Generalized Transfer Component Analysis for Mismatched Jpeg Steganalysis

Size: px
Start display at page:

Download "Generalized Transfer Component Analysis for Mismatched Jpeg Steganalysis"

Transcription

1 Generalized Transfer Component Analysis for Mismatched Jpeg Steganalysis Xiaofeng Li 1, Xiangwei Kong 1, Bo Wang 1, Yanqing Guo 1,Xingang You 2 1 School of Information and Communication Engineering Dalian University of Technology, Dalian, , China 2 Beijing Institute of Electronic Technology and Application Beijing, , China 1

2 Contents 1 Motivation of Our Work 2 Proposed Method 3 Experiments and Results 4 Summary and Future Work 2

3 Contents 1 Motivation of Our Work 2 Proposed Method 3 Experiments and Results 4 Summary and Future Work 3

4 Motivation of Our Work Battle of steganography and steganalysis Steganography embed message signal into cover images to get stego images; message undetectable in covert communication steganalysis features sensitive to change due to embedding build decision model using machine learning recognize stego images from plain cover images Steganalysis seem to win the battle recently [Kodovsky and Fridrich 12]: Rich model perform well to detect six modern steganographic schemes at low embedding rate. 4

5 Motivation of Our Work Steganalysis Really Win the Battle? Success of state of the art steganalysis methods rely on having prior knowledge of steganography to build the training set. cover images, embedding algorithm is known. Matched steganalysis train set and test set: matched cover images matched embedding algorithm laboratory Mismatched steganalysis train set and test set: mismatched cover images mismatched embedding algorithm real world 5

6 Motivation of Our Work Steganalysis Really Win the battle? [1] [Kodovsky and Fridrich 12]:Steganalysis of jpeg images using rich models [2] [Tomas Pevny and Jessica Fridrich 07]:Merging markovand dct features for multi-class jpeg steganalysis 6

7 Motivation of Our Work New Challenge in Steganalysis State-of-the-art steganalysis method could not be used effectively in the real world. Moving steganalysis from the laboratory to the real world. [Andrew D. Ker, Patrick Bas, Rainer Bohme, Remi Cogranne, Scott Craver Tomas Filler, Jessica Fridrich, Tomas Pevny 13]: Moving steganography And steganalysis from the laboratory to the real world. laboratory matched How? Real world mismatched 7

8 Related Work Motivation of Our Work [Ivans Lubenko, Andrew D. Ker 13]: Steganalysis with Mismatched Covers: Do Simple Classifiers Help? Large data large samples diverse enough rich features Simple classifier Ensemble Fisher Linear Discriminant Online Ensemble Average Perceptron general model Limitation: It costs much labor to collect images for such a training set. Can we train a model robust to mismatched steganalysis using a small set of samples? only a single set, not diverse, small number. 8

9 Contents 1 Motivation of Our Work 2 Proposed Method 3 Experiments and Results 4 Summary and Future Work 9

10 Main idea Proposed Method Train set: Source domain D = {( x, y ), i = 1, 2,, N} ~ P ( X, Y ) S i i S Test set: Target domain D = {( x,?), i = 1, 2,, M} ~ P ( X, Y ) T i T The two distributions are not the same! The two distributions are similar! 10

11 Proposed Method domain adaptation & transfer learning For Mismatch in other area: Natural Language Processing Object recognition Ex. [J. Blitzer et al EMNLP 2006] Ex. [R. Gopalan et al ICCV 2011] Video analysis Text classification Ex. [Jeff Donahue et al CVPR 2013] Ex. [Pan et al IEEE Tran-NN 2011] domain adaptation & transfer learning Learning a shared representation Assumption: a latent feature space exists in which classification hypotheses fit both domains. min P ( f ( X ), Y )- P ( f ( X ), Y ) f S T 11

12 Proposed Method Main idea Such a latent feature space leads to loss of some information, and may not be sensitive to embedding. According to target domain, transform source domain to an intermediate domain. Then find a latent feature space between target domain and intermediate domain. 12

13 Proposed Method Generalized Transfer Component Analysis Domain Alignment: transform source domain to intermediate domain. Learn Shared Feature Space: find a latent feature space between target and intermediate domain. Map Samples into the Feature Space Construct Classifier and Make Decision in the New Feature Space 13

14 Domain Alignment Proposed Method The aim is to transform source to an intermediate that is close to target. similar to 0-1 normalization liner transformation to hold the feature sensitivity to different categories. Objective : E ( ϕ ( X ), Y ) = E ( X, Y ) s σ ( ϕ ( X ), Y ) = σ ( X, Y ) s i i σ ( X t, yi ) ϕ ( xs ) = ( xs E ( X s, yi )) + E ( X t, yi ) σ ( X, y ) No labels in test set (target domain). We can t get the values. s t t i 14

15 Domain Alignment Proposed Method Objective : Liner transformation : E ( ψ ( X )) = E( X ) s s t σ ( ψ ( X )) = σ ( X ) s i i σ ( X t ) ϕ( xs ) = ( xs E( X s )) + E( X t ) σ ( X ) s t Train Model p ( y x ) s t t 1 i i E( Xt Y) xt p( y xt ) i p( y x ) σ 1 t i 2 i ( Xt Y) ( xt - E( Xt, Y)) p( y xt ) i p( y xt ) 15

16 Proposed Method Find shared feature space Objective: Simplify: min P ( f ( X ), Y )- P ( f ( X ), Y ) f P( X, Y ) = P( Y X ) P( X ) P ( Y X ) = P ( Y X ) s S t T min P ( f ( X))- P ( f ( X)) f S T Measure the distance of two distribution: ns nt 1 i 1 i Dis( PS ( X ), PT ( X )) = φ( xs ) φ( xt ) ns i= 1 nt i= 1 Dis( P ( X ), P ( X )) = trace( KL) S T φ (.) RHKS K. M. Borgwardt, A. Gretton, M. J. Rasch, H. P. Kriegel, B. Scholkopf, and A. J. Smola, Integrating structured biological data by kernel maximum mean discrepancy, Bioinformatics,

17 Proposed Method Find shared feature space define a non-liner kernel feature extraction matrix W as transformation: X = KW Update the new K: Update the new distance: T Dis( P ( X ), P ( X )) = trace( KL) = trace( KWW KL) S T new T T K new = X new X new = KWW K min trace( KWW T KL) W S. Pan, I. Tsang, J. Kwok, and Q.Yang, Domain adap-tation via transfer component analysis, IEEE Trans-actions on Neural Networks,

18 Proposed Method Find shared feature space To avoid the solution W=0, we add a constrain that which can preserve (or maximize) the initial data variance in the new space: T W KHKW The final kernel learning problem is then set up as: T T min tr( W W ) + µ tr( KWW KL) W = T s. t. W KHKW = I 1 W ( I µ KLK ) KHK I + (M leading eigenvectors) S. Pan, I. Tsang, J. Kwok, and Q.Yang, Domain adap-tation via transfer component analysis, IEEE Trans-actions on Neural Networks,

19 Proposed Method source domain Domain alignment intermediate domain target domain w Mapped source Mapped target Train model 19

20 Contents 1 Motivation of Our Work 2 Proposed Method 3 Experiments and Results 4 Summary and Future Work

21 Experiments and Results Experimental Setup Database: eight mismatched domains F5 Jsteg MBS A-F A-J A-M Set A: 1800 Outguess F5 A-O B-F Each domain Cover:450 Stego:450 Jsteg B-J MBS B-M Set B:1800 Outguess B-O 21

22 Experiments and Results Experimental Setup Database: eight mismatched domains Features: PF274 + our approach (GTCA) Classifier: lib-svm Approach compared with: Orig-Fea: PF-274+ lib-svm [Pevny and Fridrich 07]:Merging markov and dct features for multi-class jpeg steganalysis OEAP: JRM features + OEAP [Kodovsky and Fridrich 12]:Steganalysis of jpeg images using rich models [Ivans Lubenko, Andrew D. Ker 13]: Steganalysis with Mismatched Covers: Do Simple Classifiers Help? TCA: PF274+ TCA+ lib-svm [Pan et al 2011] Domain adap-tation via transfer component analysis 22

23 Experiments and Results Mismatched Experiment 1 Mismatched covers: different quantization table 23

24 Experiments and Results Mismatched Experiment 2 Mismatched stegos: different embedding algorithm 24

25 Experiments and Results Mismatched Experiment 3 Mismatched covers and stegos: different quantization table and different embedding algorithm 25

26 Contents 1 Motivation of Our Work 2 Proposed Method 3 Experiments and Results 4 Summary

27 Summary Mismatched steganalysis Important in real application Traditional steganalysis methods perform badly Two distributions are not the same Generalized Transfer Component Analysis (GTCA) Learn new representations to correct mismatches A small set of training samples Empirically successful New Strategy for Mismatched Steganalysis Domain adaptation, transfer learning 27

28 28

Information Hiding and Covert Communication

Information Hiding and Covert Communication Information Hiding and Covert Communication Andrew Ker adk @ comlab.ox.ac.uk Royal Society University Research Fellow Oxford University Computing Laboratory Foundations of Security Analysis and Design

More information

Complete characterization of perfectly secure stego-systems with mutually independent embedding operation

Complete characterization of perfectly secure stego-systems with mutually independent embedding operation Complete characterization of perfectly secure stego-systems with mutually independent embedding operation Tomáš Filler and Jessica Fridrich Dept. of Electrical and Computer Engineering SUNY Binghamton,

More information

Theoretical Model of the FLD Ensemble Classifier Based on Hypothesis Testing Theory

Theoretical Model of the FLD Ensemble Classifier Based on Hypothesis Testing Theory Theoretical Model of the FLD Ensemble Classifier Based on Hypothesis Testing Theory Rémi Cogranne, Member, IEEE, ICD - ROSAS - LM2S Troyes University of Technology - UMR 6281, CNRS 12, rue Marie Curie

More information

Fisher Information Determines Capacity of ε-secure Steganography

Fisher Information Determines Capacity of ε-secure Steganography Fisher Information Determines Capacity of ε-secure Steganography Tomáš Filler and Jessica Fridrich Dept. of Electrical and Computer Engineering SUNY Binghamton, New York 11th Information Hiding, Darmstadt,

More information

Quantitative Steganalysis of LSB Embedding in JPEG Domain

Quantitative Steganalysis of LSB Embedding in JPEG Domain Quantitative Steganalysis of LSB Embedding in JPEG Domain Jan Kodovský, Jessica Fridrich September 10, 2010 / ACM MM&Sec 10 1 / 17 Motivation Least Significant Bit (LSB) embedding Simplicity, high embedding

More information

The Square Root Law of Steganographic Capacity

The Square Root Law of Steganographic Capacity The Square Root Law of Steganographic Capacity ABSTRACT Andrew D. Ker Oxford University Computing Laboratory Parks Road Oxford OX1 3QD, UK adk@comlab.ox.ac.uk Jan Kodovský Dept. of Electrical and Computer

More information

Imperfect Stegosystems

Imperfect Stegosystems DISSERTATION DEFENSE Imperfect Stegosystems Asymptotic Laws and Near-Optimal Practical Constructions Tomá² Filler Dept. of Electrical and Computer Engineering SUNY Binghamton, New York April 1, 2011 2

More information

Steganalysis of Spread Spectrum Data Hiding Exploiting Cover Memory

Steganalysis of Spread Spectrum Data Hiding Exploiting Cover Memory Steganalysis of Spread Spectrum Data Hiding Exploiting Cover Memory Kenneth Sullivan, Upamanyu Madhow, Shivkumar Chandrasekaran, and B.S. Manjunath Department of Electrical and Computer Engineering University

More information

Optimal Detection of OutGuess using an Accurate Model of DCT Coefficients

Optimal Detection of OutGuess using an Accurate Model of DCT Coefficients Optimal Detection of OutGuess using an Accurate Model of DCT Coefficients Thanh Hai Thai, Rémi Cogranne, Florent Retraint ICD - ROSAS - LMS - Troyes University of Technology - UMR 68, CNRS Troyes - France

More information

Improved Adaptive LSB Steganography based on Chaos and Genetic Algorithm

Improved Adaptive LSB Steganography based on Chaos and Genetic Algorithm Improved Adaptive LSB Steganography based on Chaos and Genetic Algorithm Lifang Yu, Yao Zhao 1, Rongrong Ni, Ting Li Institute of Information Science, Beijing Jiaotong University, BJ 100044, China Abstract

More information

Multiple Similarities Based Kernel Subspace Learning for Image Classification

Multiple Similarities Based Kernel Subspace Learning for Image Classification Multiple Similarities Based Kernel Subspace Learning for Image Classification Wang Yan, Qingshan Liu, Hanqing Lu, and Songde Ma National Laboratory of Pattern Recognition, Institute of Automation, Chinese

More information

Low Complexity Features for JPEG Steganalysis Using Undecimated DCT

Low Complexity Features for JPEG Steganalysis Using Undecimated DCT 1 Low Complexity Features for JPEG Steganalysis Using Undecimated DCT Vojtěch Holub and Jessica Fridrich, Member, IEEE Abstract This article introduces a novel feature set for steganalysis of JPEG images

More information

STATISTICAL DETECTION OF INFORMATION HIDING BASED ON ADJACENT PIXELS DIFFERENCE

STATISTICAL DETECTION OF INFORMATION HIDING BASED ON ADJACENT PIXELS DIFFERENCE 2th European Signal Processing Conference EUSIPCO 22) Bucharest, Romania, August 27-3, 22 STATISTICAL DETECTION OF INFORMATION HIDING BASED ON ADJACENT PIXELS DIFFERENCE Rémi Cogranne, Cathel Zitzmann,

More information

JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts

JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts Jan Kodovský and Jessica Fridrich Department of ECE, Binghamton University, NY, USA {fridrich,jan.kodovsky}@binghamton.edu

More information

Detection of Content Adaptive LSB Matching (a Game Theory Approach)

Detection of Content Adaptive LSB Matching (a Game Theory Approach) Detection of Content Adaptive LSB Matching (a Game Theory Approach) Tomáš Denemark, Jessica Fridrich / 5 Content-adaptive steganography Every pixel is changed with probability β i = exp( λρ i) + exp( λρ

More information

Steganalysis with a Computational Immune System

Steganalysis with a Computational Immune System DIGITAL FORENSIC RESEARCH CONFERENCE Steganalysis with a Computational Immune System By Jacob Jackson, Gregg Gunsch, Roger Claypoole, Gary Lamont Presented At The Digital Forensic Research Conference DFRWS

More information

Adaptive Kernel Principal Component Analysis With Unsupervised Learning of Kernels

Adaptive Kernel Principal Component Analysis With Unsupervised Learning of Kernels Adaptive Kernel Principal Component Analysis With Unsupervised Learning of Kernels Daoqiang Zhang Zhi-Hua Zhou National Laboratory for Novel Software Technology Nanjing University, Nanjing 2193, China

More information

Covariate Shift in Hilbert Space: A Solution via Surrogate Kernels

Covariate Shift in Hilbert Space: A Solution via Surrogate Kernels Kai Zhang kzhang@nec-labs.com NEC Laboratories America, Inc., 4 Independence Way, Suite 2, Princeton, NJ 854 Vincent W. Zheng Advanced Digital Sciences Center, 1 Fusionopolis Way, Singapore 138632 vincent.zheng@adsc.com.sg

More information

A Study of Embedding Operations and Locations for Steganography in H.264 Video

A Study of Embedding Operations and Locations for Steganography in H.264 Video A Study of Embedding Operations and Locations for Steganography in H.264 Video Andreas Neufeld and Andrew D. Ker Oxford University Department of Computer Science Andreas Neufeld is now with the Image and

More information

Unsupervised Domain Adaptation with Distribution Matching Machines

Unsupervised Domain Adaptation with Distribution Matching Machines Unsupervised Domain Adaptation with Distribution Matching Machines Yue Cao, Mingsheng Long, Jianmin Wang KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China caoyue1@gmail.com mingsheng@tsinghua.edu.cn

More information

Research Article Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm

Research Article Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2010, Article ID 876946, 6 pages doi:10.1155/2010/876946 Research Article Improved Adaptive LSB Steganography Based

More information

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/cours/ml2/ Département Informatique Conservatoire

More information

Dynamic Time-Alignment Kernel in Support Vector Machine

Dynamic Time-Alignment Kernel in Support Vector Machine Dynamic Time-Alignment Kernel in Support Vector Machine Hiroshi Shimodaira School of Information Science, Japan Advanced Institute of Science and Technology sim@jaist.ac.jp Mitsuru Nakai School of Information

More information

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers Computational Methods for Data Analysis Massimo Poesio SUPPORT VECTOR MACHINES Support Vector Machines Linear classifiers 1 Linear Classifiers denotes +1 denotes -1 w x + b>0 f(x,w,b) = sign(w x + b) How

More information

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation Instance-based Domain Adaptation via Multi-clustering Logistic Approximation FENG U, Nanjing University of Science and Technology JIANFEI YU, Singapore Management University RUI IA, Nanjing University

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion

Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion Semi-supervised ictionary Learning Based on Hilbert-Schmidt Independence Criterion Mehrdad J. Gangeh 1, Safaa M.A. Bedawi 2, Ali Ghodsi 3, and Fakhri Karray 2 1 epartments of Medical Biophysics, and Radiation

More information

A Two-Stage Weighting Framework for Multi-Source Domain Adaptation

A Two-Stage Weighting Framework for Multi-Source Domain Adaptation A Two-Stage Weighting Framework for Multi-Source Domain Adaptation Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, Jieping Ye Computer Science and Engineering, Arizona State University, AZ 8587

More information

ECE662: Pattern Recognition and Decision Making Processes: HW TWO

ECE662: Pattern Recognition and Decision Making Processes: HW TWO ECE662: Pattern Recognition and Decision Making Processes: HW TWO Purdue University Department of Electrical and Computer Engineering West Lafayette, INDIANA, USA Abstract. In this report experiments are

More information

Machine Learning : Support Vector Machines

Machine Learning : Support Vector Machines Machine Learning Support Vector Machines 05/01/2014 Machine Learning : Support Vector Machines Linear Classifiers (recap) A building block for almost all a mapping, a partitioning of the input space into

More information

Domain Adaptation via Transfer Component Analysis

Domain Adaptation via Transfer Component Analysis Domain Adaptation via Transfer Component Analysis Sinno Jialin Pan 1,IvorW.Tsang, James T. Kwok 1 and Qiang Yang 1 1 Department of Computer Science and Engineering Hong Kong University of Science and Technology,

More information

Improving Selection-Channel-Aware Steganalysis Features

Improving Selection-Channel-Aware Steganalysis Features Improving Selection-Channel-Aware Steganalysis Features Tomáš Denemark and Jessica Fridrich, Department of ECE, SUNY Binghamton, NY, USA, {tdenema1,fridrich}@binghamton.edu, Pedro Comesaña-Alfaro, Department

More information

Course 10. Kernel methods. Classical and deep neural networks.

Course 10. Kernel methods. Classical and deep neural networks. Course 10 Kernel methods. Classical and deep neural networks. Kernel methods in similarity-based learning Following (Ionescu, 2018) The Vector Space Model ò The representation of a set of objects as vectors

More information

Quantitative Structural Steganalysis of Jsteg

Quantitative Structural Steganalysis of Jsteg Quantitative Structural Steganalysis of Jsteg Jan Kodovský and Jessica Fridrich, Member, IEEE Abstract Quantitative steganalysis strives to estimate the change rate defined as the relative number of embedding

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Distinguish between different types of scenes. Matching human perception Understanding the environment

Distinguish between different types of scenes. Matching human perception Understanding the environment Scene Recognition Adriana Kovashka UTCS, PhD student Problem Statement Distinguish between different types of scenes Applications Matching human perception Understanding the environment Indexing of images

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley Natural Language Processing Classification Classification I Dan Klein UC Berkeley Classification Automatically make a decision about inputs Example: document category Example: image of digit digit Example:

More information

Using Both Latent and Supervised Shared Topics for Multitask Learning

Using Both Latent and Supervised Shared Topics for Multitask Learning Using Both Latent and Supervised Shared Topics for Multitask Learning Ayan Acharya, Aditya Rawal, Raymond J. Mooney, Eduardo R. Hruschka UT Austin, Dept. of ECE September 21, 2013 Problem Definition An

More information

Image Data Compression. Steganography and steganalysis Alexey Pak, PhD, Lehrstuhl für Interak;ve Echtzeitsysteme, Fakultät für Informa;k, KIT

Image Data Compression. Steganography and steganalysis Alexey Pak, PhD, Lehrstuhl für Interak;ve Echtzeitsysteme, Fakultät für Informa;k, KIT Image Data Compression Steganography and steganalysis 1 Stenography vs watermarking Watermarking: impercep'bly altering a Work to embed a message about that Work Steganography: undetectably altering a

More information

Importance Reweighting Using Adversarial-Collaborative Training

Importance Reweighting Using Adversarial-Collaborative Training Importance Reweighting Using Adversarial-Collaborative Training Yifan Wu yw4@andrew.cmu.edu Tianshu Ren tren@andrew.cmu.edu Lidan Mu lmu@andrew.cmu.edu Abstract We consider the problem of reweighting a

More information

Classification with Perceptrons. Reading:

Classification with Perceptrons. Reading: Classification with Perceptrons Reading: Chapters 1-3 of Michael Nielsen's online book on neural networks covers the basics of perceptrons and multilayer neural networks We will cover material in Chapters

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Linear

More information

Brief Introduction to Machine Learning

Brief Introduction to Machine Learning Brief Introduction to Machine Learning Yuh-Jye Lee Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU August 29, 2016 1 / 49 1 Introduction 2 Binary Classification 3 Support Vector

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

Cluster Kernels for Semi-Supervised Learning

Cluster Kernels for Semi-Supervised Learning Cluster Kernels for Semi-Supervised Learning Olivier Chapelle, Jason Weston, Bernhard Scholkopf Max Planck Institute for Biological Cybernetics, 72076 Tiibingen, Germany {first. last} @tuebingen.mpg.de

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Learning with kernels and SVM

Learning with kernels and SVM Learning with kernels and SVM Šámalova chata, 23. května, 2006 Petra Kudová Outline Introduction Binary classification Learning with Kernels Support Vector Machines Demo Conclusion Learning from data find

More information

Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC)

Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC) Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC) Eunsik Park 1 and Y-c Ivan Chang 2 1 Chonnam National University, Gwangju, Korea 2 Academia Sinica, Taipei,

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Detection of Content Adaptive LSB Matching (a Game Theory Approach)

Detection of Content Adaptive LSB Matching (a Game Theory Approach) Detection of Content Adaptive LSB Matching (a Game Theory Approach) Tomáš Denemark and Jessica Fridrich Department of ECE, SUNY Binghamton, NY, USA ABSTRACT This paper is an attempt to analyze the interaction

More information

Aruna Bhat Research Scholar, Department of Electrical Engineering, IIT Delhi, India

Aruna Bhat Research Scholar, Department of Electrical Engineering, IIT Delhi, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2017 IJSRCSEIT Volume 2 Issue 6 ISSN : 2456-3307 Robust Face Recognition System using Non Additive

More information

Information Extraction from Text

Information Extraction from Text Information Extraction from Text Jing Jiang Chapter 2 from Mining Text Data (2012) Presented by Andrew Landgraf, September 13, 2013 1 What is Information Extraction? Goal is to discover structured information

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Detecting LSB Matching by Applying Calibration Technique for Difference Image

Detecting LSB Matching by Applying Calibration Technique for Difference Image Detecting LSB atching by Applying Calibration Technique for Difference Image iaolong Li Institute of Computer Science & Technology Peking University 87, Beijing, P. R. China lixiaolong@icst.pku.edu.cn

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Support Vector Machines vs Multi-Layer. Perceptron in Particle Identication. DIFI, Universita di Genova (I) INFN Sezione di Genova (I) Cambridge (US)

Support Vector Machines vs Multi-Layer. Perceptron in Particle Identication. DIFI, Universita di Genova (I) INFN Sezione di Genova (I) Cambridge (US) Support Vector Machines vs Multi-Layer Perceptron in Particle Identication N.Barabino 1, M.Pallavicini 2, A.Petrolini 1;2, M.Pontil 3;1, A.Verri 4;3 1 DIFI, Universita di Genova (I) 2 INFN Sezione di Genova

More information

Least Squares SVM Regression

Least Squares SVM Regression Least Squares SVM Regression Consider changing SVM to LS SVM by making following modifications: min (w,e) ½ w 2 + ½C Σ e(i) 2 subject to d(i) (w T Φ( x(i))+ b) = e(i), i, and C>0. Note that e(i) is error

More information

Sparse Support Vector Machines by Kernel Discriminant Analysis

Sparse Support Vector Machines by Kernel Discriminant Analysis Sparse Support Vector Machines by Kernel Discriminant Analysis Kazuki Iwamura and Shigeo Abe Kobe University - Graduate School of Engineering Kobe, Japan Abstract. We discuss sparse support vector machines

More information

Instance-based Domain Adaptation

Instance-based Domain Adaptation Instance-based Domain Adaptation Rui Xia School of Computer Science and Engineering Nanjing University of Science and Technology 1 Problem Background Training data Test data Movie Domain Sentiment Classifier

More information

Support Vector Machines using GMM Supervectors for Speaker Verification

Support Vector Machines using GMM Supervectors for Speaker Verification 1 Support Vector Machines using GMM Supervectors for Speaker Verification W. M. Campbell, D. E. Sturim, D. A. Reynolds MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 Corresponding author e-mail:

More information

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee Support Vector Machine Industrial AI Lab. Prof. Seungchul Lee Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories /

More information

Linking non-binned spike train kernels to several existing spike train metrics

Linking non-binned spike train kernels to several existing spike train metrics Linking non-binned spike train kernels to several existing spike train metrics Benjamin Schrauwen Jan Van Campenhout ELIS, Ghent University, Belgium Benjamin.Schrauwen@UGent.be Abstract. This work presents

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI Support Vector Machines CAP 5610: Machine Learning Instructor: Guo-Jun QI 1 Linear Classifier Naive Bayes Assume each attribute is drawn from Gaussian distribution with the same variance Generative model:

More information

Boosting: Algorithms and Applications

Boosting: Algorithms and Applications Boosting: Algorithms and Applications Lecture 11, ENGN 4522/6520, Statistical Pattern Recognition and Its Applications in Computer Vision ANU 2 nd Semester, 2008 Chunhua Shen, NICTA/RSISE Boosting Definition

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

MinOver Revisited for Incremental Support-Vector-Classification

MinOver Revisited for Incremental Support-Vector-Classification MinOver Revisited for Incremental Support-Vector-Classification Thomas Martinetz Institute for Neuro- and Bioinformatics University of Lübeck D-23538 Lübeck, Germany martinetz@informatik.uni-luebeck.de

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

SGN (4 cr) Chapter 5

SGN (4 cr) Chapter 5 SGN-41006 (4 cr) Chapter 5 Linear Discriminant Analysis Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology January 21, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Obtaining Higher Rates for Steganographic Schemes while Maintaining the Same Detectability

Obtaining Higher Rates for Steganographic Schemes while Maintaining the Same Detectability Obtaining Higher Rates for Steganographic Schemes while Maintaining the Same Detectability Anindya Sarkar, Kaushal Solanki and and B. S. Manjunath Department of Electrical and Computer Engineering, University

More information

MULTIPLEKERNELLEARNING CSE902

MULTIPLEKERNELLEARNING CSE902 MULTIPLEKERNELLEARNING CSE902 Multiple Kernel Learning -keywords Heterogeneous information fusion Feature selection Max-margin classification Multiple kernel learning MKL Convex optimization Kernel classification

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

arxiv: v1 [stat.ml] 17 Dec 2018

arxiv: v1 [stat.ml] 17 Dec 2018 Domain Adaptation on Graphs by Learning Graph Topologies: Theoretical Analysis and an Algorithm arxiv:1812.6944v1 [stat.ml] 17 Dec 218 Elif Vural 1 1 Department of Electrical and Electronics Engineering,

More information

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Linear Classification CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Example of Linear Classification Red points: patterns belonging

More information

Numerical Learning Algorithms

Numerical Learning Algorithms Numerical Learning Algorithms Example SVM for Separable Examples.......................... Example SVM for Nonseparable Examples....................... 4 Example Gaussian Kernel SVM...............................

More information

A GENERAL FORMULATION FOR SUPPORT VECTOR MACHINES. Wei Chu, S. Sathiya Keerthi, Chong Jin Ong

A GENERAL FORMULATION FOR SUPPORT VECTOR MACHINES. Wei Chu, S. Sathiya Keerthi, Chong Jin Ong A GENERAL FORMULATION FOR SUPPORT VECTOR MACHINES Wei Chu, S. Sathiya Keerthi, Chong Jin Ong Control Division, Department of Mechanical Engineering, National University of Singapore 0 Kent Ridge Crescent,

More information

Unsupervised Domain Adaptation with Residual Transfer Networks

Unsupervised Domain Adaptation with Residual Transfer Networks Unsupervised Domain Adaptation with Residual Transfer Networks Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan KLiss, MOE; TNList; School of Software, Tsinghua University, China University

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Matrix Embedding with Pseudorandom Coefficient Selection and Error Correction for Robust and Secure Steganography

Matrix Embedding with Pseudorandom Coefficient Selection and Error Correction for Robust and Secure Steganography Matrix Embedding with Pseudorandom Coefficient Selection and Error Correction for Robust and Secure Steganography Anindya Sarkar, Student Member, IEEE, Upamanyu Madhow, Fellow, IEEE, and B. S. Manjunath,

More information

A Multi-task Learning Strategy for Unsupervised Clustering via Explicitly Separating the Commonality

A Multi-task Learning Strategy for Unsupervised Clustering via Explicitly Separating the Commonality A Multi-task Learning Strategy for Unsupervised Clustering via Explicitly Separating the Commonality Shu Kong, Donghui Wang Dept. of Computer Science and Technology, Zhejiang University, Hangzhou 317,

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information