More information

SENSITIVITY ANALYSIS OF LATERAL BUCKLING STABILITY PROBLEMS OF HOT-ROLLED STEEL BEAMS

SENSITIVITY ANALYSIS OF LATERAL BUCKLING STABILITY PROBLEMS OF HOT-ROLLED STEEL BEAMS 2005/2 PAGES 9 14 RECEIVED 18.10.2004 ACCEPTED 18.4.2005 Z. KALA, J. KALA SENSITIVITY ANALYSIS OF LATERAL BUCKLING STABILITY PROBLEMS OF HOT-ROLLED STEEL BEAMS ABSTRACT Doc. Ing. Zdeněk KALA, PhD. Brno

More information

Estimating Risk of Failure of Engineering Structures using Predictive Likelihood

Estimating Risk of Failure of Engineering Structures using Predictive Likelihood Dublin Institute of Technology ARROW@DIT Conference papers School of Civil and Structural Engineering 2006-1 Estimating Risk of Failure of Engineering Structures using Predictive Likelihood Colin C. Caprani

More information

THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN , 2012

THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN , 2012 THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN 1221-4566, 212 GLOBAL AND LOCAL STRANGTH ASSESSMENT, UNDER EQUIVALENT QUASI-STATIC HEAD WAVE LOADS,

More information