Investigation of fluid flow around a cylinder with EHD actuation on inclined plates behind the cylinder

Size: px
Start display at page:

Download "Investigation of fluid flow around a cylinder with EHD actuation on inclined plates behind the cylinder"

Transcription

1 Investigation of fluid flow around a cylinder with EHD actuation on inclined plates behind the cylinder S. Reza-zadeh Department of Mechanical Engineering, Hakim Sabzevari University (HSU), Sabzevar, Iran s.rezazadeh@hsu.ac.ir Abstract- In this work, the compound flow control method (passive-active) has been applied around a cylinder with a splitter plate. The wire-plate electrodes (active) and the splitter plate (passive) were used simultaneously. Simulations consist of the interaction between the electric field and the fluid flow. Modeling conditions included different arrangements of the splitter plates (γ) and position of the wire is α=±90º. Corona wind is more effective for low Reynolds numbers so the Reynolds number of flow is 40. Pressure distribution over the surface of the cylinder has been calculated and flow patterns have been visualized. Results show the effects of two corona wind over the cylinder and the splitter. The first corona wind is between the wires and the cylinder and the second one is between the wires and the splitter plate. These winds acted simultaneously and by increasing γ, the second corona wind got stronger. I. INTRODUCTION The fluid flow around a cylinder, because of complicated phenomena such as vortex shedding and flow separation behind the cylinder, has been studied by many researchers and scientists. They applied some methods and devices to control this flow. Most of these techniques are changing the Boundary layer and the wake zone to obtain the best efficiency. Methods are classified in three groups: (1) passive control, (2) active control and (3) compound control. Passive control techniques do not need any external energy during application. Additional devices in the fluid flow or changing the geometry of the bluff body such as splitter plate, base bleed and roughness are applied in this method. Active control techniques such as EHD actuators and vibrators need external energy to affect the fluid flow. When Active and passive techniques are applied simultaneously, it is called compound method. The Splitter plate is widely used for flow control as a passive method. Using a circular cylinder with a connected splitter plate was reported by [1]. Then others used it for different cases. Ref.[2,3] performed some experiments by the splitter plate and the second cylinder in the wake zone.his experiments included different length and asymmetrically arranged splitter plate. He used detached splitter plate at different gap distances. It was found that when the splitter was arranged asymmetrically, vortex shedding was critically suppressed and there was an ideal gap distance. Ref.[4,5] considered the fluid flow that the splitter plate was placed at various locations downstream of the cylinder. They found out the splitter plate significantly reduced drag force and lift fluctuation and there was an ideal location of the splitter for the maximum reduction. Ref.[6] investigated heat transfer around the cylinder with the splitter plate. They remarked a reduction in the size of wake zone. The splitter plate was an extra fin area for conduction, so heat transfer increased. Ref.[7] studied the fluid flow around the cylinder with a hinged-splitter plate in the wake zone. Their experiments showed that the splitter plate oscillation increases with Reynolds number at low Reynolds numbers. Application of electrohydrodynamic (EHD) actuators was reported some decades ago. EHD is the interaction of electric and flow fields. High field strength around sharp emitter produces ions and accelerates ions to opposite electrode.energy transfer between charges and fluid molecules leads to flow motion which called ionic wind or corona wind. The Corona wind was reported by [8] then others used this phenomenon for various applications and developed it. Ref.[9,10] could reduce wake zone behind a plate by EHD actuators and found out the kinetic energy induced by the ionic wind inside the boundary layer allows a drag reduction for low Reynolds numbers. Ref.[11] explored the fluid flow around a cylinder by wire-plate electrodes and adjusted the size of mean recirculation region behind the cylinder. Ref.[12] performed some experiments to examine the effect of distance between electrodes. They found out the pressure drag can be affected by imposing corona wind. Onset of EHD turbulence was reported in cross flow around a cylinder [13]. They produced EHD turbulence even at low Reynolds numbers. Ref. [14] used dielectric barrier discharge (DBD) plasma actuator to control flow around a cylinder. In present work, the compound method (passive and active) is applied to control the fluid flow around a cylinder with a splitter plate. In this approach, a splitter plate, as a passive technique and EHD actuators (wireplate), as an active technique, are used simultaneously. Investigation included different arrangements of the splitter plates (γ= 0º, ±5º, ±10º, ±15º, ±20º, ±25º, ±30º, ±35º, ±40º, ±45º), H=R (H: distance between the wires and the cylinder surface), position of the wires (α=±90º) and the Reynolds number of flow is 40. Pressure and velocity of Flow were calculated. Results show the effects of the corona winds for various arrangements of the splitter plates. 212

2 C p Proceedings of the 2013 International Conference on Applied Mathematics and Computational Methods in Engineering II. METHOD OF ANALYSIS The physical basis of much electrically enhanced momentum lies in the EHD force F per unit volume, generated by electric field strength E, in a fluid of dielectric permittivity ε, density ρ at temperature T; this can be expressed as : F = qe- E + E q( ) (1) 2 2 Where q is the space charge density in the fluid, qe is the Coulomb force exerted by an electric field upon the free charge in high voltage electric field. For the single phase, Coulomb force is predominate mechanism for EHD and qe should then be included in the momentum equation. The Poisson equation for the electric potential and the current continuity equation can be written as follows: 2 V q 0 (2) Where ε 0 is the dielectric permittivity of free space. The electric potential is defined: E V (3) Electric current is included: (1) conduction (ions motion because of electric field), (2) convection (transport of charges with airflow), and diffusion. Current density J is: J Eq Uq D q (4) E E Where μ E is the mobility, D E is diffusion coefficient and U is velocity vector of flow. Because of DC Current continuity condition, current continuity equation is:.j 0 (5) Fluid flow is steady-state incompressible flow and continuity equation is:.u 0 (6) And.Navier-Stokes equation is: 2 U. U p U q V (7) Where ρ is the air density, p is the air pressure, and μ is the air dynamic viscosity. By substituting and modifying equations could be found new equation for current density as follow:.( D q Vq) U. q 0 (8) E So we should solve equations (2,6,7,8).As observed all equation are coupled,therefore they are solved simultaneously. We used COMSOl code to simulate twodimensional flow around the cylinder. The geometry of present work were shown in fig(1). Between wire and collecting electrodes, there are ionization zone and drifting zone. At the boundary between them,ions started to move. The electric field strength is equal to breakdown in this boundary. electric field strength in air E 0 = V/m according to Kaptsov s assumption [15].For the positive corona, by empirical Peek s formula for air at standard conditions, the electric field strength E W at surface of a smooth corona wire was given: 2 E E R (9) W 0 W Where R W is wire radius. It found out that electrical potential on the boundary of ionization zone is: V V E R ln E E 0 W W W W 0 And radius of this zone is: 2 (10) R R R W 0 W (11) So, we modified q 0 till to obtain an acceptable amount of V 0 at boundary of ionization zone. At the surface of the stationary cylinder, the usual no-slip boundary condition is applied. For electrical boundary conditions, the gradients of voltage and electric charge density in far fields are considered zero. In order to determine the electric charge density, the tryand-error method starts by an initial guess of charge density on the surface of the electrode, and then the current in the wire electrode is calculated. Considering experimental values, this current must be in the microampere scale. This method continues to reach the desired value. The electrode potential on the wire electrode was 10, 15, and 20 kv and the cylinder surface and the splitter plate electrodes were ground electrodes. Fig. 1. The schematic diagram of geometry III. RESULTS AND DISCUSSION For evaluation of our simulation, we compared the pressure coefficient of present work with existing experimental work that was shown in fig Exp Re=36 Exp Re=45 Re=40, No EHD Angle ( degree ) Fig. 2. Comparison of the pressure coefficient Fig.3 reveals the External forces around the cylinder schematically for various position of the splitter plate. Two corona winds were recognized in this geometry. The first corona wind was between the wires and the cylinder 213

3 and the second one was between the wires and the splitter plate. 214

4 Fig 3 Schematic diagram of electric forces: (a) No splitter plate,(b) G=0, (c) G=0.5d, (d) G=d, (e) G=2d The results that will report in this paper included the applied voltage=10kv and Re number=40. Fig 4 shows the relative pressure coefficient Cp/ Cpo (Cpo is the pressure coefficient of stagnation point when there is no EHD actuation for the single cylinder) over the cylinder for various locations of the splitter and the wires. As observed, for α (angle of wire electrode) =0º and ±30º, the presence of the splitter plate behind the cylinder doesn t play an important role but for α=±90º, Cp/Cpo decreased considerably and for α=±150º, this effect is notable because for α=±90º, ±150º, the distance between the wires and the splitter is short and the second corona wind is more effective. Fig 5 illustrates the contours of velocity around the cylinder without EHD actuation and splitter plate. There are two stationary vortexes behind the cylinder as we predicted. When a splitter plate was set behind the cylinder, we observed the velocity contours as fig 6. Two pair of vortexes are predicted behind the cylinder. When EHD actuation was applied and the wire was set at α=0º, the velocity contours is shown in fig 7. EHD actuation caused to increase the momentum and velocity of flow that made the wake zone get smaller and just a pair of vortexes is observed behind the cylinder. 215

5 Fig. 4. Relative pressure coefficient=10kv Fig. 5. Velocity contours for single cylinder Fig. 7 Velocity contours for cylinder-splitter, α=0 For different arrangements of wires, some flow patterns were observed. When α=±30º, As shown in fig 8,,the recirculation zones were appeared in front of the cylinder as reported [12],[16].The vortexes behind the cylinder were became smaller because the wires are near the splitter plate and the wake zone were affected more. As observed in fig 9, when α =±90º, the recirculation zones were grown up and effect of EHD actuation is strong for wake zone and made the vortexes be disappeared behind the cylinder. By setting wires at α =±150º, as shown in fig 10a, there were two pairs of vortexes in front of the cylinder because the Columb force is a resistance for flow and the vortexes behind the cylinder were grown up considerably. By setting the splitter plate behind the cylinder, the wake zone was affected more and the second corona wind play an important role. The vortexes that were in front of the cylinder, disappeared and we can observe three pairs of vortexes behind the cylinder. By increasing the gap distance (G: distance between the splitter plate and the cylinder), the size of these vortexes were changed as observed in fig 10a,b,c,d,e. Fig. 8. Velocity contours for cylinder-splitter, α=30 Fig. 9. Velocity contours for cylinder-splitter, α=90 (a) (b) (c) (d) Fig. 6. Velocity contours for cylinder-splitter (e) Fig. 10. Velocity contours for cylinder-splitter, α=150,(a) no splitter,(b) G=0, (c) G=0.5D,(d) G=D, (e) G=2D Fig 11 shows the drag coefficient Cd for different arrangements of wires and different gap distances. as observed, for α=0º, ±30º, ±90º, increasing of gap distance 216

6 is not important but for α=±150º,the presence of the splitter caused the increasing of Cd. [12] Hyun, K.T., Chun, C.H., (2003) The wake flow control behind a circular cylinder using ion wind, Experiments in Fluids, 35, pp [13] Chang, J.S., Brocilo, D., Urashima, K., Dekowskib, J., Podlinskib, J. (2006) On-set of EHD turbulence for cylinder in cross flow under corona discharges, Journal of Electrostatics, 64, pp [14] Jukes, T.N., Choi, K.S, (2009) Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma, Physics of Fluids, 21, [15] N. A. Kaptsov, Elektricheskie Yavleniya v Gazakh i Vakuume, Moscow, OGIZ, [16] Reza-zadeh, S., Masumi H., Esmaeilzadeh E., (2010), Experimental study of heat transfer around cylinder in presence of electric field, JAST, 6(2),pp Fig. 11. Drag coefficient for different arrangments IV.CONCLUSION The compound method (passive and active) was applied to control hydrodynamic around a cylinder. The splitter plate, as a passive technique, and EHD actuators (wireplate), as an active technique, applied simultaneously. Two corona winds were recognized around the cylinder. By increasing α, the second corona wind got strong and affects the wake zone more. REFERENCES [1] Roshko, A. (1954) On the drag and shedding frequency of twodimensional bluff bodies, National Advisory Committee for Aeronautics, Technical Note 3169, pp [2] Ozono, S. (1999) Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a circular cylinder, Physics of Fluids, 11, pp [3] Ozono, S. (2000) Flow control of vortex shedding by asymmetrically arranged plates, Theoretical and Applied Mechanics. 49, pp [4] Hwang, J.Y., Yang, K.S., Sun, S.H., (2003) Reduction of flowinduced forces on circular cylinder using a detached splitter plate, Physics of Fluids, 15(8), pp [5] Hwang J.Y., Yang K.S., (2007) Drag reduction on a circular cylinder using dual detached splitter plates, Journal of Wind Engineering and Industrial Aerodynamics, 95, pp [6] Tiwari, S., Chakraborty, D., Biswas, G., Panigrahi, P.K. (2005) Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter, International Journal of Heat and Mass Transfer, 48, pp [7] Shukla, S., Govardhan, R.N., Arakeri, J.H. (2009) Flow over a cylinder with a hinged-splitter plate, Journal of Fluids and Structures, 25, pp [8] Hauksbee, F., (1719) Physico-mechanical experiments on various subjects, London, pp: [9] Leger, L., Moreau, E., Artana, G., Touchard, G. (2001) Influence of a DC corona discharge on the airflow along an inclined flat plate, Journal of Electrostatics, 51/52, pp [10] Leger, L., Moreau, E., Gerard, G., Touchard, G. (2002) Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate, IEEE Transactions on Industry Applications, 38, pp [11] Artana, G., Sosa, R., Moreau, E., Touchard, G. (2003) Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators, Experiment in Fluids, 36, pp

Surface corona discharge along an insulating flat plate in air applied to electrohydrodynamically airflow control : electrical properties

Surface corona discharge along an insulating flat plate in air applied to electrohydrodynamically airflow control : electrical properties Surface corona discharge along an insulating flat plate in air applied to electrohydrodynamically airflow control : electrical properties E Moreau (1), G Artana (2), G Touchard (1) (1) Laboratoire d Etudes

More information

Study on the influence that the number of positive ion sources has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

Study on the influence that the number of positive ion sources has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas Study on the influence that the number of positive ion sources has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas A A Martins 1 and M J Pinheiro 2 1 Institute for Plasmas and Nuclear

More information

Modeling of an EHD corona flow in nitrogen gas using an asymmetric capacitor for propulsion. Abstract. Introduction

Modeling of an EHD corona flow in nitrogen gas using an asymmetric capacitor for propulsion. Abstract. Introduction Modeling of an EHD corona flow in nitrogen gas using an asymmetric capacitor for propulsion Alexandre A. Martins Institute for Plasmas and Nuclear Fusion & Instituto Superior Técnico, Av. Rovisco Pais,

More information

Corona Wind Visualization in an Asymmetric Capacitor using Liquid Nitrogen

Corona Wind Visualization in an Asymmetric Capacitor using Liquid Nitrogen Proc. 2012 Joint Electrostatics Conference 1 Corona Wind Visualization in an Asymmetric Capacitor using Liquid Nitrogen Adrian Ieta 1, Zachariah Schrecengost 1, Marius Chirita* 2, and Jacob Mills 1 1 Dept.

More information

An Experimental Study Of An Electroaerodynamic Actuator

An Experimental Study Of An Electroaerodynamic Actuator Copyright 21 Tech Science Press FDMP, vol.6, no.4, pp.49-418, 21 An Experimental Study Of An Electroaerodynamic Actuator R. Mestiri 1, R. Hadaji 1 and S. Ben Nasrallah 1 Abstract: The electroaerodynamic

More information

On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas Alexandre A. Martins 1 and Mario J. Pinheiro 2 1 Institute for Plasmas and

More information

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Ali Kianifar, Edris Yousefi Rad Abstract In many applications the flow that past bluff bodies have frequency nature (oscillated)

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP

FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP Jiwoon Song* * Department of Mechanical Engineering, Yonsei University, 120-749, Korea dolguard@yonsei.ac.kr

More information

MODELING OF PLASMA ACTUATOR AND ITS EFFECT ON FLOW FIELD AROUND RECTANGULAR CYLINDER

MODELING OF PLASMA ACTUATOR AND ITS EFFECT ON FLOW FIELD AROUND RECTANGULAR CYLINDER Indian J.Sci.Res.1(2) : 803-814, 2014 ISSN : 0976-2876 (Print) ISSN : 2250-0138(Online) MODELING OF PLASMA ACTUATOR AND ITS EFFECT ON FLOW FIELD AROUND RECTANGULAR CYLINDER SAEED KAVOUSFAR a, HOSSEIN MAHDAVY-MOGHADDAM

More information

Numerical Simulation on Forced Convection Cooling of Horizontal Ionic Wind with Multielectrodes

Numerical Simulation on Forced Convection Cooling of Horizontal Ionic Wind with Multielectrodes Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Numerical Simulation on Forced Convection Cooling of Horizontal Ionic Wind

More information

Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge

Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge K. KANTOUNA G.P. FOTIS K.N. KIOUSIS L. EKONOMOU G.E. CHATZARAKIS kkantouna@hotmail.com gfotis@gmail.com konstantinosq@gmail.com

More information

ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET

ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET Reza Baghaei Lakeh Ph.D. Candidate PRESENTATION OUTLINE Corona Discharge Corona Wind and Ion-Drag Flows

More information

Aerodynamic modification of flow over bluff objects by plasma actuation

Aerodynamic modification of flow over bluff objects by plasma actuation Experiments in Fluids (2006) 41: 479 486 DOI 10.1007/s00348-006-0175-0 RESEARCH ARTICLE Y. Sung Æ W. Kim Æ M. G. Mungal Æ M. A. Cappelli Aerodynamic modification of flow over bluff objects by plasma actuation

More information

Numerical Simulation of Flow Separation Control using Multiple DBD Plasma Actuators

Numerical Simulation of Flow Separation Control using Multiple DBD Plasma Actuators Journal of Applied Fluid Mechanics, Vol. 9, No. 4, pp. 1865-1875, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.235.25325 Numerical Simulation

More information

Numerical Simulation of Corona Discharge in Compressed Gases with the Effect of EHD Flow

Numerical Simulation of Corona Discharge in Compressed Gases with the Effect of EHD Flow Proc. ESA Annual Meeting on Electrostatics 28, Paper C2 1 Numerical Simulation of Corona Discharge in Compressed Gases with the Effect of EHD Flow Lin Zhao 1 and Kazimierz Adamiak 2 1 Electrical and Computer

More information

BLUFF-BODY AERODYNAMICS

BLUFF-BODY AERODYNAMICS International Advanced School on WIND-EXCITED AND AEROELASTIC VIBRATIONS OF STRUCTURES Genoa, Italy, June 12-16, 2000 BLUFF-BODY AERODYNAMICS Lecture Notes by Guido Buresti Department of Aerospace Engineering

More information

SIMULATION OF CORONA DISCHARGE IN CONFIGURATIONS WITH A SHARP ELECTRODE

SIMULATION OF CORONA DISCHARGE IN CONFIGURATIONS WITH A SHARP ELECTRODE Journal of Optoelectronics and Advanced Materials Vol. 6, No. 3, September 004, p. 103-108 SIMULATION OF CORONA DISCHARGE IN CONFIGURATIONS WITH A SHARP ELECTRODE P Atten a*, K. Adamiak b, B. Khaddour

More information

Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5

Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5 Journal of Modern Science and Technology Vol. 1. No. 1. May 2013 Issue. Pp.52-60 Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5 Toukir Islam and S.M. Rakibul Hassan

More information

Experimental Investigation of the Aerodynamic Forces and Pressures on Dome Roofs: Reynolds Number Effects

Experimental Investigation of the Aerodynamic Forces and Pressures on Dome Roofs: Reynolds Number Effects Experimental Investigation of the Aerodynamic Forces and Pressures on Dome Roofs: Reynolds Number Effects *Ying Sun 1), Ning Su 2), Yue Wu 3) and Qiu Jin 4) 1), 2), 3), 4) Key Lab of Structures Dynamic

More information

EHD gas flow in electrostatic levitation unit

EHD gas flow in electrostatic levitation unit Journal of Electrostatics 64 (2006) 639 645 www.elsevier.com/locate/elstat EHD gas flow in electrostatic levitation unit L. Zhao, K. Adamiak Department of Electrical and Computer Engineering, The University

More information

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. External Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Drag and Heat Transfer in External flow Fluid flow over solid bodies is responsible

More information

Drag Reduction in Flow Separation. Using Plasma Actuator in a Cylinder Model

Drag Reduction in Flow Separation. Using Plasma Actuator in a Cylinder Model Drag Reduction in Flow Separation Using Plasma Actuator in a Cylinder Model Harinaldi1, a, Budiarso1, b, James Julian2, c,*, Andika. W.S2, d 1 Mechanical Engineering Department, Faculty of Engineering

More information

Active drag reduction in a turbulent boundary layer based on plasma-actuatorgenerated streamwise vortices

Active drag reduction in a turbulent boundary layer based on plasma-actuatorgenerated streamwise vortices June 30 - July 3, 015 Melbourne, Australia 9 9A-5 Active drag reduction in a turbulent boundary layer based on plasma-actuatorgenerated streamwise vortices Chi Wai Wong, Yu Zhou, Yinzhe Li and Yupeng Li

More information

Numerical Investigation of Vortex Induced Vibration of Two Cylinders in Side by Side Arrangement

Numerical Investigation of Vortex Induced Vibration of Two Cylinders in Side by Side Arrangement Numerical Investigation of Vortex Induced Vibration of Two Cylinders in Side by Side Arrangement Sourav Kumar Kar a, 1,, Harshit Mishra a, 2, Rishitosh Ranjan b, 3 Undergraduate Student a, Assitant Proffessor

More information

Numerical and experimental investigation on the effect of a. 2, M Mirzaei 3, A. Shams Taleghani 4

Numerical and experimental investigation on the effect of a. 2, M Mirzaei 3, A. Shams Taleghani 4 NLF0414 shadaram@kntu.ac.ir NLF0414 m/s x=mmx=mm Numerical and experimental investigation on the effect of a plasmaa actuator on NLF0414 airfoils efficiency after the stalll A Salmasi 1, A Shadaram, M

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

Experimental characterization of flow field around a square prism with a small triangular prism

Experimental characterization of flow field around a square prism with a small triangular prism Journal of Mechanical Science and Technology 29 (4) (2015) 1649~1656 www.springerlink.com/content/1738-494x OI 10.1007/s12206-015-0336-2 Experimental characterization of flow field around a square prism

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

More information

Chapter 3 Lecture 8. Drag polar 3. Topics. Chapter-3

Chapter 3 Lecture 8. Drag polar 3. Topics. Chapter-3 Chapter 3 ecture 8 Drag polar 3 Topics 3.2.7 Boundary layer separation, adverse pressure gradient and favourable pressure gradient 3.2.8 Boundary layer transition 3.2.9 Turbulent boundary layer over a

More information

A Magnetohydrodynamic study af a inductive MHD generator

A Magnetohydrodynamic study af a inductive MHD generator Excerpt from the Proceedings of the COMSOL Conference 2009 Milan A Magnetohydrodynamic study af a inductive MHD generator Augusto Montisci, Roberto Pintus University of Cagliari, Department of Electrical

More information

Formation Process of the Electric Wind Produced by a Plasma Actuator

Formation Process of the Electric Wind Produced by a Plasma Actuator IEEE Transactions on Dielectrics and Electrical Insulation Vol. 16, No. 2; April 2009 463 Formation Process of the Electric Wind Produced by a Plasma Actuator N. Balcon, N. Benard and E. Moreau Laboratoire

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999

COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999 COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999 1. Introduction Subject of the course: basics of vehicle aerodynamics ground vehicle aerodynamics examples in car, bus,

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

ENHANCEMENT OF NATURAL CONVECTION HEAT TRANSFER BY THE EFFECT OF HIGH VOLTAGE D.C. ELECTRIC FIELD

ENHANCEMENT OF NATURAL CONVECTION HEAT TRANSFER BY THE EFFECT OF HIGH VOLTAGE D.C. ELECTRIC FIELD Int. J. Mech. ng. & Rob. Res. 014 Amit Kumar and Ritesh Kumar, 014 Research Paper ISSN 78 0149 www.ijmerr.com Vol. 3, No. 1, January 014 014 IJMRR. All Rights Reserved NHANCMNT OF NATURAL CONVCTION HAT

More information

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

More information

Vortex structures in the wake of a buoyant tethered cylinder at moderate to high reduced velocities

Vortex structures in the wake of a buoyant tethered cylinder at moderate to high reduced velocities European Journal of Mechanics B/Fluids 23 (2004) 127 135 Vortex structures in the wake of a buoyant tethered cylinder at moderate to high reduced velocities K. Ryan, M.C. Thompson, K. Hourigan Fluids Laboratory

More information

Vortex Induced Vibrations

Vortex Induced Vibrations Vortex Induced Vibrations By: Abhiroop Jayanthi Indian Institute of Technology, Delhi Some Questions! What is VIV? What are the details of a steady approach flow past a stationary cylinder? How and why

More information

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create

More information

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD V. G. Guedes a, G. C. R. Bodstein b, and M. H. Hirata c a Centro de Pesquisas de Energia Elétrica Departamento de Tecnologias

More information

Day 24: Flow around objects

Day 24: Flow around objects Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

The fast model for ionic wind simulation

The fast model for ionic wind simulation Andrey Samusenko, Yury Stishkov, Polina Zhidkova The fast model for ionic wind simulation Research and Educational Center Electrophysics Saint Petersburg State University Faculty of Physics Ionic wind

More information

Vortex shedding from slender surface mounted pyramids

Vortex shedding from slender surface mounted pyramids Vortex shedding from slender surface mounted pyramids M. J. Morrison 1, R. J. Martinuzzi 3, E. Savory 1, G. A. Kopp 2 1 Department of Mechanical and Materials Engineering, University of Western Ontario,

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information

Proceedings of the 4th Joint US-European Fluids Engineering Division Summer Meeting ASME-FEDSM2014 August 3-7, 2014, Chicago, Illinois, USA

Proceedings of the 4th Joint US-European Fluids Engineering Division Summer Meeting ASME-FEDSM2014 August 3-7, 2014, Chicago, Illinois, USA Proceedings of the 4th Joint US-European Fluids Engineering Division Summer Meeting ASME-FEDSM4 August 3-7, 4, Chicago, Illinois, USA FEDSM4-38 SUPPRESSION OF UNSTEADY VORTEX SHEDDING FROM A CIRCULAR CYLINDER

More information

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation , pp.49-58 http://dx.doi.org/10.1457/ijast.016.9.06 Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation Mojtaba Daneshi Department of Mechanical Engineering,

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

More information

Chapter 7: External Forced Convection

Chapter 7: External Forced Convection Chapter 7: External Forced Convection Yoav Peles Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number ANZIAM J. 46 (E) ppc181 C195, 2005 C181 Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number B. Stewart J. Leontini K. Hourigan M. C. Thompson (Received 25 October 2004,

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Available online at ScienceDirect. Procedia Environmental Sciences 23 (2015 )

Available online at  ScienceDirect. Procedia Environmental Sciences 23 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 23 (2015 ) 260 265 International Conference on Tropical and Coastal Region Eco-Development 2014 (ICTCRED 2014) Modeling

More information

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES THERMAL SCIENCE, Year, Vol. 8, No. 5, pp. 87-9 87 PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES by Cheng-Xu TU, a,b Fu-Bin BAO

More information

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory)

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory) Applied Thermal and Fluid Engineering Energy Engineering (Thermal Engineering Laboratory) Professor Assoc. Professor Hajime Nakamura Shunsuke Yamada Outline of Research In our laboratory, we have been

More information

INTRODUCTION OBJECTIVES

INTRODUCTION OBJECTIVES INTRODUCTION The transport of particles in laminar and turbulent flows has numerous applications in engineering, biological and environmental systems. The deposition of aerosol particles in channels and

More information

Bluff Body Flow Separation Control using Surface Dielectric Barrier Discharges

Bluff Body Flow Separation Control using Surface Dielectric Barrier Discharges 45th AIAA Aerospace Sciences Meeting and Exhibit 8-45th 11 January AIAA Aerospace 2007, Reno, Sciences Nevada Meeting and Exhibit 8 11 January 2007, Reno, Nevada AIAA 2007-939 Bluff Body Flow Separation

More information

Momentum (Newton s 2nd Law of Motion)

Momentum (Newton s 2nd Law of Motion) Dr. Nikos J. Mourtos AE 160 / ME 111 Momentum (Newton s nd Law of Motion) Case 3 Airfoil Drag A very important application of Momentum in aerodynamics and hydrodynamics is the calculation of the drag of

More information

On the Introduction of the Irreversibility in a DBD Plasma Based Channel Flow: A Study on Entropy Generation Rate

On the Introduction of the Irreversibility in a DBD Plasma Based Channel Flow: A Study on Entropy Generation Rate Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(7): 1-8 Research Article ISSN: 2394-658X On the Introduction of the Irreversibility in a DBD Plasma Based

More information

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2 CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration G.S.T.A. Bangga 1*, W.A. Widodo 2 1,2 Department of mechanical engineering Field of study energy conversion Institut

More information

Drag reduction in a class 8 truck - scaled down model

Drag reduction in a class 8 truck - scaled down model Drag reduction in a class 8 truck - scaled down model Vishwa Krishna. R 1, Suwathy. R 2, Pragadeesh. M 1, and Venkatesan. M 1,* 1 School of Mechanical Engineering, SASTRA Deemed University, Tirumalaisamudram,

More information

ON PARTITIONED AND MONOLITHIC COUPLING STRATEGIES IN LAGRANGIAN VORTEX METHODS FOR 2D FSI PROBLEMS

ON PARTITIONED AND MONOLITHIC COUPLING STRATEGIES IN LAGRANGIAN VORTEX METHODS FOR 2D FSI PROBLEMS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK ON PARTITIONED AND MONOLITHIC COUPLING STRATEGIES

More information

Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles International Journal of Engineering Research (ISSN : 2319-6890) Volume No.2, Issue No.2, pp : 83-87 01 April 2013 Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

More information

ME224 Lab 6 Viscosity Measurement

ME224 Lab 6 Viscosity Measurement 1. Introduction ME224 Lab 6 Viscosity Measurement (This lab is adapted from IBM-PC in the laboratory by B G Thomson & A F Kuckes, Chapter 7) A solid body moving through a fluid has a force pushing on it

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II External Flows 1 Introduction In this chapter we will consider several fundamental flows, namely: the flat plate, the cylinder, the sphere, several other body shapes, and banks

More information

COMPUTATIONAL STUDY OF SEPARATION CONTROL MECHANISM WITH THE IMAGINARY BODY FORCE ADDED TO THE FLOWS OVER AN AIRFOIL

COMPUTATIONAL STUDY OF SEPARATION CONTROL MECHANISM WITH THE IMAGINARY BODY FORCE ADDED TO THE FLOWS OVER AN AIRFOIL COMPUTATIONAL STUDY OF SEPARATION CONTROL MECHANISM WITH THE IMAGINARY BODY FORCE ADDED TO THE FLOWS OVER AN AIRFOIL Kengo Asada 1 and Kozo Fujii 2 ABSTRACT The effects of body force distribution on the

More information

Journal of Electrostatics

Journal of Electrostatics Journal of Electrostatics xxx (20) e5 Contents lists available at SciVerse ScienceDirect Journal of Electrostatics journal homepage: www.elsevier.com/locate/elstat Effect of relative humidity on currentevoltage

More information

Basic Concepts: Drag. Education Community

Basic Concepts: Drag.  Education Community Basic Concepts: Drag 011 Autodesk Objectives Page Introduce the drag force that acts on a body moving through a fluid Discuss the velocity and pressure distributions acting on the body Introduce the drag

More information

Influence of the Microplasma Actuator Electrode Configuration on the Induced EHD Flow

Influence of the Microplasma Actuator Electrode Configuration on the Induced EHD Flow Proc. 2018 Electrostatics Joint Conference 1 Influence of the Microplasma Actuator Electrode Configuration on the Induced EHD Flow Marius Blajan, Daisuke Nonanka, Jaroslav Kristof and Kazuo Shimizu Organization

More information

Modelling Ehd Actuation with a Slip Velocity. A. Gronskis, R. Sosa, and G. Artana

Modelling Ehd Actuation with a Slip Velocity. A. Gronskis, R. Sosa, and G. Artana Joint ESA/IEEE-IAS/IEJ/SFE/IEA Conference - > Poster Session 2-Paper2.19< 1 Modelling Ehd Actuation with a Slip Velocity A. Gronskis, R. Sosa, and G. Artana Abstract The introduction of an electro-hydrodynamic

More information

IJSER. PRESENT study considers numerical investigation for 1 INTRODUCTION. Vivek Shrivastava, Pavan Badami, Saravanan V, K N Seetharamu

IJSER. PRESENT study considers numerical investigation for 1 INTRODUCTION. Vivek Shrivastava, Pavan Badami, Saravanan V, K N Seetharamu International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 554 Effect of Triangular Wake Splitter on Flow and Heat Transfer over a Circular Cylinder for Various Chord Lengths

More information

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Abstract AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Aniket D. Jagtap 1, Ric Porteous 1, Akhilesh Mimani 1 and Con Doolan 2 1 School of Mechanical

More information

Wake flow stabilization with DBD plasma actuators for low Re numbers

Wake flow stabilization with DBD plasma actuators for low Re numbers Wake flow stabilization with DBD plasma actuators for low Re numbers Juan D Adamo, Roberto Sosa, Marcos Barceló, Guillermo Artana Laboratorio de Fluidodinámica, Facultad de Ingeniería. Universidad de Buenos

More information

2D FLOW AROUND STATIONARY SIDE-BY-SIDE SQUARE COLUMNS AT LOW REYNOLDS NUMBER

2D FLOW AROUND STATIONARY SIDE-BY-SIDE SQUARE COLUMNS AT LOW REYNOLDS NUMBER D FLOW AROUND STATIONARY SIDE-BY-SIDE SQUARE COLUMNS AT LOW REYNOLDS NUMBER Guan Mengzhao, Ma Shengwei 3, Francesca Siracusa, Kang Chang-Wei 3, *Lim Teck-Bin Arthur 3, Gabriel Weymouth, Owen Tutty, Tan

More information

Effect of Blockage on Spanwise Correlation in a Circular Cylinder Wake

Effect of Blockage on Spanwise Correlation in a Circular Cylinder Wake Effect of Blockage on Spanwise Correlation in a Circular Cylinder Wake H. M. Blackburn Department of Mechanical Engineering, Monash University May 15, 2003 Summary A short series of experiments was conducted

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 9 (September 2017), PP.12-19 CFD Analysis for Thermal Behavior of Turbulent

More information

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September -6, 01 Numerical simulation of hydrodynamic loading on submerged rectangular bridge decks

More information

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers International Journal of Fluids Engineering. ISSN 0974-3138 Volume 5, Number 1 (2013), pp. 29-37 International Research Publication House http://www.irphouse.com Numerical Simulation of Flow Around An

More information

ELECTRO-HYDRODYNAMIC (EHD) THRUSTER ANALYSIS AND OPTIMIZATION

ELECTRO-HYDRODYNAMIC (EHD) THRUSTER ANALYSIS AND OPTIMIZATION THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART ALBERT NERKEN SCHOOL OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING ELECTRO-HYDRODYNAMIC (EHD) THRUSTER ANALYSIS AND OPTIMIZATION by CLEMENS

More information

Electrohydrodynamic phenomena in atmospheric discharges : application to airflow control by plasma actuators

Electrohydrodynamic phenomena in atmospheric discharges : application to airflow control by plasma actuators Proc. 216 Electrostatics Joint Conference 1 Electrohydrodynamic phenomena in atmospheric discharges : application to airflow control by plasma actuators Eric Moreau, Nicolas Benard University of Poitiers,

More information

Numerical and Experimental Studies of the Electrohydrodynamic Pump for Sampling System on Mars

Numerical and Experimental Studies of the Electrohydrodynamic Pump for Sampling System on Mars Proc. ESA Annual Meeting on Electrostatics 28, Paper O3 1 Numerical and Experimental Studies of the Electrohydrodynamic Pump for Sampling System on Mars Lin Zhao 1, Kazimierz Adamiak 2 and Malay Mazumder

More information

Stall control at high angle of attack with plasma sheet actuators

Stall control at high angle of attack with plasma sheet actuators Exp Fluids (27) 42:143 167 DOI 1.17/s348-6-227-5 RESEARCH ARTICLE Stall control at high angle of attack with plasma sheet actuators Roberto Sosa Æ Guillermo Artana Æ Eric Moreau Æ Gérard Touchard Received:

More information

SHEAR-LAYER MANIPULATION OF BACKWARD-FACING STEP FLOW WITH FORCING: A NUMERICAL STUDY

SHEAR-LAYER MANIPULATION OF BACKWARD-FACING STEP FLOW WITH FORCING: A NUMERICAL STUDY SHEAR-LAYER MANIPULATION OF BACKWARD-FACING STEP FLOW WITH FORCING: A NUMERICAL STUDY Shia-Hui Peng Swedish Defence Research Agency, FOI, Sweden peng@foi.se 1 Introduction By means of experimental and

More information

EHD flow produced by positive and negative point-to-plate corona discharges

EHD flow produced by positive and negative point-to-plate corona discharges Proc. 2018 Electrostatics Joint Conference 1 EHD flow produced by positive and negative point-to-plate corona discharges Eric Moreau, Patrick Braud, Etienne Defoort, Nicolas Benard University of Poitiers,

More information

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls Fluid Structure Interaction V 85 Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls K. Fujita Osaka City University,

More information

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder The Lecture Contains: Description of Flow past a Circular Cylinder Experimental Results for Circular Cylinder Flow file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture12/12_1.htm[12/24/2014

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Flow Control around Bluff Bodies by Attached Permeable Plates

Flow Control around Bluff Bodies by Attached Permeable Plates Flow Control around Bluff Bodies by Attached Permeable Plates G. M. Ozkan, H. Akilli Abstract The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use

More information

Steady control of laminar separation over airfoils with plasma sheet actuators

Steady control of laminar separation over airfoils with plasma sheet actuators Journal of Electrostatics 64 (2006) 604 610 www.elsevier.com/locate/elstat Steady control of laminar separation over airfoils with plasma sheet actuators Roberto Sosa a, Guillermo Artana b, a Laboratorio

More information

OVERALL HEAT TRANSFER ENHANCEMENT OF TRIANGULAR OBSTACLES

OVERALL HEAT TRANSFER ENHANCEMENT OF TRIANGULAR OBSTACLES International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 8, pp. 1278-1291, July-December 2013 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.8.2013.17.0105

More information

Multi-Electrode Plasma Actuator to Improve Performance of Flow Separation Control

Multi-Electrode Plasma Actuator to Improve Performance of Flow Separation Control International Journal of Gas Turbine, Propulsion and Power Systems February 2017, Volume 9, Number 1 Multi-Electrode Plasma Actuator to Improve Performance of Flow Separation Control Norio Asaumi 1,2,

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Enhancement of External Forced Convection by Ionic Wind

Enhancement of External Forced Convection by Ionic Wind Purdue University Purdue e-pubs CTRC Research Publications Cooling Technologies Research Center 7-8-2008 Enhancement of External Forced Convection by Ionic Wind David Go Raul A. Maturana Timothy Fisher

More information

Experimental Study of Flow Control Over an Ahmed Body Using Plasma Actuator

Experimental Study of Flow Control Over an Ahmed Body Using Plasma Actuator Mechanics and Mechanical Engineering Vol. 22, No. 1 (2018) 239 251 c Lodz University of Technology Experimental Study of Flow Control Over an Ahmed Body Using Plasma Actuator S. Shadmani S. M. Mousavi

More information

Side-View Mirror Vibrations Induced Aerodynamically by Separating Vortices

Side-View Mirror Vibrations Induced Aerodynamically by Separating Vortices Open Journal of Fluid Dynamics, 2016, 6, 42-56 Published Online March 2016 in SciRes. http://www.scirp.org/journal/ojfd http://dx.doi.org/10.4236/ojfd.2016.61004 Side-View Mirror Vibrations Induced Aerodynamically

More information

International Conference on Energy Efficient Technologies For Automobiles (EETA 15) Journal of Chemical and Pharmaceutical Sciences ISSN:

International Conference on Energy Efficient Technologies For Automobiles (EETA 15) Journal of Chemical and Pharmaceutical Sciences ISSN: HEAT TRANSFER ENHANCEMENT WITH PRESSURE LOSS REDUCTION IN COMPACT HEAT EXCHANGERS USING VORTEX GENERATORS Viswajith M V*, Gireesh Kumaran Thampi, James Varghese Department of Mechanical Engineering, School

More information