A k-! LOW REYNOLDS NUMBER TURBULENCE

Size: px
Start display at page:

Download "A k-! LOW REYNOLDS NUMBER TURBULENCE"

Transcription

1 A - LOW REYOLDS UMBER TURBULECE MODEL FOR TURBULET CHAEL FLOW OF FEE-P FLUIDS P. R. Resende Centro de Estudos de Fenómenos de Transporte, Universidade do Porto, Portugal F. T. Pinho Centro de Estudos de Fenómenos de Transporte, Universidade do Porto, Portugal B. A. Younis Dep. Civil and Environmental Engineering, University of California, Davis, USA K. Kim Dep. Mechanical Engineering,Hanbat ational University, Daejeon, South Korea R. Sureshumar Dep. Biomedical and Chemical Engineering, Syracyse University, Syracuse, Y, USA VI th Annual European Rheology Conference 7 th -9 th April 21 Göteborg, Sweden

2 Drag reduction: motivation Drag reduction in fully-developed channel flow 3 u u + = 11.7 ln y We DR [%] u + = y + u + = 2.5 ln y Existing models (1 st order) -": Pinho et al, JFM 154 (28) 89 -" improved:pinho et al (21) in prep -"-v 2 -f: Iaccarino et al,165(21)376 Can a - model improve on -"? Advantages: Valid across all BL (no damping) Better in BL with adverse pres. grad y + Disadvantages: Too sensitive to in free stream CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 2

3 DS cases: channel flow u Fully-developed channel flow 2,y 1,x 2h We = "u 2 # Re = hu " DS test/calibration cases Re = 395," =.9, L 2 = 9 Low Drag Reduction We = 25, DR = 18% High Drag Reduction We = 1, DR = 37% CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 3

4 ew model: Governing Equations Continuity: U i = x i Momentum balance: Reynolds decomposition: ˆB = B + b Overbar upper-case: time-averaged quantities Lower-case: fluctuating quantities "U i "t "U + U i = # "p " 2 U +$ i "x "x s # " (u i "x "x "x i u ) + "% i, p "x Rheological constitutive equation: FEE-P ij = 2" s S ij + ij, p RACE ij, p = " p # f ( C )C ij $ f ( L)% ij ( ) + " p # f ( C + c )c ij "c ij $ "u C ij + u # c i "u j j + c i "x % "x "x ) ( = # * ij, p + p M ij CT ij LT ij Independent of turbulence model Closures required CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 4

5 Conformation (RACE) equation " + #c ij % #u C ij + u $ c i #u j - j + c i #x,- (. * ) / = $ +, f ( C )C ij $ f ( L)1 ij. / $ f ( C + c )c ij M ij CT ij LT ij Model for LT ij essentially identical to that for -", except in some coefficients/ functions f ( C mm ) LT ij = f ( C mm ) *, + f 1 C ij -, f ( C mm ) $ #U " f 2 C i #U j., j + C i )/ % (, $ C + f n $ #U j #U 3 u i u m #U m + u j u i #U m m ) 1 2S pq S pq % #x n #x + 1 $ #U #U m C jn u i u m + C in u j u m % n ( 1 2S pq S pq % #x n $ #U " f 4 C #U i #U jn + C #U j 2 #U j #U in + C i n + #U #U i j #x n #x n 3 4 #x n #x n 6 7 ) + f 5 C mm : ij % ( s ( ) )) (() f i = f (We, y + ) CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 5

6 The specific dissipation rate: "u i u j = 2µ T S ij 2 3 "# ij Prandtl- Kolmogorov closure for Reynolds Stress µ T = l Transport equation How to determine l? Generally difficult Various alternatives 1) Estimate of dissipation (large scale) 3 2 l [] = length2 time 3 Chou (1945) µ T 2 " 2) Specific dissipation rate: [ ] = 1 time " Kolmogorov (1942) is better behaved near walls, but more sensitive far from walls µ T " " 2# C $ y 2 CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 6

7 Reynolds stress closure: eddy viscosity model (-" -) Prandtl-Kolmogorov model Pinho et al (21): -" u i u j = 2" T S ij 2 3 # ij T = T " T P T = C µ f µ 2 " T P = C µ f µ C µ P f µ P C 2 " = " ew model with ote: C = C µ C T = f µ P " T = f µ C P µ f P µ C " CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 7

8 Transport equation for D Dt = "u i u D V = p " ( p " P exact # $ C i f ( C mm + c mm )u i + c i f ( C mm + c mm )u i % # $ ) f C mm % #U i # " u i " # pu i # 2 #u + $ s " $ i #u i s + #% i, pu i " % i, p dx i #x i #x i #x i ( ) C i ( FU ) i + ( CU ) ij 2 D T Unchanged (ewtonian) * D exact #" $ D V Previous Model " = C # Essentially unchanged Coefficients functions #u i " V Previous Model C i u ( FU ) i f FU C i u i n x n f FU = f FU ( We) f ( C mm )CU ij ( ) % $C j $C = " f #1 u i u m + u j u i ( m $x m $x m ) * " f f C # mm 7 f 1, f 7 = f ( We) + ± u 2 j C i ± u 2 i C j,-. / CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 8

9 Viscoelastic stress wor: " V V " 1 # $ i, p %u i p ) + %x #( c f C + c i mm mm * ( ) %u i %x,. - u f c i u i " f x # V $ f ( C mm )c i i x LTii f V = f V ( We) Same model as in -" V = f V " p #$ f ( C mm ) LT ii 2 Unchanged CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 9

10 Transport equation of : final modeled form = d + % p + s + " f T# T - dy, $ Based on ewtonian model of agano Hishida (1984) ( ) * d dy. + P 1 "C 2 + p / 3 d dy + -, f ( C mm ) C n ( FU ) n + CU nny 2. 1 p / f ( C mm ) 3 LT nn 2 ew form = 1.1 f T = exp " R T 15 # ( ) 2 Variable Prandtl numbers: agano Shimada (1993), Par and Sung (1995) $ % CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 1

11 Specific rate of deformation: transport equation D Dt T = P " # + $ + D Production Destruction Redistribution Turbulent diffusion + D Molecular diffusion Viscoelastic interaction V + E D Dt = P " + # + D T + D + D V " V = " C µ D Dt = 1 C µ D" Dt # D Dt D" Dt D Dt T = P " # + $ + D + D V + E " = C "1 P + #.( $ s + $ p + % + T #" 1 #x i ) *, C "2 " 2 + C ( " $ s / #x i 2 + % + # #" V T ) *, - + E #x i #x " i Viscous cross-diffusion (Bredberg et al. 22) CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 11

12 Viscoelastic contribution to : model Definition and model V E = 1 C µ E V " # D V + "V Slide 9 Slide 1 # E V " 2# u p i s $ ( L 2 % 3) x m x +, -x m ( f ( C nn ) f Ĉ pp ( )c qq C i. ) */ Model of V E E V 2 " # f DR f DR = f DR $ V ( C F1 L2 # 3 % ( We,", L 2 ) ( ) ( ) 2 + C F 2 C ii f C $% 2 ) improved version relative to -", it also incorporates effects of % L 2 CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 12

13 Mean velocity 1: Re " = 395; %=.9, L 2 =9 3 u We= We= 25 }-" We= 1 DS- We= 25 DS- We= 1 We= } We= 25 - We= 1 u + = 11.7 ln y u + = 2.5 ln y u + = y y + CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 13

14 Turbulent inetic energy: Re " = 395; %=.9, L 2 = DS- Mansour (We= ) DS- We= 25 DS- We= 1 We= We= 25 -" We= 1 We= We= 25 - We= 1 } } T = C µ f µ 2 ( ) " 1# C P µ f P µ C y + CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 14

15 Dissipation of by solvent: Re " = 395; %=.9, L 2 = DS- Mansour (We=) DS- We= 25 DS- We= 1 We= } We= 25 -" We= 1 We= We= 25 } - We= y + CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 15

16 LT ii : Re " = 395; %=.9, L 2 =9 5 LT ii * 4 DS- We= 25 DS- We= 1 We= } We= 25 -" We= 1 We= We= 25 } - We= y + CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 16

17 Conclusions, Future Wor and Acnowledgments - - model developed, it wors well at Low DR and High DR (5%) - Closure for elastic terms: similar to corresponding in -" - Slightly better than -" - More stable (easier convergence) - eed for 2 nd order Reynolds stress closures - eed to extend models to Maximum DR, % L 2 Acnowledgments - Funding Fundação para a Ciência e Tecnologia Project PTDC/EQU-FTT/7727/26 CEFT-FEUP Centro de Estudos de Fenómenos de Transporte AERC 21, Göteborg, Sweden 17

F. T. Pinho. Centro de Estudos de Fenómenos de Transporte, Universidade do Porto & Universidade do. Minho, Portugal

F. T. Pinho. Centro de Estudos de Fenómenos de Transporte, Universidade do Porto & Universidade do. Minho, Portugal F. T. Pinho Centro de Estudos de Fenómenos de Transporte, Universidade do Porto Universidade do Minho, Portugal Colaboradores P. R. Resende Centro de Estudos de Fenómenos de Transporte, Universidade do

More information

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal DEVELOPING CLOSURES FOR TURBULENT FLOW OF VISCOELASTIC FENE-P FLUIDS F. T. Pinho Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal C. F. Li Dep. Energy, Environmental

More information

PERFORMANCE OF THE k-ε AND REYNOLDS STRESS MODELS IN TURBULENT FLOWS WITH VISCOELASTIC FLUIDS.

PERFORMANCE OF THE k-ε AND REYNOLDS STRESS MODELS IN TURBULENT FLOWS WITH VISCOELASTIC FLUIDS. Proceedings of the th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 6 Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Curitiba, Brazil,- Dec. -8, 6 Paper CIT6-8 PERFORMANCE

More information

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids Flow Turbulence Combust 2013) 90:69 94 DOI 10.1007/s10494-012-9424-x Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids P. R. Resende F. T. Pinho B. A. Younis K. Kim R. Sureshkumar Received:

More information

DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT FLOWS WITH VISCOELASTIC FLUIDS

DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT FLOWS WITH VISCOELASTIC FLUIDS CONFERÊNCIA NACIONAL DE MÉTODOS NUMÉRICOS EM MECÂNICA DOS FLUIDOS E TERMODINÂMICA 6 FCT-UNL, Monte de Caparica, 8 e 9 de Junho, 6 APMTAC, Portugal, 6 DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT

More information

Dept. Engineering, Mechanical Engineering, University of Liverpool Liverpool L69 3GH, UK,

Dept. Engineering, Mechanical Engineering, University of Liverpool Liverpool L69 3GH, UK, R. J. Poole pt. Engineering, Mechanical Engineering, University of Liverpool Liverpool L69 3GH, UK, robpoole@liv.ac.uk M. A. Alves partamento de Engenharia uímica, CEFT, Faculdade de Engenharia da Universidade

More information

A TURBULENT HEAT FLUX TWO EQUATION θ 2 ε θ CLOSURE BASED ON THE V 2F TURBULENCE MODEL

A TURBULENT HEAT FLUX TWO EQUATION θ 2 ε θ CLOSURE BASED ON THE V 2F TURBULENCE MODEL TASK QUARTERLY 7 No 3 (3), 375 387 A TURBULENT HEAT FLUX TWO EQUATION θ ε θ CLOSURE BASED ON THE V F TURBULENCE MODEL MICHAŁ KARCZ AND JANUSZ BADUR Institute of Fluid-Flow Machinery, Polish Academy of

More information

TURBULENCE MODELING FOR POLYMER SOLUTIONS

TURBULENCE MODELING FOR POLYMER SOLUTIONS TURBULENCE MODELING FOR POLYMER SOLUTIONS Fernando T. Pinho 1 Mohammadali Masoudian 1 Carlos B. da Silva 2 1 Transport Phenomena Research Center (CEFT), Mechanical Engineering Department, Faculdade de

More information

Numerical study of the flow of FENE-CR viscoelastic fluids in a planar cross-slot geometry

Numerical study of the flow of FENE-CR viscoelastic fluids in a planar cross-slot geometry Numerical study of the flow of FENE-CR viscoelastic fluids in a planar cross-slot geometry G.N. Rocha 1, R.J. Poole 2, M.A. Alves 3 and P.J. Oliveira 1 1 Universidade da Beira Interior, Departamento de

More information

Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics- July 2000, Lisbon, Portugal

Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics- July 2000, Lisbon, Portugal Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics- July 2000, Lisbon, Portugal Asymmetric Diverging Flow on a 90º Tee Junction R. Maia, M. F. Proença, N. Pereira da Costa

More information

Elastic-driven instabilities in microfluidic flow-focusing devices

Elastic-driven instabilities in microfluidic flow-focusing devices Elastic-driven instabilities in microfluidic flow-focusing devices M. S. N. Oliveira 1, F. T. Pinho 2, M. A. Alves 1 1: Departamento de Engenharia Química, CEFT Faculdade de Engenharia da Universidade

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS Paulo J. Oliveira Departamento de Engenharia Electromecânica, Universidade da Beira Interior Rua Marquês D'Ávila e Bolama, 600

More information

4.2 Concepts of the Boundary Layer Theory

4.2 Concepts of the Boundary Layer Theory Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG

SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG L. Thais Université de Lille Nord de France, USTL F9 Lille, France Laboratoire de Mécanique de Lille CNRS, UMR 817

More information

Outline. Motivation Governing equations and numerical methods Results: Discussion:

Outline. Motivation Governing equations and numerical methods Results: Discussion: Bifurcation phenomena in strong extensional flows (in a cross-slot geometry) F. A. Cruz 1,*, R. J. Poole 2, F. T. Pinho 3, P.J. Oliveira 4, M. A. Alves 1 1 Departamento de Engenharia Química, CEFT, Faculdade

More information

The effect of the expansion ratio on a turbulent non-newtonian recirculating flow

The effect of the expansion ratio on a turbulent non-newtonian recirculating flow The effect of the expansion ratio on a turbulent non-newtonian recirculating flow A. S. Pereira Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto Rua Dr. António Bernardino

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Quadrant method application to the study of the beginning of sediment motion of sedimentary particles

Quadrant method application to the study of the beginning of sediment motion of sedimentary particles V Conferência Nacional de Mecânica dos Fluidos, Termodinâmica e Energia MEFTE 214, 11 12 etembro 214, Porto, Portugal APMTAC, 214 Quadrant method application to the study of the beginning of sediment motion

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Elliptic relaxation for near wall turbulence models

Elliptic relaxation for near wall turbulence models Elliptic relaxation for near wall turbulence models J.C. Uribe University of Manchester School of Mechanical, Aerospace & Civil Engineering Elliptic relaxation for near wall turbulence models p. 1/22 Outline

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions June 30 - July 3, 2015 Melbourne, Australia 9 P-26 Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering

More information

The stagnation point Karman constant

The stagnation point Karman constant . p.1/25 The stagnation point Karman constant V. Dallas & J.C. Vassilicos Imperial College London Using a code developed at the Université de Poitiers by S. Laizet & E. Lamballais . p.2/25 DNS of turbulent

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Chapter 8 Flow in Conduits

Chapter 8 Flow in Conduits 57:00 Mechanics of Fluids and Transport Processes Chapter 8 Professor Fred Stern Fall 013 1 Chapter 8 Flow in Conduits Entrance and developed flows Le = f(d, V,, ) i theorem Le/D = f(re) Laminar flow:

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Publication 97/2. An Introduction to Turbulence Models. Lars Davidson, lada

Publication 97/2. An Introduction to Turbulence Models. Lars Davidson,   lada ublication 97/ An ntroduction to Turbulence Models Lars Davidson http://www.tfd.chalmers.se/ lada Department of Thermo and Fluid Dynamics CHALMERS UNVERSTY OF TECHNOLOGY Göteborg Sweden November 3 Nomenclature

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants

Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants J. Fluid Mech. (27), vol. 577, pp. 457 466. c 27 Cambridge University Press doi:1.117/s221127583 Printed in the United Kingdom 457 Interpretation of the mechanism associated with turbulent drag reduction

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Generation of initial fields for channel flow investigation

Generation of initial fields for channel flow investigation Generation of initial fields for channel flow investigation Markus Uhlmann Potsdam Institut für Klimafolgenforschung, D-442 Potsdam uhlmann@pik-potsdam.de (Mai 2) In the framework of the DFG-funded research

More information

Events of High Polymer Activity in Drag Reducing Flows

Events of High Polymer Activity in Drag Reducing Flows Flow Turbulence Combust (27) 79:23 32 DOI.7/s494-7-975-5 Events of High Polymer Activity in Drag Reducing Flows C. Tesauro B. J. Boersma M. A. Hulsen P. K. Ptasinski F. T. M. Nieuwstadt Received: May 26

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

HEAT TRANSFER ENHANCEMENT IN LAMINAR FLOW OF VISCOELASTIC FLUIDS THROUGH A RECTANGULAR DUCT

HEAT TRANSFER ENHANCEMENT IN LAMINAR FLOW OF VISCOELASTIC FLUIDS THROUGH A RECTANGULAR DUCT Congreso de Métodos Numéricos en Ingeniería 2009 Barcelona, 29 junio al 2 de julio 2009 SEMNI, España 2009 HEAT TRANSFER ENHANCEMENT IN LAMINAR FLOW OF VISCOELASTIC FLUIDS THROUGH A RECTANGULAR DUCT N.

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

Lecture 7. Turbulence

Lecture 7. Turbulence Lecture 7 Content Basic features of turbulence Energy cascade theory scales mixing Basic features of turbulence What is turbulence? spiral galaxies NGC 2207 and IC 2163 Turbulent jet flow Volcano jet flow

More information

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FLOWS WITH NON-SPHERICAL PARTICLES Berend van Wachem Thermofluids Division, Department of Mechanical Engineering Imperial College London Exhibition Road, London,

More information

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison What is Turbulence? Fabian Waleffe Depts of Mathematics and Engineering Physics University of Wisconsin, Madison it s all around,... and inside us! Leonardo da Vinci (c. 1500) River flow, pipe flow, flow

More information

MODELLING MULTIPHASE FLOWS OF DISCRETE PARTICLES IN VISCOELASTIC FLUIDS

MODELLING MULTIPHASE FLOWS OF DISCRETE PARTICLES IN VISCOELASTIC FLUIDS MODELLING MULTIPHASE FLOWS OF DISCRETE PARTICLES IN VISCOELASTIC FLUIDS R. RIBEIRO 1, C. FERNANDES 1, S.A. FAROUGHI 2, G.H. McKINLEY 2 AND J.M. NÓBREGA 1 1 Institute for Polymers and Composites/i3N, University

More information

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review CM465 Lectures -3: Intro, Mathematical //6 Chapter 4: Standard Flows CM465 Polymer Rheology Michigan Tech Newtonian fluids: vs. non-newtonian fluids: How can we investigate non-newtonian behavior? CONSTANT

More information

DIVERGENCE FREE SYNTHETIC EDDY METHOD FOR EMBEDDED LES INFLOW BOUNDARY CONDITIONS

DIVERGENCE FREE SYNTHETIC EDDY METHOD FOR EMBEDDED LES INFLOW BOUNDARY CONDITIONS DIVERGECE FREE SYTHETIC EDDY METHOD FOR EMBEDDED LES IFLOW BOUDARY CODITIOS R. Poletto, A. Revell, T. Craft,. Jarrin 1 School of Mechanical Aerospace and Civil Engineering University of Manchester, Manchester,

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Homogeneous Rayleigh-Bénard convection

Homogeneous Rayleigh-Bénard convection Slide 1 Homogeneous Rayleigh-Bénard convection scaling, heat transport and structures E. Calzavarini and F. Toschi, D. Lohse, R. Tripiccione, C. R. Doering, J. D. Gibbon, A. Tanabe Euromech Colloquium

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Motivation Objective I: Assess and improve parameterizations of the bottom boundary

More information

Chapter 6 An introduction of turbulent boundary layer

Chapter 6 An introduction of turbulent boundary layer Chapter 6 An introduction of turbulent boundary layer T-S Leu May. 23, 2018 Chapter 6: An introduction of turbulent boundary layer Reading assignments: 1. White, F. M., Viscous fluid flow. McGraw-Hill,

More information

Modifications of the V2 Model for Computing the Flow in a 3D Wall Jet Davidson, L.; Nielsen, Peter Vilhelm; Sveningsson, A.

Modifications of the V2 Model for Computing the Flow in a 3D Wall Jet Davidson, L.; Nielsen, Peter Vilhelm; Sveningsson, A. Aalborg Universitet Modifications of the V2 Model for Computing the Flow in a D Wall Jet Davidson, L.; Nielsen, Peter Vilhelm; Sveningsson, A. Published in: Proceedings of the International Symposium on

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

arxiv: v1 [physics.flu-dyn] 16 Nov 2018

arxiv: v1 [physics.flu-dyn] 16 Nov 2018 Turbulence collapses at a threshold particle loading in a dilute particle-gas suspension. V. Kumaran, 1 P. Muramalla, 2 A. Tyagi, 1 and P. S. Goswami 2 arxiv:1811.06694v1 [physics.flu-dyn] 16 Nov 2018

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint. " = " x,t,#, #

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint.  =  x,t,#, # Notes Assignment 4 due today (when I check email tomorrow morning) Don t be afraid to make assumptions, approximate quantities, In particular, method for computing time step bound (look at max eigenvalue

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Turbulence (January 7, 2005)

Turbulence (January 7, 2005) http://www.tfd.chalmers.se/gr-kurs/mtf071 70 Turbulence (January 7, 2005) The literature for this lecture (denoted by LD) and the following on turbulence models is: L. Davidson. An Introduction to Turbulence

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

MODELLING TURBULENT HEAT FLUXES USING THE ELLIPTIC BLENDING APPROACH FOR NATURAL CONVECTION

MODELLING TURBULENT HEAT FLUXES USING THE ELLIPTIC BLENDING APPROACH FOR NATURAL CONVECTION MODELLING TURBULENT HEAT FLUXES USING THE ELLIPTIC BLENDING APPROACH FOR NATURAL CONVECTION F. Dehoux Fluid Mechanics, Power generation and Environment Department MFEE Dept.) EDF R&D Chatou, France frederic.dehoux@edf.fr

More information

Turbulent energy density and its transport equation in scale space

Turbulent energy density and its transport equation in scale space PHYSICS OF FLUIDS 27, 8518 (215) Turbulent energy density and its transport equation in scale space Fujihiro Hamba a) Institute of Industrial Science, The University of Toyo, Komaba, Meguro-u, Toyo 153-855,

More information

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo Project Topic Simulation of turbulent flow laden with finite-size particles using LBM Leila Jahanshaloo Project Details Turbulent flow modeling Lattice Boltzmann Method All I know about my project Solid-liquid

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ APPENDIX B FLUID DYNAMICS This section is a brief introduction to fluid dynamics. Historically, a simplified concept of the boundary layer, the unstirred water layer, has been operationally used in the

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

SEPARATION OF SOLUTES WITH DIFFERENT DIFFUSIVITIES IN A HYBRID MEMBRANE CELL COMPRISING SEMI AND FULLY PERMEABLE MEMBRANES

SEPARATION OF SOLUTES WITH DIFFERENT DIFFUSIVITIES IN A HYBRID MEMBRANE CELL COMPRISING SEMI AND FULLY PERMEABLE MEMBRANES SEPRTION OF SOLUTES WITH DIFFERENT DIFFUSIVITIES IN HYRID MEMRNE CELL COMPRISING SEMI ND FULLY PERMELE MEMRNES S.I.S. Pinto a, T.M.G.T. Rocha a, J.M. Miranda b, J..L.M. Campos a a Centro de Estudos de

More information

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create

More information

Subduction II Fundamentals of Mantle Dynamics

Subduction II Fundamentals of Mantle Dynamics Subduction II Fundamentals of Mantle Dynamics Thorsten W Becker University of Southern California Short course at Universita di Roma TRE April 18 20, 2011 Rheology Elasticity vs. viscous deformation η

More information

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials GG303 Lecture 2 0 9/4/01 1 RHEOLOGY & LINEAR ELASTICITY I II Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #195

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #195 . 18 m 2012 th International Conference ENGINEERING MECHANICS 2012 pp. 309 315 Svratka, Czech Republic, May 14 17, 2012 Paper #195 NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc.

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc. RANS-LES inlet boundary condition for aerodynamic and aero-acoustic acoustic applications Fabrice Mathey Davor Cokljat Fluent Inc. Presented by Fredrik Carlsson Fluent Sweden ZONAL MULTI-DOMAIN RANS/LES

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

Several forms of the equations of motion

Several forms of the equations of motion Chapter 6 Several forms of the equations of motion 6.1 The Navier-Stokes equations Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

LOCAL LOSS COEFFICIENT IN SUDDEN EXPANSION LAMINAR FLOWS OF INELASTIC SHEAR-THINNING FLUIDS

LOCAL LOSS COEFFICIENT IN SUDDEN EXPANSION LAMINAR FLOWS OF INELASTIC SHEAR-THINNING FLUIDS LOCAL LOSS COEFFICIENT IN SUDDEN EXPANSION LAMINAR FLOWS OF INELASTIC SHEAR-THINNING FLUIDS J. P. Miranda Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão, Campus de Santa Apolónia,

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

More information

Last update: 15 Oct 2007

Last update: 15 Oct 2007 Unsteady flow of an axisymmetric annular film under gravity HOUSIADAS K, TSAMOPOULOS J -- PHYSICS OF FLUIDS --10 (10)2500-2516 1998 Yang XT, Xu ZL, Wei YM Two-dimensional simulation of hollow fiber membrane

More information

Influence of high temperature gradient on turbulence spectra

Influence of high temperature gradient on turbulence spectra NIA CFD Conference, Hampton, August 6-8, 2012 Future Directions in CFD Research, A Modeling and Simulation Conference Influence of high temperature gradient on turbulence spectra Sylvain Serra Françoise

More information

Interaction of Non-Newtonian Fluid Dynamics and Turbulence on the Behavior of Pulp Suspension Flows

Interaction of Non-Newtonian Fluid Dynamics and Turbulence on the Behavior of Pulp Suspension Flows ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 13, 2005 Interaction of Non-Newtonian Fluid Dynamics and Turbulence on the Behavior of Pulp Suspension Flows Juha-Pekka T. Huhtanen, and Reijo J.

More information