Sample Size. Vorasith Sornsrivichai, MD., FETP Epidemiology Unit, Faculty of Medicine Prince of Songkla University

Size: px
Start display at page:

Download "Sample Size. Vorasith Sornsrivichai, MD., FETP Epidemiology Unit, Faculty of Medicine Prince of Songkla University"

Transcription

1 Sample Size Vorasith Sornsrivichai, MD., FETP Epidemiology Unit, Faculty of Medicine Prince of Songkla University

2 All nature is but art, unknown to thee; All chance, direction, which thou canst not see; All discord, harmony not understood; All partial evil, universal good; And spite of pride, in erring reason's spite, One truth is clear, Whatever is, is right ~ Alexander Pope ~

3 How Much Is Enough? Is sample size of 30 subjects enough? If I sampling 0% of population will it be OK? Can I just use all 4 patients I have? 3

4 Objectives To learn how to calculate the sample size needed to obtain a specified precision for an estimate of a parameter To learn how to calculate the sample size needed to provide a specified power for a comparative study 4

5 Outline of Presentation Review of basic principle Determination of sample size Sample size calculation 5

6 Source: 6

7 Two Types Of Study Objective Estimation: Approximation of some parameters (magnitude or difference or ratio) Critical feature is the precision of the estimation. e.g. A public health officer seeks to estimate the proportion of children in the district receiving vaccinations. Hypothesis testing: Examination of proposed assumption Critical feature is the power of the study e.g. Is drug B more effective than drug A? 7

8 Determinants of The Sample Size Effect size Level of significance Power of the test Variation of the outcome 8

9 Other Determinants of The Sample Size Research questions and objective of the study Defining the population and the population size Type of outcome e.g. dichotomous, continuous Outcome measurement e.g. single, repeated measurements Sampling technique e.g. cluster sampling Type of statistical methods Type of analysis e.g. subgroup analysis Non-responses or lost to follow-up 9

10 Effect Size RR, OR, RD, etc. The higher the effect size, the lower the sample size needed 0

11 To err is human (, to forgive divine) ~ Alexander Pope~

12 Errors Study Truth Results H o is not true H 0 is true β Reject H o Power α Type I error Fail to reject H 0 β Type II error α Confidence

13 Significance False detection of difference/association by chance or Type I error α Statistical significance VS Epidemiological & Clinical significance 3

14 Power of the test β Power (- ) is the probability of rejecting H o when H o is not true H a H 0 Study number Power = 9/0 *00 = 90% 4

15 Knowledge is an unending adventure at the edge of uncertainty. ~ Jacob Bronowski ~

16 Uncertainty Variability in the population: not all samples would give exactly the same finding, i.e., there is uncertainty in making an inference However, the uncertainty can usually be quantified Uncertainty can be reduced by using a sufficiently large sample 6

17 Population Sample n = n = 5 n = 0

18 Central Limit Theorem If samples are drawn from a non-normally distributed parent population, the frequency distribution of the population of sample means approaches the normal distribution as the sample size increases. Population Sample n = n = 5 n = 0

19 Sampling Distributions As the sample size increases: the sample means tend to be distributed normally the width of the distribution decreases As the number of samples increases: the mean of the distribution of sample means tends to the mean of the population The above is also true for sample estimates of population proportion as long as the proportion is not too close to 0 or 9

20 Standard Normal Distribution X-3SE X-SE X-SE X X+SE X+SE X+3SE 0

21 Estimation Big n Small n Narrow SE Wide SE Distribution of estimate of the means from many samples

22 Estimation (large sample) Range of population values of X bar compatible with our study value d d Study value of X bar d = precision Sampling distributions from populations with various values of X bar

23 Estimation (small sample) Range of population values of X bar compatible with our study value d d Study value of X bar d = precision Sampling distributions from populations with various values of X bar 3

24 Population μ~50 cm. σ~ 5 cm. Population μ~50 cm. σ~ 0 cm. x Estimate of mean height α = 0.05 d=3 cm. x n= n=45 d d X Distribution of means of hypothetical samples

25 Population N= Population N= σ σ σ σ Data Sample A n=00 μ SD A ~ σ Data Sample B n=5 μ SD B ~ σ Estimation Uncertainty in measure sample A X A SE A =SD A / 00 Estimation Uncertainty in measure sample B X B SE B =SD B / 5 X X 5

26 Sample Size Calculation

27 Sample Size Calculation Available tables Nomogram Manual calculation Software: EpiInfo, STATA, R, OpenEpi 7

28 Available Table e.g. sample size to estimate P within d absolute percentage points with 99% confidence 8

29 Nomogram 9

30 OpenEpi Open Source Epidemiologic Statistics for Public Health

31 3

32 3

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 4

42 4

43 43

44 44

45 45

46 46

47 47

48 48

49 Considerations The appropriate sample size may not be the same for all objectives in a study. Therefore calculate for all objectives then decide All sample size calculations considered here and in most computer programs assume simple random sampling Other sampling method e.g. cluster sampling may require adjustments 49

50 Considerations Calculated sample size is the minimum sample needed Add more (~0 30%) for non-response and lost to follow up E.g. suppose 0% of subjects in the study are expected to refuse to participate or to drop out before the study ends. The total number of n/(-0.) eligible subjects would have to be approached in the first instance 50

51 Inappropriate Sample Size Too SMALL wide CI unable to detect a real effect may miss important association Too BIG waste of reource (effort, time, money) even very small effects become statistical significant may be unethical 5

52 Although our intellect always longs for clarity and certainty, our nature often finds uncertainty fascinating. ~ Karl von Clausewitz ~

53 Sample Size Calculation One sample Estimating: proportion, mean Hypothesis testing: proportion, mean Two sample Estimating: difference between two proportions, two means Hypothesis testing: difference between two proportions, two means 53

54 Sample size calculations for estimation are based on : d = Z α / SE d /α In each case, we just put in the appropriate expression for standard error e.g. SD/ n 54

55 Estimating A Population Mean d = Z α / SE d = Z σ α/ n SE = σ n n = Z α/ σ d 55

56 Example (Estimating a population mean) An estimate is desired of the average retail price of 0 tablets of a tranquilizer. It is required to be within 0 % of the true average price with 95 %CI. The SD in price was estimated as 85 %. How many pharmacies should be randomly selected? n = Z α / d σ n = (.96) (0.85) /(0.) ~78 56

57 Estimating A Population Proportion d = Z α / SE SE = p( n p) n = Z α/ p( d p) 57

58 Example (Estimating a population proportion) A district public health officer seeks to estimate the proportion of children in the district receiving appropriate childhood vaccinations. How many children must be studied if the resulting estimate is to fall within 0 % of the true proportion with 95% CI. n = Z p( - p )/d α / n = (.96) (0.5)/(0.) =

59 Parameter Estimation The sample selected will be largest when P = 0.5 When one has no idea what the level of P is in the population, choosing 0.5 for P will always provide enough observations. P P(-P)

60 α Hypothesis Testing mean of B - mean of A Δ * Δ is minimum effect worth detecting β * = ( Δ Z Δ= ( Z a/ a/ SE SE 0 0 ) + ( Z ) = ( Z β β SE) SE) 60

61 Basic Equations Underlying Sample Size d Z = α / SE Δ = Δ = Z α / SE( Z SE If SE 0 = SE = SE then α/ Z β Z ) β SE a b Most sample size calculations for estimation and hypothesis testing are based on these equations. 6

62 How to Choose Δ Δ should be the minimum difference of clinical significance, or the minimum difference worth detecting. Previously reported differences may not be suitable for your study. It may be useful to consider the standardized effect size (ε = Δ/σ) when the outcome is a continuous variable. 6

63 Estimating The Difference Between Two Means d = Z α / n = SE ( + r ) If n n Z d SE α/ = SE = σ + n = σ σ n r + then n r n 63

64 Example 3 (Estimating the difference between two means) Nutritionists wish to estimate the difference in caloric intake at lunch between children in a school offering hot lunches and children in a school which does not. From other studies, they estimate that the SD of caloric intake among schoolchildren is 75 calories, and they wish to make their estimate to within 0 calories of the true difference with 95% confidence. (Equal numbers in each group) n [ + / r] Z = d n = * (.96) * 75 / 0 = ~ 09 (Note that r = n /n ) α / σ 64

65 65 Estimating the difference between two proportions r n p p n p p SE ) ( ) ( + = ) ( ) ( d r p p p p Z n + = α/ SE Z d = α / + = n p r p p p Z d ) ( ) ( α

66 Example 4 (Estimating the difference between two proportions) It is desired to estimate a risk difference in two industrial groups. How large a sample should be selected in each group for the estimate to be within 5 percentage points of the true difference with 95% confidence. It was observed that P = 0.4, P = 0.3. (Equal numbers in each group) Z / [ p ( p ) p ( p n α + = d ) / r] n =.96 [(0.40)(0.60) + (0.3)(0.68)]/(0.05) ~

67 Testing the hypothesis of a difference between two means ( ) Z Δ = SE + Z α / β Δ = n + n r SE = σ ( ) Z Z - + α β n σ + n r Δ = + nr r ( Z Z ) -α + β σ n = ( + r ) ( Z + ) α/ Z β Δ σ 67

68 Example 5 (Testing the hypothesis of a difference between two means) A study is being designed to measure the effect, on systolic blood pressure, of lowering sodium in the diet. From a pilot study it is observed that the SD of SBP in a community with high sodium diet is mm Hg, while that in a group with low sodium diet is 0.3 mm Hg. If alpha is 0.05 and beta is 0.0, how large a sample from each community should be selected in order to detect a mm Hg difference in blood pressure between the communities? (Equal group size and use pooled variance) n = ( + / r)( Z α / + Z β ) Δ n = [ ] (5.05) / = ~ 657 σ 68

69 69 Testing the hypothesis of a difference between two proportions) Ho true: Ho not true: 0 SE Z SE Z + = Δ β α / / ] [ / ) ( ) ( ) / )( ( Δ = r p p p p Z r p p Z n β α n r p p SE + = ) ( 0 ( ) ( ) r rp p p + + = rn p p n p p SE ) ( ) ( + = a n r p p p p Z n r p p Z ) ( ) ( ) )( ( = Δ β

70 Example 6 (Testing the hypothesis of a difference between two proportions) A case-control study is to be conducted with a case:control ratio of :. Exposure to the potential risk factor of interest among controls is expected to be 0%. How many cases and controls will be needed to detect an odds ratio of at least.0, at a significance level of 0.05 with a power of 80 percent? (Let n=number of cases, and n = number of controls) n = [ Z α / p( p)( + / r) + Z β p( p) + p ( p ) / r ] Δ p = ( p + rp ) /( + r) n [ ( 0.43)( + / ) ( 0.33) + 0.0( 0.0) / ] = n = 3 and n = * 3 = 64 ( ) 70

71 7 Power Determination Power = - =-function(a)=-p(z ) Continuous data (n t =n c ) (n t n c ) c t c t t c c t c n n n n Z A n Z A / ) ( / / / σ μ μ σ μ μ α α + = = β β

72 Exercise To compare a new antihypertensive drug with the standard treatment (n=50 in each group). The difference in BP treated with these two drugs was 4 mmhg. The variance was 40 mmhg. The significant level was 0.5. The researcher found no difference in these two drugs. Do you agree with this conclusion? A= 4.96 = (40 ) /50 Power = -function(a) =-f( ) = =0.835 Power = 83.5% 7

73 73 Power Determination Discrete data and proportion n t =n c n t n c c t t c c c t c t c c t t c c t c c n P Q n P Q P P n PQ n PQ Z A n P Q P Q P P n PQ Z A / ) / / / / ) / + + = + = α α P Q P P P c t = + = ) ( /

74 Exercise To compare between kinds of anti UV cream, A and B. Seventy five of 00 patients treated with cream A whereas 65 out of 00 patients treated with cream B improved. The researcher concluded that these two kinds of cream were not different at 5% of level of significance. Do you agree with this conclusion? A =.645 (.70 )(.30 ) / [(0.65)(0.35) + (0.75)(0.5)] /00 = 0.06 Power = - f(0.06) = = 0.54 ~54% 74

75 Interpretations Of Negative Findings - Power Calculations For a hypothesis-testing study which fails to reject the null hypothesis, it is useful to conduct a posthoc power calculation. We can use a rearrangement of the relevant sample-size equation. This should be done using the clinically relevant difference for the Δ of the equation (not the difference found in the study). 75

76 Power depends on: β the size of difference the treatment makes the rates of events among control patients the alpha level in use β the number of patients in the trial Nonrejection region Rejection region 76

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT)

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT) . Welcome! Webinar Biostatistics: sample size & power Thursday, April 26, 12:30 1:30 pm (NDT) Get started now: Please check if your speakers are working and mute your audio. Please use the chat box to

More information

Answer keys for Assignment 10: Measurement of study variables (The correct answer is underlined in bold text)

Answer keys for Assignment 10: Measurement of study variables (The correct answer is underlined in bold text) Answer keys for Assignment 10: Measurement of study variables (The correct answer is underlined in bold text) 1. A quick and easy indicator of dispersion is a. Arithmetic mean b. Variance c. Standard deviation

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Sample Size Calculations

Sample Size Calculations Sample Size Calculations Analyses rely on means rather than individual values Means are more precise Precision measured by σ n So precision depends on n This can be used, directly or indirectly, as a basis

More information

Sample Size Determination

Sample Size Determination Sample Size Determination 018 The number of subjects in a clinical study should always be large enough to provide a reliable answer to the question(s addressed. The sample size is usually determined by

More information

Power and Sample Sizes in RCTs Cape Town 2007

Power and Sample Sizes in RCTs Cape Town 2007 Power and Sample Sizes in RCTs Cape Town 2007 Kenneth F. Schulz, PhD Power Compare No statistically significant difference between treatments (p>.05) With The decrease in death rate using the new treatment

More information

Purposes of Data Analysis. Variables and Samples. Parameters and Statistics. Part 1: Probability Distributions

Purposes of Data Analysis. Variables and Samples. Parameters and Statistics. Part 1: Probability Distributions Part 1: Probability Distributions Purposes of Data Analysis True Distributions or Relationships in the Earths System Probability Distribution Normal Distribution Student-t Distribution Chi Square Distribution

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Chapter Six: Two Independent Samples Methods 1/51

Chapter Six: Two Independent Samples Methods 1/51 Chapter Six: Two Independent Samples Methods 1/51 6.3 Methods Related To Differences Between Proportions 2/51 Test For A Difference Between Proportions:Introduction Suppose a sampling distribution were

More information

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) B.H. Robbins Scholars Series June 23, 2010 1 / 29 Outline Z-test χ 2 -test Confidence Interval Sample size and power Relative effect

More information

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Fundamentals to Biostatistics Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Statistics collection, analysis, interpretation of data development of new

More information

Medical statistics part I, autumn 2010: One sample test of hypothesis

Medical statistics part I, autumn 2010: One sample test of hypothesis Medical statistics part I, autumn 2010: One sample test of hypothesis Eirik Skogvoll Consultant/ Professor Faculty of Medicine Dept. of Anaesthesiology and Emergency Medicine 1 What is a hypothesis test?

More information

Lecturer: Dr. Adote Anum, Dept. of Psychology Contact Information:

Lecturer: Dr. Adote Anum, Dept. of Psychology Contact Information: Lecturer: Dr. Adote Anum, Dept. of Psychology Contact Information: aanum@ug.edu.gh College of Education School of Continuing and Distance Education 2014/2015 2016/2017 Session Overview In this Session

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 3: Bivariate association : Categorical variables Proportion in one group One group is measured one time: z test Use the z distribution as an approximation to the binomial

More information

Outline. PubH 5450 Biostatistics I Prof. Carlin. Confidence Interval for the Mean. Part I. Reviews

Outline. PubH 5450 Biostatistics I Prof. Carlin. Confidence Interval for the Mean. Part I. Reviews Outline Outline PubH 5450 Biostatistics I Prof. Carlin Lecture 11 Confidence Interval for the Mean Known σ (population standard deviation): Part I Reviews σ x ± z 1 α/2 n Small n, normal population. Large

More information

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY?

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? TUTORIAL ON SAMPLE SIZE AND POWER CALCULATIONS FOR INEQUALITY TESTS. John Zavrakidis j.zavrakidis@nki.nl May 28, 2018 J.Zavrakidis Sample and

More information

Name: Biostatistics 1 st year Comprehensive Examination: Applied in-class exam. June 8 th, 2016: 9am to 1pm

Name: Biostatistics 1 st year Comprehensive Examination: Applied in-class exam. June 8 th, 2016: 9am to 1pm Name: Biostatistics 1 st year Comprehensive Examination: Applied in-class exam June 8 th, 2016: 9am to 1pm Instructions: 1. This is exam is to be completed independently. Do not discuss your work with

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

a Sample By:Dr.Hoseyn Falahzadeh 1

a Sample By:Dr.Hoseyn Falahzadeh 1 In the name of God Determining ee the esize eof a Sample By:Dr.Hoseyn Falahzadeh 1 Sample Accuracy Sample accuracy: refers to how close a random sample s statistic is to the true population s value it

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Many natural processes can be fit to a Poisson distribution

Many natural processes can be fit to a Poisson distribution BE.104 Spring Biostatistics: Poisson Analyses and Power J. L. Sherley Outline 1) Poisson analyses 2) Power What is a Poisson process? Rare events Values are observational (yes or no) Random distributed

More information

Descriptive Statistics-I. Dr Mahmoud Alhussami

Descriptive Statistics-I. Dr Mahmoud Alhussami Descriptive Statistics-I Dr Mahmoud Alhussami Biostatistics What is the biostatistics? A branch of applied math. that deals with collecting, organizing and interpreting data using well-defined procedures.

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

Acknowledgements. Outline. Marie Diener-West. ICTR Leadership / Team INTRODUCTION TO CLINICAL RESEARCH. Introduction to Linear Regression

Acknowledgements. Outline. Marie Diener-West. ICTR Leadership / Team INTRODUCTION TO CLINICAL RESEARCH. Introduction to Linear Regression INTRODUCTION TO CLINICAL RESEARCH Introduction to Linear Regression Karen Bandeen-Roche, Ph.D. July 17, 2012 Acknowledgements Marie Diener-West Rick Thompson ICTR Leadership / Team JHU Intro to Clinical

More information

Two Sample Problems. Two sample problems

Two Sample Problems. Two sample problems Two Sample Problems Two sample problems The goal of inference is to compare the responses in two groups. Each group is a sample from a different population. The responses in each group are independent

More information

Making Inferences About Parameters

Making Inferences About Parameters Making Inferences About Parameters Parametric statistical inference may take the form of: 1. Estimation: on the basis of sample data we estimate the value of some parameter of the population from which

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Sampling Distribution of the Mean & Hypothesis Testing Remember sampling? Sampling Part 1 of definition Selecting a subset of the population to create a sample Generally random sampling

More information

STAT Chapter 8: Hypothesis Tests

STAT Chapter 8: Hypothesis Tests STAT 515 -- Chapter 8: Hypothesis Tests CIs are possibly the most useful forms of inference because they give a range of reasonable values for a parameter. But sometimes we want to know whether one particular

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Hypothesis Testing with Z and T

Hypothesis Testing with Z and T Chapter Eight Hypothesis Testing with Z and T Introduction to Hypothesis Testing P Values Critical Values Within-Participants Designs Between-Participants Designs Hypothesis Testing An alternate hypothesis

More information

Lecture 3: Measures of effect: Risk Difference Attributable Fraction Risk Ratio and Odds Ratio

Lecture 3: Measures of effect: Risk Difference Attributable Fraction Risk Ratio and Odds Ratio Lecture 3: Measures of effect: Risk Difference Attributable Fraction Risk Ratio and Odds Ratio Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK March 3-5,

More information

Power and nonparametric methods Basic statistics for experimental researchersrs 2017

Power and nonparametric methods Basic statistics for experimental researchersrs 2017 Faculty of Health Sciences Outline Power and nonparametric methods Basic statistics for experimental researchersrs 2017 Statistical power Julie Lyng Forman Department of Biostatistics, University of Copenhagen

More information

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval Epidemiology 9509 Principles of Biostatistics Chapter 10 - Inferences about John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered 1. differences in

More information

Tutorial 2: Power and Sample Size for the Paired Sample t-test

Tutorial 2: Power and Sample Size for the Paired Sample t-test Tutorial 2: Power and Sample Size for the Paired Sample t-test Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function of sample size, variability,

More information

10.1. Comparing Two Proportions. Section 10.1

10.1. Comparing Two Proportions. Section 10.1 /6/04 0. Comparing Two Proportions Sectio0. Comparing Two Proportions After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Tutorial 3: Power and Sample Size for the Two-sample t-test with Equal Variances. Acknowledgements:

Tutorial 3: Power and Sample Size for the Two-sample t-test with Equal Variances. Acknowledgements: Tutorial 3: Power and Sample Size for the Two-sample t-test with Equal Variances Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck Acknowledgements: The project was supported in

More information

BINF 702 SPRING Chapter 8 Hypothesis Testing: Two-Sample Inference. BINF702 SPRING 2014 Chapter 8 Hypothesis Testing: Two- Sample Inference 1

BINF 702 SPRING Chapter 8 Hypothesis Testing: Two-Sample Inference. BINF702 SPRING 2014 Chapter 8 Hypothesis Testing: Two- Sample Inference 1 BINF 702 SPRING 2014 Chapter 8 Hypothesis Testing: Two-Sample Inference Two- Sample Inference 1 A Poster Child for two-sample hypothesis testing Ex 8.1 Obstetrics In the birthweight data in Example 7.2,

More information

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto.

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto. Introduction to Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca September 18, 2014 38-1 : a review 38-2 Evidence Ideal: to advance the knowledge-base of clinical medicine,

More information

Hypothesis testing for µ:

Hypothesis testing for µ: University of California, Los Angeles Department of Statistics Statistics 10 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information

Sampling and Sample Size. Shawn Cole Harvard Business School

Sampling and Sample Size. Shawn Cole Harvard Business School Sampling and Sample Size Shawn Cole Harvard Business School Calculating Sample Size Effect Size Power Significance Level Variance ICC EffectSize 2 ( ) 1 σ = t( 1 κ ) + tα * * 1+ ρ( m 1) P N ( 1 P) Proportion

More information

Tutorial 1: Power and Sample Size for the One-sample t-test. Acknowledgements:

Tutorial 1: Power and Sample Size for the One-sample t-test. Acknowledgements: Tutorial 1: Power and Sample Size for the One-sample t-test Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck Acknowledgements: The project was supported in large part by the National

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups. Acknowledgements:

Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups. Acknowledgements: Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck Acknowledgements:

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence interval to compare two proportions.

DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence interval to compare two proportions. Section 0. Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Power and Sample Size (StatPrimer Draft)

Power and Sample Size (StatPrimer Draft) Power and Sample Size (StatPrimer Draft) To achieve meaningful results, statistical studies must be carefully planned and designed. Study design has many aspects. Here s just a sampling of questions you

More information

Unit 22 deals with statistical inference, which uses the concepts of probability to explain

Unit 22 deals with statistical inference, which uses the concepts of probability to explain UNIT 22 STATISTICAL INFERENCE: TESTS OF HYPOTHESIS Structure 22.1 Introduction 22.2 Objectives 22.3 Statistical Inference 22.4 Cases 22.5 Tests of Significance 22.6 Conclusion 22.7 Further Reading 22.1

More information

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function

More information

Basic Statistics and Probability Chapter 9: Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses

Basic Statistics and Probability Chapter 9: Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses Basic Statistics and Probability Chapter 9: Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses Identifying the Target Parameter Comparing Two Population Means: Independent Sampling

More information

Study Design: Sample Size Calculation & Power Analysis

Study Design: Sample Size Calculation & Power Analysis Study Design: Sample Size Calculation & Power Analysis RCMAR/CHIME/EXPORT April 21, 2008 Honghu Liu, Ph.D. Contents Background Common Designs Examples Computer Software Summary & Discussion Background

More information

Outline. Practical Point Pattern Analysis. David Harvey s Critiques. Peter Gould s Critiques. Global vs. Local. Problems of PPA in Real World

Outline. Practical Point Pattern Analysis. David Harvey s Critiques. Peter Gould s Critiques. Global vs. Local. Problems of PPA in Real World Outline Practical Point Pattern Analysis Critiques of Spatial Statistical Methods Point pattern analysis versus cluster detection Cluster detection techniques Extensions to point pattern measures Multiple

More information

Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit. Air Academy Associates

Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit. Air Academy Associates Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit Mark Kiemele Air Academy Associates mkiemele@airacad.com ITEA 010 Symposium Glendale, AZ 13 September 010 INTRODUCTIONS

More information

AP Statistics Ch 12 Inference for Proportions

AP Statistics Ch 12 Inference for Proportions Ch 12.1 Inference for a Population Proportion Conditions for Inference The statistic that estimates the parameter p (population proportion) is the sample proportion p ˆ. p ˆ = Count of successes in the

More information

(right tailed) or minus Z α. (left-tailed). For a two-tailed test the critical Z value is going to be.

(right tailed) or minus Z α. (left-tailed). For a two-tailed test the critical Z value is going to be. More Power Stuff What is the statistical power of a hypothesis test? Statistical power is the probability of rejecting the null conditional on the null being false. In mathematical terms it is ( reject

More information

Power of a test. Hypothesis testing

Power of a test. Hypothesis testing Hypothesis testing February 11, 2014 Debdeep Pati Power of a test 1. Assuming standard deviation is known. Calculate power based on one-sample z test. A new drug is proposed for people with high intraocular

More information

Statistics for IT Managers

Statistics for IT Managers Statistics for IT Managers 95-796, Fall 2012 Module 2: Hypothesis Testing and Statistical Inference (5 lectures) Reading: Statistics for Business and Economics, Ch. 5-7 Confidence intervals Given the sample

More information

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Lecture 9 Two-Sample Test Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Computer exam 1 18 Histogram 14 Frequency 9 5 0 75 83.33333333

More information

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: CHAPTER 9, 10 Hypothesis Testing Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: The person is guilty. The person is innocent. To

More information

Power and the computation of sample size

Power and the computation of sample size 9 Power and the computation of sample size A statistical test will not be able to detect a true difference if the sample size is too small compared with the magnitude of the difference. When designing

More information

Chapter 9. Hypothesis testing. 9.1 Introduction

Chapter 9. Hypothesis testing. 9.1 Introduction Chapter 9 Hypothesis testing 9.1 Introduction Confidence intervals are one of the two most common types of statistical inference. Use them when our goal is to estimate a population parameter. The second

More information

ANOVA: Comparing More Than Two Means

ANOVA: Comparing More Than Two Means ANOVA: Comparing More Than Two Means Chapter 11 Cathy Poliak, Ph.D. cathy@math.uh.edu Office Fleming 11c Department of Mathematics University of Houston Lecture 25-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

CHAPTER 10 Comparing Two Populations or Groups

CHAPTER 10 Comparing Two Populations or Groups CHAPTER 10 Comparing Two Populations or Groups 10.1 Comparing Two Proportions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Comparing Two Proportions

More information

Chapters 4-6: Inference with two samples Read sections 4.2.5, 5.2, 5.3, 6.2

Chapters 4-6: Inference with two samples Read sections 4.2.5, 5.2, 5.3, 6.2 Chapters 4-6: Inference with two samples Read sections 45, 5, 53, 6 COMPARING TWO POPULATION MEANS When presented with two samples that you wish to compare, there are two possibilities: I independent samples

More information

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke BIOL 51A - Biostatistics 1 1 Lecture 1: Intro to Biostatistics Smoking: hazardous? FEV (l) 1 2 3 4 5 No Yes Smoke BIOL 51A - Biostatistics 1 2 Box Plot a.k.a box-and-whisker diagram or candlestick chart

More information

Inference for Distributions Inference for the Mean of a Population

Inference for Distributions Inference for the Mean of a Population Inference for Distributions Inference for the Mean of a Population PBS Chapter 7.1 009 W.H Freeman and Company Objectives (PBS Chapter 7.1) Inference for the mean of a population The t distributions The

More information

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies.

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies. I. T or F. (1 points each) 1. The χ -distribution is symmetric. F. The χ may be negative, zero, or positive F 3. The chi-square distribution is skewed to the right. T 4. The observed frequency of a cell

More information

Power of a hypothesis test

Power of a hypothesis test Power of a hypothesis test Scenario #1 Scenario #2 H 0 is true H 0 is not true test rejects H 0 type I error test rejects H 0 OK test does not reject H 0 OK test does not reject H 0 type II error Power

More information

Originality in the Arts and Sciences: Lecture 2: Probability and Statistics

Originality in the Arts and Sciences: Lecture 2: Probability and Statistics Originality in the Arts and Sciences: Lecture 2: Probability and Statistics Let s face it. Statistics has a really bad reputation. Why? 1. It is boring. 2. It doesn t make a lot of sense. Actually, the

More information

BIOS 312: Precision of Statistical Inference

BIOS 312: Precision of Statistical Inference and Power/Sample Size and Standard Errors BIOS 312: of Statistical Inference Chris Slaughter Department of Biostatistics, Vanderbilt University School of Medicine January 3, 2013 Outline Overview and Power/Sample

More information

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1 PHP2510: Principles of Biostatistics & Data Analysis Lecture X: Hypothesis testing PHP 2510 Lec 10: Hypothesis testing 1 In previous lectures we have encountered problems of estimating an unknown population

More information

Meta-analysis of epidemiological dose-response studies

Meta-analysis of epidemiological dose-response studies Meta-analysis of epidemiological dose-response studies Nicola Orsini 2nd Italian Stata Users Group meeting October 10-11, 2005 Institute Environmental Medicine, Karolinska Institutet Rino Bellocco Dept.

More information

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!! (preferred!)!!

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!!  (preferred!)!! Probability theory and inference statistics Dr. Paola Grosso SNE research group p.grosso@uva.nl paola.grosso@os3.nl (preferred) Roadmap Lecture 1: Monday Sep. 22nd Collecting data Presenting data Descriptive

More information

Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Testing. Confidence intervals on mean. CL = x ± t * CL1- = exp

Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Testing. Confidence intervals on mean. CL = x ± t * CL1- = exp Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Lecture Notes 1 Confidence intervals on mean Normal Distribution CL = x ± t * 1-α 1- α,n-1 s n Log-Normal Distribution CL = exp 1-α CL1-

More information

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power.

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power. Announcements Announcements Unit 3: Foundations for inference Lecture 3:, significance levels, sample size, and power Statistics 101 Mine Çetinkaya-Rundel October 1, 2013 Project proposal due 5pm on Friday,

More information

ph: 5.2, 5.6, 5.8, 6.4, 6.5, 6.8, 6.9, 7.2, 7.5 sample mean = sample sd = sample size, n = 9

ph: 5.2, 5.6, 5.8, 6.4, 6.5, 6.8, 6.9, 7.2, 7.5 sample mean = sample sd = sample size, n = 9 Name: SOLUTIONS Final Part 1 (100 pts) and Final Part 2 (120 pts) For all of the questions below, please show enough work that it is completely clear how your final solution was derived. Sit at least one

More information

Difference Between Pair Differences v. 2 Samples

Difference Between Pair Differences v. 2 Samples 1 Sectio1.1 Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Power Analysis. Introduction to Power

Power Analysis. Introduction to Power Power Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning When testing a specific null hypothesis (H 0 ), we

More information

Sample Size and Power Considerations for Longitudinal Studies

Sample Size and Power Considerations for Longitudinal Studies Sample Size and Power Considerations for Longitudinal Studies Outline Quantities required to determine the sample size in longitudinal studies Review of type I error, type II error, and power For continuous

More information

HYPOTHESIS TESTING: SINGLE MEAN, NORMAL DISTRIBUTION (Z-TEST)

HYPOTHESIS TESTING: SINGLE MEAN, NORMAL DISTRIBUTION (Z-TEST) HYPOTHESIS TESTING: SINGLE MEAN, NORMAL DISTRIBUTION (Z-TEST) In Binomial Hypothesis Testing researchers generally ignore the actual numbers that are obtained on their measure. The Binomial Test for whether

More information

CHAPTER 9: HYPOTHESIS TESTING

CHAPTER 9: HYPOTHESIS TESTING CHAPTER 9: HYPOTHESIS TESTING THE SECOND LAST EXAMPLE CLEARLY ILLUSTRATES THAT THERE IS ONE IMPORTANT ISSUE WE NEED TO EXPLORE: IS THERE (IN OUR TWO SAMPLES) SUFFICIENT STATISTICAL EVIDENCE TO CONCLUDE

More information

Math 124: Modules Overall Goal. Point Estimations. Interval Estimation. Math 124: Modules Overall Goal.

Math 124: Modules Overall Goal. Point Estimations. Interval Estimation. Math 124: Modules Overall Goal. What we will do today s David Meredith Department of Mathematics San Francisco State University October 22, 2009 s 1 2 s 3 What is a? Decision support Political decisions s s Goal of statistics: optimize

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing Page Title PSY 305 Module 3 Introduction to Hypothesis Testing Z-tests Five steps in hypothesis testing State the research and null hypothesis Determine characteristics of comparison distribution Five

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

Two sample hypothesis testing

Two sample hypothesis testing Statistics February 26, 2014 Debdeep Pati Two sample hypothesis testing 1. Suppose we want to study the relationship between use of oral contraceptives (OC) and level of blood pressure (BP) in women. 2.

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design Chapter 170 Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design Introduction Senn (2002) defines a cross-over design as one in which each subject receives all treatments and the objective

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information