Excluded t-factors in Bipartite Graphs:

Size: px
Start display at page:

Download "Excluded t-factors in Bipartite Graphs:"

Transcription

1 Excluded t-factors in Bipartite Graphs: A nified Framework for Nonbipartite Matchings and Restricted -matchings Blossom and Subtour Elimination Constraints Kenjiro Takazawa Hosei niversity, Japan IPCO017 niversity of Waterloo June 5-7, 017

2 Matching, -matching, and t-matching G = (V,E) : Simple, ndirected v δv Definition F E is a matching F δv 1 v V F E is a -matching F δv v V F F E is a t-matching F δv t v V F F 1 F 3 Just keep t=1, in mind No theoretical difference in t Z >0 t = 3

3 Our Framework : What are contained? Our Framework 3 Matching Restriction Triangle-free -matching with edge-multiplicity Square-free -matching in bipartite graph Hamilton cycle

4 Our Result : What did we solve? Our Framework Matching Our Result Min-max theorem LP with dual integrality Combinatorial algorithm 4 Triangle-free -matching with edge-multiplicity Square-free -matching in bipartite graph P NP-hard Hamilton cycle Even factor [Cunningham, Geelen 01] K t,t -free t-matching [Frank 03] -matching covering 3,4-edge cuts [Kaiser, Škrekovski 04,08] [Boyd, Iwata, T. 13]

5 Contents 5 1. Introduction. Previous work Triangle-free -matching with multiplicity Square-free -matching 3. Our framework: -feasible t-matching Min-max theorem Combinatorial algorithm 4. Weighted -feasible t-matching LP with dual integrality Combinatorial algorithm 5. Summary

6 Triangle-free -matching Definition (Triangle-free -matching) -matching x {0,1,} E is Triangle-free Excluding cycles of length 3 Allowing multiplicity : 6 F 1 F Theorem [Cornuéjols & Pulleyblank 80] Max. x(e) : P Max. w(e)x(e) : P Min-max theorem LP with dual integrality Combinatorial algorithm No multiplicity allowed: Max. F : Algorithm [Hartvigsen 84] Max. w(f): Open Discrete convexity [Kobayashi 14] F 3 F 4

7 Square-free -matching in bipartite graph 7 Definition (Square-free -matching) -matching F E is Square-free Excluding cycles of length 4 Previous work for bipartite graphs Max. F : P Min-max theorem [Z. Király 99, Frank 03] Combinatorial algorithm [Hartvigsen 06; Pap 07] Canonical decomposition [T. 15] Max. w(f): NP-hard [Z. Király 99] P under a certain assumption on w ( p.16) LP with dual integrality [Makai 07] Combinatorial algorithm [T. 09] Max. F in nonbipartite graphs: Open Discrete convexity [Kobayashi, Szabó, T. 1]

8 Contents 8 1. Introduction. Previous work Triangle-free -matching with multiplicity Square-free -matching 3. Our framework: -feasible t-matching Min-max theorem Combinatorial algorithm 4. Weighted -feasible t-matching LP with dual integrality Combinatorial algorithm 5. Summary

9 Our Framework: -feasible t-matching 9 V : Vertex subset family Definition t-matching F E is -feasible F t 1 Excluding t-factors in G[] 1 t=1: F[] t=: F 1 1 = 1 = 1 1 ( : even) [T. 16] ( : odd) 1 = V {,V} -feasible -factor=hamilton cycle 1

10 Our Result 10 Our assumption G: Bipartite is factor-critical ( p. 13) Our result Min-max theorem Combinatorial algorithm Weighted (Assumption on w) LP with dual integrality Combinatorial algorithm Problems accepting this assumption: Square-free -matching = { : V, =4} t= Nonbipartite matching Triangle-free -matching Even factor K t,t -free t-matching Nonbipartite ( Next slides)

11 Special Case: Triangle-free -matching G=(V,E): Nonbipartite graph u v x 11 G =(V,E ): Bipartite graph V = V 1 V E = {u 1 v, v 1 u : uv E} t = 1 = { 1 : V, =3} z u 1 y u Proposition v 1 v max. triangle-free -matching in G = max. -feasible 1-matching in G x 1 x y 1 y z 1 z

12 Special Case: Nonbipartite Matching G=(V,E): Nonbipartite graph u x v 1 G =(V,E ): Bipartite graph V = V 1 V E = {u 1 v, v 1 u : uv E} t = 1 = { 1 : V, is odd} z u 1 y u Proposition v 1 v max matching in G = max -feasible 1-matching in G x 1 x u Dipaths and even dicycles = Even factor [Cunningham, Geelen 01] z x v y y 1 z 1 y z

13 Algorithm + Factor-criticality of 13 Nonbipartite matching: Shrink odd cycles [Edmonds 65] v Shrink Augment Expand -feasible t-matching: Shrink v factor-critical Perfect matching covering -v u v u v Assumption on (G,,t) is factor-critical Shrink Augment u, v : Degree 1 (=t-1) -{u,v} : Degree (=t) Expand Feasible for crossing

14 Min-max Theorem Theorem G: Bipartite is factor-critical max{ F : F is a -feasible t-matching} t 1 =min{ t X + E C V X + σ (V X) } max{ M : M is a matching} = 1 Nonbipartite matching Triangle-free -matching Square-free -matching Even factor K t,t -free t-matching Theorem [Tutte 47, Berge 58] 14 min{ V + X odd(x): X V} X X

15 Contents Introduction. Previous work Triangle-free -matching with multiplicity Square-free -matching 3. Our framework: -feasible t-matching Min-max theorem Combinatorial algorithm 4. Weighted -feasible t-matching LP with dual integrality Combinatorial algorithm 5. Summary

16 LP for Square-free -matching Max weight square-free -matching Maximize e E w(e) x(e) subject to e δv x(e) (v V) e E[] x(e) 3 ( V, =4) 0 x(e) 1 (e E) t 1 16 Theorem [Makai 07, T. 09] Assumption on w G: Bipartite w is vertex-induced on square i.e., w(u 1 v 1 )+w(u v ) = w(u 1 v )+w(u v 1 ) This LP has an integral opt solution The dual LP has an integral opt solution u 1 u v 1 v

17 Our Result: LP for -feasible t-matching 17 Max weight -feasible t-matching Maximize e E w(e) x(e) subject to e δv x(e) t (v V) e E[] x(e) x(e) 0 t 1 ( ) (e E) Theorem Proved by our G: Bipartite primal-dual algorithm is factor-critical w is vertex-induced on i.e., in G[], the weights of perfect matchings are identical This LP has an integral opt solution The dual LP has an integral opt solution u 1 u v 1 u 3 v v 3

18 Our Result: LP for -feasible t-matching 18 Max weight -feasible t-matching Maximize e E w(e) x(e) subject to e δv x(e) t (v V) e E[] x(e) x(e) 0 t 1 ( ) (e E) Special cases Subtour Elimination Const. for TSP t 1 t= = - 1 Blossom Const. for matching t=1, = (odd) t 1 = 1 u 1 u v 1 u 3 v v 3

19 Subtour Elimination for TSP 19 IP for TSP [Dantzig, Fulkerson, Johnson 54] Minimize e E w(e) x(e) subject to e δv x(e) = (v V) e E[] x(e) - 1 x(e) {0,1} Conjecture [Goemans 95] ( V) (e E) 1 w is metric Integrality gap 4 3 i.e., OPT(IP) 4 3 OPT(LP)

20 Blossom Const for Nonbipartite Matching 0 Max. weight matching Maximize e E w(e) x(e) subject to e δv x(e) 1 (v V) 1 e E[] x(e) ( V, is odd) x(e) 0 (e E) 1 Theorem [Cunningham, Marsh 78] This LP has an integral optimal solution The dual LP has an integral optimal solution

21 LP for Triangle-free -matching Max weight triangle-free -matching Maximimize e E w(e) x(e) subject to e δv x(e) (v V) e E[] x(e) ( V, =3) x(e) 0 (e E) 1 Theorem [Cornuéjols & Pulleyblank 80] This LP has an integer optimal solution 1 1

22 Contents 1. Introduction. Previous work Triangle-free -matching with multiplicity Square-free -matching 3. Our framework: -feasible t-matching Min-max theorem Combinatorial algorithm 4. Weighted -feasible t-matching LP with dual integrality Combinatorial algorithm 5. Summary

23 Summary Our Framework -feasible t-matching: F t 1 3 Special Cases Nonbipartite matching Triangle-free -matching with edge multiplicity Even factor Square-free -matching K t,t -free t-matching -matchings covering edge cuts Hamilton cycles Solved: G: Bipartite is factor-critical w is vertex-induced on Min-max theorem LP with dual integrality Combinatorial algorithm

24 Further Research 4 Application to TSP Subtour elimination Blossom constraint So what?? New class of ***-free -factors?? C 4 [Hartvigsen 06, Pap 07] C 6 with chords [T. 16] Matroids as Special Cases Matroids (t=1, ={Circuit}) Arborescences And more?? So what?? : Circuit

25 References 5 G. Cornuéjols, W. Pulleyblank: A matching problem with side conditions, Discrete Math. 9 (1980), W.H. Cunningham, J.F. Geelen, Vertex-disjoint dipaths and even dicircuits, manuscript, 001. D. Hartvigsen: Finding maximum square-free -matchings in bipartite graphs, J. Combin. Theory B, 96 (006), G. Pap: Combinatorial algorithms for matchings, even factors and square-free -factors, Math. Program. 110 (007), K. Takazawa: A weighted even factor algorithm, Math. Program. 115 (008), K. Takazawa: A weighted K t,t -free t-factor algorithm for bipartite graphs, Math. Oper. Res. 34 (009), K. Takazawa: Finding a maximum -matching excluding prescribed cycles in bipartite graphs, Discrete Optimization, to appear.

26 END of slides 6

Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs

Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs Kenjiro Takazawa RIMS, Kyoto University ISMP 2015 Pittsburgh July 13, 2015 1 Overview G = (V,E): Bipartite, Simple M E: Square-free

More information

Restricted b-matchings in degree-bounded graphs

Restricted b-matchings in degree-bounded graphs Egerváry Research Group on Combinatorial Optimization Technical reports TR-009-1. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Covering Cuts in Bridgeless Cubic Graphs. Sylvia BOYD, Satoru IWATA, Kenjiro TAKAZAWA

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Covering Cuts in Bridgeless Cubic Graphs. Sylvia BOYD, Satoru IWATA, Kenjiro TAKAZAWA RIMS-1731 Covering Cuts in Bridgeless Cubic Graphs By Sylvia BOYD, Satoru IWATA, Kenjiro TAKAZAWA August 2011 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan Covering Cuts in

More information

M-convex Functions on Jump Systems A Survey

M-convex Functions on Jump Systems A Survey Discrete Convexity and Optimization, RIMS, October 16, 2012 M-convex Functions on Jump Systems A Survey Kazuo Murota (U. Tokyo) 121016rimsJUMP 1 Discrete Convex Analysis Convexity Paradigm in Discrete

More information

arxiv: v3 [cs.ds] 21 Jun 2018

arxiv: v3 [cs.ds] 21 Jun 2018 Shorter tours and longer detours: Uniform covers and a bit beyond Arash Haddadan, Alantha Newman, R. Ravi arxiv:1707.05387v3 [cs.ds] 21 Jun 2018 June 25, 2018 Abstract Motivated by the well known four-thirds

More information

Improving Christofides Algorithm for the s-t Path TSP

Improving Christofides Algorithm for the s-t Path TSP Cornell University May 21, 2012 Joint work with Bobby Kleinberg and David Shmoys Metric TSP Metric (circuit) TSP Given a weighted graph G = (V, E) (c : E R + ), find a minimum Hamiltonian circuit Triangle

More information

The traveling salesman problem

The traveling salesman problem Chapter 58 The traveling salesman problem The traveling salesman problem (TSP) asks for a shortest Hamiltonian circuit in a graph. It belongs to the most seductive problems in combinatorial optimization,

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization 2017-2018 1 Maximum matching on bipartite graphs Given a graph G = (V, E), find a maximum cardinal matching. 1.1 Direct algorithms Theorem 1.1 (Petersen, 1891) A matching M is

More information

Weighted linear matroid matching

Weighted linear matroid matching Egerváry Research Group (EGRES) Eötvös University, Budapest, Hungary Waterloo, June 12, 2012 Definitions V is a vectorspace V 1, V 2,, V k < V are called skew subspaces ( independent subspaces ) if they

More information

The Traveling Salesman Problem: Inequalities and Separation

The Traveling Salesman Problem: Inequalities and Separation The Traveling Salesman Problem: Inequalities and Separation Adam N. Letchford Department of Management Science, Lancaster University http://www.lancs.ac.uk/staff/letchfoa 1. The ILP formulation of the

More information

Not Every GTSP Facet Induces an STSP Facet

Not Every GTSP Facet Induces an STSP Facet Not Every GTSP Facet Induces an STSP Facet Marcus Oswald, Gerhard Reinelt, and Dirk Oliver Theis Institute of Computer Science University of Heidelberg Im Neuenheimer Feld 38, 9120 Heidelberg, Germany

More information

Advanced Algorithms 南京大学 尹一通

Advanced Algorithms 南京大学 尹一通 Advanced Algorithms 南京大学 尹一通 LP-based Algorithms LP rounding: Relax the integer program to LP; round the optimal LP solution to a nearby feasible integral solution. The primal-dual schema: Find a pair

More information

Alternating paths revisited II: restricted b-matchings in bipartite graphs

Alternating paths revisited II: restricted b-matchings in bipartite graphs Egerváry Research Group on Combinatorial Optimization Technical reports TR-2005-13. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

A Faster Algorithm for the Maximum Even Factor Problem

A Faster Algorithm for the Maximum Even Factor Problem A Faster Algorithm for the Maximum Even Factor Problem Maxim A. Babenko arxiv:1004.2115v2 [math.co] 14 Apr 2010 Moscow State University Abstract. Given a digraph G = (VG,AG), an even factor M AG is a subset

More information

When the Gomory-Chvátal Closure Coincides with the Integer Hull

When the Gomory-Chvátal Closure Coincides with the Integer Hull Date for Revised Manuscript: December 19, 2017 When the Gomory-Chvátal Closure Coincides with the Integer Hull Gérard Cornuéjols Yanjun Li Abstract Gomory-Chvátal cuts are prominent in integer programming.

More information

The Cutting Plane Method is Polynomial for Perfect Matchings

The Cutting Plane Method is Polynomial for Perfect Matchings The Cutting Plane Method is Polynomial for Perfect Matchings Karthekeyan Chandrasekaran 1, László A. Végh 2, and Santosh S. Vempala 1 1 College of Computing, Georgia Institute of Technology 2 Department

More information

The Matching Polytope: General graphs

The Matching Polytope: General graphs 8.433 Combinatorial Optimization The Matching Polytope: General graphs September 8 Lecturer: Santosh Vempala A matching M corresponds to a vector x M = (0, 0,,, 0...0) where x M e is iff e M and 0 if e

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III Instructor: Shaddin Dughmi Announcements Today: Spanning Trees and Flows Flexibility awarded

More information

1 Perfect Matching and Matching Polytopes

1 Perfect Matching and Matching Polytopes CS 598CSC: Combinatorial Optimization Lecture date: /16/009 Instructor: Chandra Chekuri Scribe: Vivek Srikumar 1 Perfect Matching and Matching Polytopes Let G = (V, E be a graph. For a set E E, let χ E

More information

Lecture 11 October 7, 2013

Lecture 11 October 7, 2013 CS 4: Advanced Algorithms Fall 03 Prof. Jelani Nelson Lecture October 7, 03 Scribe: David Ding Overview In the last lecture we talked about set cover: Sets S,..., S m {,..., n}. S has cost c S. Goal: Cover

More information

1 Matchings in Non-Bipartite Graphs

1 Matchings in Non-Bipartite Graphs CS 598CSC: Combinatorial Optimization Lecture date: Feb 9, 010 Instructor: Chandra Chekuri Scribe: Matthew Yancey 1 Matchings in Non-Bipartite Graphs We discuss matching in general undirected graphs. Given

More information

On Matroid Parity and Matching Polytopes

On Matroid Parity and Matching Polytopes On Matroid Parity and Matching Polytopes Konstantinos Kaparis, Adam N. Letchford, Ioannis Mourtos October 017 Abstract The matroid parity problem is a natural extension of the matching problem to the matroid

More information

Dual Consistent Systems of Linear Inequalities and Cardinality Constrained Polytopes. Satoru FUJISHIGE and Jens MASSBERG.

Dual Consistent Systems of Linear Inequalities and Cardinality Constrained Polytopes. Satoru FUJISHIGE and Jens MASSBERG. RIMS-1734 Dual Consistent Systems of Linear Inequalities and Cardinality Constrained Polytopes By Satoru FUJISHIGE and Jens MASSBERG December 2011 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY,

More information

Jens Vygen. New approximation algorithms for the TSP

Jens Vygen. New approximation algorithms for the TSP Jens Vygen New approximation algorithms for the TSP The traveling salesman problem (TSP) is probably the best known combinatorial optimization problem. Although studied intensively for sixty years, the

More information

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) 15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) First show l = c by proving l c and c l. For a maximum matching M in G, let V be the set of vertices covered by M. Since any vertex in

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

The Salesman s Improved Paths: A 3/2+1/34 Approximation

The Salesman s Improved Paths: A 3/2+1/34 Approximation The Salesman s Improved Paths: A /+1/4 Approximation András Sebő Optimisation Combinatoire (G-SCOP) CNRS, Univ. Grenoble Alpes Grenoble, France andras.sebo@grenoble-inp.fr Anke van Zuylen Department of

More information

c 2013 Society for Industrial and Applied Mathematics

c 2013 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 27, No. 2, pp. 918 939 c 2013 Society for Industrial and Applied Mathematics FINDING 2-FACTORS CLOSER TO TSP TOURS IN CUBIC GRAPHS SYLVIA BOYD, SATORU IWATA, AND KENJIRO TAKAZAWA

More information

ON SIZE, CIRCUMFERENCE AND CIRCUIT REMOVAL IN 3 CONNECTED MATROIDS

ON SIZE, CIRCUMFERENCE AND CIRCUIT REMOVAL IN 3 CONNECTED MATROIDS ON SIZE, CIRCUMFERENCE AND CIRCUIT REMOVAL IN 3 CONNECTED MATROIDS MANOEL LEMOS AND JAMES OXLEY Abstract. This paper proves several extremal results for 3-connected matroids. In particular, it is shown

More information

Bounds on the Traveling Salesman Problem

Bounds on the Traveling Salesman Problem Bounds on the Traveling Salesman Problem Sean Zachary Roberson Texas A&M University MATH 613, Graph Theory A common routing problem is as follows: given a collection of stops (for example, towns, stations,

More information

A Fast Approximation for Maximum Weight Matroid Intersection

A Fast Approximation for Maximum Weight Matroid Intersection A Fast Approximation for Maximum Weight Matroid Intersection Chandra Chekuri Kent Quanrud University of Illinois at Urbana-Champaign UIUC Theory Seminar February 8, 2016 Max. weight bipartite matching

More information

Two Applications of Maximum Flow

Two Applications of Maximum Flow Two Applications of Maximum Flow The Bipartite Matching Problem a bipartite graph as a flow network maximum flow and maximum matching alternating paths perfect matchings 2 Circulation with Demands flows

More information

When is the Matching Polytope Box-totally Dual Integral?

When is the Matching Polytope Box-totally Dual Integral? When is the Matching Polytope Box-totally Dual Integral? Guoli Ding a Lei Tan b Wenan Zang b a Mathematics Department, Louisiana State University Baton Rouge, LA 70803, USA b Department of Mathematics,

More information

FRACTIONAL PACKING OF T-JOINS. 1. Introduction

FRACTIONAL PACKING OF T-JOINS. 1. Introduction FRACTIONAL PACKING OF T-JOINS FRANCISCO BARAHONA Abstract Given a graph with nonnegative capacities on its edges, it is well known that the capacity of a minimum T -cut is equal to the value of a maximum

More information

GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017)

GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017) GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017) C. Croitoru croitoru@info.uaic.ro FII November 12, 2017 1 / 33 OUTLINE Matchings Analytical Formulation of the Maximum Matching Problem Perfect Matchings

More information

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9 P versus NP Math 40210, Spring 2012 September 16, 2012 Math 40210 (Spring 2012) P versus NP September 16, 2012 1 / 9 Properties of graphs A property of a graph is anything that can be described without

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Network Flow Application: Bipartite Matching Adam Smith 0//008 A. Smith; based on slides by S. Raskhodnikova and K. Wayne Recently: Ford-Fulkerson Find max s-t flow

More information

Constructive proof of deficiency theorem of (g, f)-factor

Constructive proof of deficiency theorem of (g, f)-factor SCIENCE CHINA Mathematics. ARTICLES. doi: 10.1007/s11425-010-0079-6 Constructive proof of deficiency theorem of (g, f)-factor LU HongLiang 1, & YU QingLin 2 1 Center for Combinatorics, LPMC, Nankai University,

More information

Maximum flow problem

Maximum flow problem Maximum flow problem 7000 Network flows Network Directed graph G = (V, E) Source node s V, sink node t V Edge capacities: cap : E R 0 Flow: f : E R 0 satisfying 1. Flow conservation constraints e:target(e)=v

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LETURE 2 Network Flow Finish bipartite matching apacity-scaling algorithm Adam Smith 0//0 A. Smith; based on slides by E. Demaine,. Leiserson, S. Raskhodnikova, K. Wayne Marriage

More information

On the matrix-cut rank of polyhedra

On the matrix-cut rank of polyhedra On the matrix-cut rank of polyhedra William Cook and Sanjeeb Dash Computational and Applied Mathematics Rice University August 5, 00 Abstract Lovász and Schrijver (99) described a semi-definite operator

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

Agenda. Soviet Rail Network, We ve done Greedy Method Divide and Conquer Dynamic Programming

Agenda. Soviet Rail Network, We ve done Greedy Method Divide and Conquer Dynamic Programming Agenda We ve done Greedy Method Divide and Conquer Dynamic Programming Now Flow Networks, Max-flow Min-cut and Applications c Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 1 / 52

More information

Week 8. 1 LP is easy: the Ellipsoid Method

Week 8. 1 LP is easy: the Ellipsoid Method Week 8 1 LP is easy: the Ellipsoid Method In 1979 Khachyan proved that LP is solvable in polynomial time by a method of shrinking ellipsoids. The running time is polynomial in the number of variables n,

More information

Packing of Rigid Spanning Subgraphs and Spanning Trees

Packing of Rigid Spanning Subgraphs and Spanning Trees Packing of Rigid Spanning Subgraphs and Spanning Trees Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti December 14, 2011 Abstract We prove that every 6k + 2l, 2k-connected simple graph contains

More information

7. Lecture notes on the ellipsoid algorithm

7. Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Michel X. Goemans 18.433: Combinatorial Optimization 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm proposed for linear

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

The Steiner k-cut Problem

The Steiner k-cut Problem The Steiner k-cut Problem Chandra Chekuri Sudipto Guha Joseph (Seffi) Naor September 23, 2005 Abstract We consider the Steiner k-cut problem which generalizes both the k-cut problem and the multiway cut

More information

Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs

Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs Haim Kaplan Tel-Aviv University, Israel haimk@post.tau.ac.il Nira Shafrir Tel-Aviv University, Israel shafrirn@post.tau.ac.il

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

MATH 523: Primal-Dual Maximum Weight Matching Algorithm

MATH 523: Primal-Dual Maximum Weight Matching Algorithm MATH 523: Primal-Dual Maximum Weight Matching Algorithm We start with a graph G = (V, E) with edge weights {c(e) : e E} Primal P: max {c(e)x(e) : e E} subject to {x(e) : e hits i} + yi = 1 for all i V

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

The cocycle lattice of binary matroids

The cocycle lattice of binary matroids Published in: Europ. J. Comb. 14 (1993), 241 250. The cocycle lattice of binary matroids László Lovász Eötvös University, Budapest, Hungary, H-1088 Princeton University, Princeton, NJ 08544 Ákos Seress*

More information

Improving on the 1.5-Approximation of. a Smallest 2-Edge Connected Spanning Subgraph. September 25, Abstract

Improving on the 1.5-Approximation of. a Smallest 2-Edge Connected Spanning Subgraph. September 25, Abstract Improving on the 1.5-Approximation of a Smallest 2-Edge Connected Spanning Subgraph J. Cheriyan y A. Seb}o z Z. Szigeti x September 25, 1999 Abstract We give a 17 -approximation algorithm for the following

More information

Class Meeting #20 COS 226 Spring 2018

Class Meeting #20 COS 226 Spring 2018 Class Meeting #20 COS 226 Spring 2018 Mark Braverman (based on slides by Robert Sedgewick and Kevin Wayne) Linear programming A Swiss army knife for optimization algorithms. Can solve a large fraction

More information

Approximate Integer Decompositions for Undirected Network Design Problems

Approximate Integer Decompositions for Undirected Network Design Problems Approximate Integer Decompositions for Undirected Network Design Problems Chandra Chekuri F. Bruce Shepherd July 14, 2008 Abstract A well-known theorem of Nash-Williams and Tutte gives a necessary and

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Approximation Algorithms Seminar 1 Set Cover, Steiner Tree and TSP Siert Wieringa siert.wieringa@tkk.fi Approximation Algorithms Seminar 1 1/27 Contents Approximation algorithms for: Set Cover Steiner

More information

MINIMALLY NON-PFAFFIAN GRAPHS

MINIMALLY NON-PFAFFIAN GRAPHS MINIMALLY NON-PFAFFIAN GRAPHS SERGUEI NORINE AND ROBIN THOMAS Abstract. We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-pfaffian graphs minimal with respect

More information

On disjoint common bases in two matroids

On disjoint common bases in two matroids Egerváry Research Group on Combinatorial Optimization Technical reports TR-2010-10. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Lecture 5 January 16, 2013

Lecture 5 January 16, 2013 UBC CPSC 536N: Sparse Approximations Winter 2013 Prof. Nick Harvey Lecture 5 January 16, 2013 Scribe: Samira Samadi 1 Combinatorial IPs 1.1 Mathematical programs { min c Linear Program (LP): T x s.t. a

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

MATROID PACKING AND COVERING WITH CIRCUITS THROUGH AN ELEMENT

MATROID PACKING AND COVERING WITH CIRCUITS THROUGH AN ELEMENT MATROID PACKING AND COVERING WITH CIRCUITS THROUGH AN ELEMENT MANOEL LEMOS AND JAMES OXLEY Abstract. In 1981, Seymour proved a conjecture of Welsh that, in a connected matroid M, the sum of the maximum

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

1 Matroid intersection

1 Matroid intersection CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: October 21st, 2010 Scribe: Bernd Bandemer 1 Matroid intersection Given two matroids M 1 = (E, I 1 ) and

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

Reachability-based matroid-restricted packing of arborescences

Reachability-based matroid-restricted packing of arborescences Egerváry Research Group on Combinatorial Optimization Technical reports TR-2016-19. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Separating Simple Domino Parity Inequalities

Separating Simple Domino Parity Inequalities Separating Simple Domino Parity Inequalities Lisa Fleischer Adam Letchford Andrea Lodi DRAFT: IPCO submission Abstract In IPCO 2002, Letchford and Lodi describe an algorithm for separating simple comb

More information

Lecture notes on the ellipsoid algorithm

Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Handout 1 18.433: Combinatorial Optimization May 14th, 007 Michel X. Goemans Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Stephan Held Research Institute for Discrete Mathematics University of Bonn Lennéstr. 2 53113 Bonn held@or.uni-bonn.de February 5, 2015 Announcements Required Qualifications

More information

An algorithm to increase the node-connectivity of a digraph by one

An algorithm to increase the node-connectivity of a digraph by one Discrete Optimization 5 (2008) 677 684 Contents lists available at ScienceDirect Discrete Optimization journal homepage: www.elsevier.com/locate/disopt An algorithm to increase the node-connectivity of

More information

7.5 Bipartite Matching

7.5 Bipartite Matching 7. Bipartite Matching Matching Matching. Input: undirected graph G = (V, E). M E is a matching if each node appears in at most edge in M. Max matching: find a max cardinality matching. Bipartite Matching

More information

A Characterization of Graphs with Fractional Total Chromatic Number Equal to + 2

A Characterization of Graphs with Fractional Total Chromatic Number Equal to + 2 A Characterization of Graphs with Fractional Total Chromatic Number Equal to + Takehiro Ito a, William. S. Kennedy b, Bruce A. Reed c a Graduate School of Information Sciences, Tohoku University, Aoba-yama

More information

. CS711008Z Algorithm Design and Analysis. Lecture 10. Algorithm design technique: Network flow and its applications 1. Dongbo Bu

. CS711008Z Algorithm Design and Analysis. Lecture 10. Algorithm design technique: Network flow and its applications 1. Dongbo Bu CS711008Z Algorithm Design and Analysis Lecture 10 Algorithm design technique: Network flow and its applications 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

Making Bipartite Graphs DM-irreducible

Making Bipartite Graphs DM-irreducible Making Bipartite Graphs DM-irreducible Kristóf Bérczi 1, Satoru Iwata 2, Jun Kato 3, Yutaro Yamaguchi 4 1. Eötvös Lorand University, Hungary. 2. University of Tokyo, Japan. 3. TOYOTA Motor Corporation,

More information

Diskrete Mathematik und Optimierung

Diskrete Mathematik und Optimierung Diskrete Mathematik und Optimierung Annabell Berger, Winfried Hochstättler: Minconvex graph factors of prescribed size and a simpler reduction to weighted f-factors Technical Report feu-dmo006.06 Contact:

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

Dual bounds: can t get any better than...

Dual bounds: can t get any better than... Bounds, relaxations and duality Given an optimization problem z max{c(x) x 2 }, how does one find z, or prove that a feasible solution x? is optimal or close to optimal? I Search for a lower and upper

More information

CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2)

CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2) CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2) Tim Roughgarden February 2, 2016 1 Recap This is our third lecture on linear programming, and the second on linear programming

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

MINIMALLY NON-PFAFFIAN GRAPHS

MINIMALLY NON-PFAFFIAN GRAPHS MINIMALLY NON-PFAFFIAN GRAPHS SERGUEI NORINE AND ROBIN THOMAS Abstract. We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-pfaffian graphs minimal with respect

More information

Math Models of OR: Traveling Salesman Problem

Math Models of OR: Traveling Salesman Problem Math Models of OR: Traveling Salesman Problem John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Traveling Salesman Problem 1 / 19 Outline 1 Examples 2

More information

TSP Cuts Which Do Not Conform to the Template Paradigm

TSP Cuts Which Do Not Conform to the Template Paradigm TSP Cuts Which Do Not Conform to the Template Paradigm David Applegate 1, Robert Bixby 2, Vašek Chvátal 3, and William Cook 4 1 Algorithms and Optimization Department, AT&T Labs Research, Florham Park,

More information

A simple LP relaxation for the Asymmetric Traveling Salesman Problem

A simple LP relaxation for the Asymmetric Traveling Salesman Problem A simple LP relaxation for the Asymmetric Traveling Salesman Problem Thành Nguyen Cornell University, Center for Applies Mathematics 657 Rhodes Hall, Ithaca, NY, 14853,USA thanh@cs.cornell.edu Abstract.

More information

Unions of perfect matchings in cubic graphs

Unions of perfect matchings in cubic graphs Unions of perfect matchings in cubic graphs Tomáš Kaiser Daniel Král Serguei Norine Abstract We show that any cubic bridgeless graph with m edges contains two perfect matchings that cover at least 3m/5

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 7 Network Flow Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 7.5 Bipartite Matching Matching Matching. Input: undirected graph G = (V, E). M E is a matching

More information

On a Cardinality-Constrained Transportation Problem With Market Choice

On a Cardinality-Constrained Transportation Problem With Market Choice On a Cardinality-Constrained Transportation Problem With Market Choice Pelin Damcı-Kurt Santanu S. Dey Simge Küçükyavuz Abstract It is well-known that the intersection of the matching polytope with a cardinality

More information

Edge-connectivity of undirected and directed hypergraphs

Edge-connectivity of undirected and directed hypergraphs Edge-connectivity of undirected and directed hypergraphs by Tamás Király Dissertation submitted to Eötvös Loránd University, Faculty of Science, for the Ph. D. degree Doctoral School: Mathematics Director:

More information

A New Approximation Algorithm for the Asymmetric TSP with Triangle Inequality By Markus Bläser

A New Approximation Algorithm for the Asymmetric TSP with Triangle Inequality By Markus Bläser A New Approximation Algorithm for the Asymmetric TSP with Triangle Inequality By Markus Bläser Presented By: Chris Standish chriss@cs.tamu.edu 23 November 2005 1 Outline Problem Definition Frieze s Generic

More information

arxiv: v2 [math.co] 11 Mar 2019

arxiv: v2 [math.co] 11 Mar 2019 Complexity of packing common bases in matroids Kristóf Bérczi Tamás Schwarcz arxiv:1903.03579v2 [math.co] 11 Mar 2019 Abstract One of the most intriguing unsolved questions of matroid optimization is the

More information

Hamilton Circuits and Dominating Circuits in Regular Matroids

Hamilton Circuits and Dominating Circuits in Regular Matroids Hamilton Circuits and Dominating Circuits in Regular Matroids S. McGuinness Thompson Rivers University June 1, 2012 S. McGuinness (TRU) Hamilton Circuits and Dominating Circuits in Regular Matroids June

More information

Mathematical Programs Linear Program (LP)

Mathematical Programs Linear Program (LP) Mathematical Programs Linear Program (LP) Integer Program (IP) Can be efficiently solved e.g., by Ellipsoid Method Cannot be efficiently solved Cannot be efficiently solved assuming P NP Combinatorial

More information