Data Assimilation Research Testbed Tutorial

Size: px
Start display at page:

Download "Data Assimilation Research Testbed Tutorial"

Transcription

1 Data Assimilation Research Testbed Tutorial Section 3: Hierarchical Group Filters and Localization Version 2.: September, 26 Anderson: Ensemble Tutorial 9//6

2 Ways to deal with regression sampling error: 3. Use additional a priori information about relation between observations and state variables. Regression Weight Distance from Observation (Km?) Can use other functions to weight regression. Unclear what distance means for some obs./state variable pairs. Referred to as LOCALIZATION. Anderson: Ensemble Tutorial 2 9//6

3 Localization is function of expected correlation between obs and state. Often, don t know much about this. Horizontal distance between same type of variable may be okay. What is expected correlation for co-located temperature and pressure? What about vertical localization? Looks pretty complex. What about complicated forward operators: Expected correlation of satellite radiance and wind component? Note: DART does allow vertical localization for more complex models. Anderson: Ensemble Tutorial 3 9//6

4 Ways to deal with regression sampling error: 4. Try to determine the amount of sampling error and correct for it: A. Could weight regressions based on sample correlation. Limited success in tests. For small true correlations, can still get large sample correl. B. Do bootstrap with sample correlation to measure sampling error. Limited success. Repeatedly compute sample correlation with a sample removed. C. Use hierarchical Monte Carlo. Have a sample of samples. Compute expected error in regression coefficients and weight. Anderson: Ensemble Tutorial 4 9//6

5 Ways to deal with regression sampling error: 4C. Use hierarchical Monte Carlo: ensemble of ensembles. t k * * t k * * H H H H H M independent N-member Ensembles H y y β y t k+2 Regression Confidence Factor, α β Μ y t k+2 M groups of N-member ensembles. Compute obs. increments for each group. For given obs. / state pair:. Have M samples of regression coefficient, β. 2. Uncertainty in β implies state variable increments should be reduced. 3. Compute regression confidence factor, α. Anderson: Ensemble Tutorial 5 9//6

6 4C. Use hierarchical Monte Carlo: ensemble of ensembles. Split ensemble into M independent groups. For instance, 8 ensemble members becomes 4 groups of 2. With M groups get M estimates of regression coefficient, β i. Find regression confidence factor α (weight) that minimizes: M j = M [ αβ i β j ] 2 i =, i j Minimizes RMS error in the regression (and state increments). Anderson: Ensemble Tutorial 6 9//6

7 4C. Use hierarchical Monte Carlo: ensemble of ensembles. Regression Confidence Factor, α Group Size 2 Group Size 4 Group Size 8 Group Size Q: Ratio of sample standard deviation to mean Weight regression by α. If one has repeated observations, can generate sample mean or median statistics for α. Mean α can be used in subsequent assimilations as a localization. α is function of M and Q = Σ β β (sample SD / sample mean regression) Anderson: Ensemble Tutorial 7 9//6

8 4C. Use hierarchical Monte Carlo: ensemble of ensembles. Hierarchical filter controlled by setting number of groups, M. num_groups in filter_nml. If we don t know how to localize to start with, can use groups to help. Retrieve original values for input.nml by getting from archive copy (we ll have to determine where this is for this workshop). Try splitting 8 ensemble members into 4 groups for Lorenz-96. (num_groups=4, ens_size=8, 4 groups of 2 each). Use adaptive inflation (.5 lower bounds) to make things nice. (inf_flavor=3, inf_sd_initial=.5, inf_sd_lower_bound=.5) Anderson: Ensemble Tutorial 8 9//6

9 4C. Use hierarchical Monte Carlo: ensemble of ensembles. Turn on regression factor diagnostics, save_reg_diagnostics=.true. After running the 8 by 4 group filter, look at plots of α. Essentially an estimate of a good localization for a given observation. Use plot_reg_factor in matlab. Select default input file name. Only observations, 2, 3, and 4 are available: Located at:.39,.7,.64,.86 Think about value of time median vs. time mean. Could use time mean or median as prior localization functions Play around with model error again. What happens to localization? Anderson: Ensemble Tutorial 9 9//6

10 Lorenz 96 Experimental Design Initial ensemble members random draws from climatology Observations every time step 4 step assimilations, results shown from second 2 steps Covariance inflation tuned for minimum RMS 4 groups of ensembles used unless otherwise noted EXPERIMENT SET : 4 Randomly located observations Error variance -7 (SMALL!) ERROR comes almost entirely from degeneracy of ensemble covariance All errors shown are prior ensemble mean estimates Anderson: Ensemble Tutorial 9//6

11 Time Mean Regression Confidence Envelopes: Small Error Limit.9 Regression Confidence Factor Most results are for observation at State Variable Location Location of 4 randomly located observations Anderson: Ensemble Tutorial 9//6

12 Time Mean Regression Confidence Envelopes: Small Error Limit.9 OBS ENS. 3 Regression Confidence Factor State Variable Location Envelope (localization) for 3 member ensemble (barely degenerate) Anderson: Ensemble Tutorial 2 9//6

13 Time Mean Regression Confidence Envelopes: Small Error Limit Regression Confidence Factor OBS ENS. 3 ENS State Variable Location Envelope for 8 member ensemble Anderson: Ensemble Tutorial 3 9//6

14 Time Mean Regression Confidence Envelopes: Small Error Limit Regression Confidence Factor OBS ENS. 3 ENS. 8 ENS State Variable Location Envelope for 5 member ensemble Anderson: Ensemble Tutorial 4 9//6

15 Time Mean Regression Confidence Envelopes: Small Error Limit Regression Confidence Factor OBS ENS. 3 ENS. 8 ENS. 5 GC State Variable Location Compare to Gaspari Cohn with half-width.2 Anderson: Ensemble Tutorial 5 9//6

16 Time Mean Regression Confidence Envelopes: Small Error Limit Regression Confidence Factor OBS ENS. 3 ENS. 8 ENS. 5 GC.2 ENS. > State Variable Location Ensemble sizes > 3 require NO LOCALIZATION (no significant error) Anderson: Ensemble Tutorial 6 9//6

17 Time Median Regression Confidence Envelopes: Small Error Limit Regression Confidence Factor ENS. 3 ENS. 8 ENS. 5 GC.2 ENS. > State Variable Location Median reduces noise for small expected correlations Anderson: Ensemble Tutorial 7 9//6

18 Additional Experiments: Experimental Design. Base case: plain ensemble, optimized Gaspari Cohn localization half-width 2. Time mean case: plain ensemble but with localization using time mean regression confidence envelope from group assimilation 3. Time median case: as above but with time median from group All Start from group ensemble at time step 2 Covariance inflation tuned independently for each case Anderson: Ensemble Tutorial 8 9//6

19 Time Mean global mean RMS Error: Small Error Results Error grows with reduced ensemble size base 4 group 4 mean 4 median 8 group 8 mean 8 median 8 Group filters always best Time mean and median close to tuned base case Ensemble 3 Ensemble 8 Ensemble 5 Mean/median cost same as base case Anderson: Ensemble Tutorial 9 9//6

20 Experimental Design: Varying Observational Error Variance Observation set as before Observation error variance -5, -3,.,.,., 7 4 member ensembles; not degenerate Error source is now from observation limitations, etc. Claim: behavior is similar, error source is irrelevant for correction Understand degeneracy and other error sources as sampling error Anderson: Ensemble Tutorial 2 9//6

21 Time Median Envelopes: Varying Obs. Error Variance.9 Regression Confidence Factor e State Variable Location Small error implies no need for localization Anderson: Ensemble Tutorial 2 9//6

22 Time Median Envelopes: Varying Obs. Error Variance.9 Regression Confidence Factor e 5 e State Variable Location Anderson: Ensemble Tutorial 22 9//6

23 Time Median Envelopes: Varying Obs. Error Variance Regression Confidence Factor e 5. e 3 e State Variable Location Increasing error implies increasing localization Anderson: Ensemble Tutorial 23 9//6

24 Time Median Envelopes: Varying Obs. Error Variance.9 Regression Confidence Factor e 5. e 3 e State Variable Location Anderson: Ensemble Tutorial 24 9//6

25 Time Median Envelopes: Varying Obs. Error Variance Regression Confidence Factor e 5 e 3. e State Variable Location Single Gaspari Cohn half-width can t deal with this range of errors Anderson: Ensemble Tutorial 25 9//6

26 Time Median Envelopes: Varying Obs. Error Variance Regression Confidence Factor e 5.2 e 3 e... e State Variable Location Climatological case is unique: Looks like time mean coherence Anderson: Ensemble Tutorial 26 9//6

27 Time Median Envelopes: Varying Obs. Error Variance Base 4 4x4 Mean Median Error scaled by obs. error standard deviation As error grows, filter becomes less efficient Things are more nonlinear for large errors.25.2 E 5 E 3... Group, mean and median compare favorably with tuned base for all cases! Anderson: Ensemble Tutorial 27 9//6

28 Regression Confidence Factor Sensitivity of results to group size 2 Groups 4 Groups 8 Groups 6 Groups State Variable Location Obs. error variance., 4 member ensemble case Anderson: Ensemble Tutorial 28 9//6

29 groups 4 groups 8 groups 6 groups Sensitivity of results to group size Gradual improvement for increased group size Time mean/median improve more slowly Important that small groups give good results (for cost) Group better than time mean implies some time varying information (time means should reduce noise) Group Time Mean Time Median Obs. error variance., 4 member ensemble case Anderson: Ensemble Tutorial 29 9//6

30 5 Time variation of regression confidence factor Time 25.5 Time State Variable Location State Variable Location 6 groups 2 groups Some consistent time variation; noise dominates far from obs. Notice behavior around step 33 for instance.2 Anderson: Ensemble Tutorial 3 9//6

31 Time Mean Error Challenging Traditional Localization: Varying spatial obs. density Groups Base Filter Time Mean State Variable Location 39 Dense obs isolated ob. Group filter does better in sparse region Time mean filter performance in between Time Mean Prior RMS Error as function of spatial location Anderson: Ensemble Tutorial 3 9//6

32 Challenging Traditional Localization: Varying spatial obs. density.9 Regression Confidence Factor OB OB 9 OB 39 OB State Variable Location Time median envelopes vary lots with spatial location of obs. Anderson: Ensemble Tutorial 32 9//6

33 Regression Confidence Factor Challenging traditional localization: Spatial-mean obs. Forward observation operator Time Mean Time Median is fifteen grid point mean State Variable Location Envelope has become less Gaussian In one-d L96 domain, everything stays pretty Gaussian But..., group filter does eliminate need for tuning localization! Anderson: Ensemble Tutorial 33 9//6

34 Assimilating observations at times different from state estimate Ensemble smoothers: use future observations Targeted observations: examine impact of obs. in past Real-time assimilation: use of late arriving observations in forecast Expect correlations to diminish as time separation increases Need a localization in time, too Group filter can provide this Anderson: Ensemble Tutorial 34 9//6

35 Time localization : Experimental design 4 group, 4 ensemble member filter 4 random obs. with. error variance additional observation at location.642 The additional observation is from a prior time step Time mean regression confidence envelope as function of time lag Anderson: Ensemble Tutorial 35 9//6

36 Regression confidence factor as function of obs. lag time.9 Time Lag State Variable Location Moves with group velocity (approximately); dies off with lead Anderson: Ensemble Tutorial 36 9//6

37 Assimilation in Idealized AGCM: GFDL FMS B-Grid Dynamical Core (Havana) Held-Suarez Configuration (no zonal variation, fixed forcing) Low-Resolution (6 lons, 3 lats, 5 levels); Timestep hour T at Level 3 (Middle of Atmosphere) Cross Section of Zonal Mean U Has Baroclinic Instability Anderson: Ensemble Tutorial 37 9//6

38 Surface Pressure: Day39 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 38 9//6

39 Surface Pressure: Day392 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 39 9//6

40 Surface Pressure: Day393 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 4 9//6

41 Surface Pressure: Day394 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 4 9//6

42 Surface Pressure: Day395 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 42 9//6

43 Surface Pressure: Day396 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 43 9//6

44 Surface Pressure: Day397 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 44 9//6

45 Surface Pressure: Day398 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 45 9//6

46 Surface Pressure: Day399 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 46 9//6

47 Surface Pressure: Day4 x Temperature, Level 3: Day Anderson: Ensemble Tutorial 47 9//6

48 Experimental Design Details: Bgrid AGCM Results for 4x2 group filter Assimilation for 4 days; starting from climatological distribution Summary results are from last 2 days No covariance inflation 8 randomly located surface pressure stations observe once every 24 hours Observational error variance is mb Anderson: Ensemble Tutorial 48 9//6

49 Baseline Case: 8 PS Obs every 24 hours Largest error in midlatitudes, synoptic scales after 4 days Min = Max = RMS ERROR = HECTO PASCALS RMS ENSEMBLE MEAN ERROR 45 ENSEMBLE SPREAD PS Error Reduces by aboutx Asymptotes after about 5 days DAYS Ensemble spread is approximately correlated with RMS error Anderson: Ensemble Tutorial 49 9//6

50 Largest T error in tropics for interior levels (level 3, day 4 shown) DEGREES K Baseline Case: 8 PS Obs every 24 hours Min =.92 Max = RMS ERROR = LEVEL (Top) LEVEL2 LEVEL3 LEVEL4 LEVEL5 (Bottom) 5 5 DAYS T Error also reduced by about x Asymptotes about day Final error about.25 K for interior levels Anderson: Ensemble Tutorial 5 9//6

51 Hierarchical Filter Regression Confidence Factors: PS Obs. at 2N, 6E ps mean factor cross section at row PS to PS ps median factor cross section at column Anderson: Ensemble Tutorial 5 9//6

52 Hierarchical Filter Regression Confidence Factors: PS Obs. at 2N, 6E t mean factor level t mean factor level t mean factor level PS to T t mean factor level t mean factor level cross section at row Anderson: Ensemble Tutorial 52 9//6

53 Hierarchical Filter Regression Confidence Factors: PS Obs. at 2N, 6E u mean factor level u mean factor level u mean factor level PS to U u mean factor level u mean factor level cross section at row Anderson: Ensemble Tutorial 53 9//6

54 Hierarchical Filter Regression Confidence Factors: PS Obs. at 2N, 6E v mean factor level v mean factor level v mean factor level PS to V v mean factor level v mean factor level cross section at row Anderson: Ensemble Tutorial 54 9//6

55 Running the bgrid dynamical core Go to models/bgrid_solo/work and run workshop_setup.csh This assimilates hourly observations over a two-hour period Observations are 6 randomly located column observations Each column observes surface pressure, plus T, u and v at each level Use diagnostic tools to examine output Useful to compute and examine innovation netcdf field Try ncdiff Prior_Diag.nc Posterior_Diag.nc Innov.nc Anderson: Ensemble Tutorial 55 9//6

Localization and Correlation in Ensemble Kalman Filters

Localization and Correlation in Ensemble Kalman Filters Localization and Correlation in Ensemble Kalman Filters Jeff Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

Reducing the Impact of Sampling Errors in Ensemble Filters

Reducing the Impact of Sampling Errors in Ensemble Filters Reducing the Impact of Sampling Errors in Ensemble Filters Jeffrey Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Data Assimilation Research Testbed Tutorial

Data Assimilation Research Testbed Tutorial Data Assimilation Research Testbed Tutorial Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate assimilation. Single observed variable, single unobserved

More information

DART_LAB Tutorial Section 5: Adaptive Inflation

DART_LAB Tutorial Section 5: Adaptive Inflation DART_LAB Tutorial Section 5: Adaptive Inflation UCAR 14 The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations

More information

Data Assimilation Research Testbed Tutorial. Section 7: Some Additional Low-Order Models

Data Assimilation Research Testbed Tutorial. Section 7: Some Additional Low-Order Models Data Assimilation Research Testbed Tutorial Section 7: Some Additional Low-Order Models Version.: September, 6 /home/jla/dart_tutorial/dart/tutorial/section7/tut_section7.fm 1 7/13/7 Low-order models in

More information

DART Tutorial Section 18: Lost in Phase Space: The Challenge of Not Knowing the Truth.

DART Tutorial Section 18: Lost in Phase Space: The Challenge of Not Knowing the Truth. DART Tutorial Section 18: Lost in Phase Space: The Challenge of Not Knowing the Truth. UCAR The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings

More information

Adaptive Inflation for Ensemble Assimilation

Adaptive Inflation for Ensemble Assimilation Adaptive Inflation for Ensemble Assimilation Jeffrey Anderson IMAGe Data Assimilation Research Section (DAReS) Thanks to Ryan Torn, Nancy Collins, Tim Hoar, Hui Liu, Kevin Raeder, Xuguang Wang Anderson:

More information

DART Tutorial Sec'on 9: More on Dealing with Error: Infla'on

DART Tutorial Sec'on 9: More on Dealing with Error: Infla'on DART Tutorial Sec'on 9: More on Dealing with Error: Infla'on UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

DART Tutorial Sec'on 5: Comprehensive Filtering Theory: Non-Iden'ty Observa'ons and the Joint Phase Space

DART Tutorial Sec'on 5: Comprehensive Filtering Theory: Non-Iden'ty Observa'ons and the Joint Phase Space DART Tutorial Sec'on 5: Comprehensive Filtering Theory: Non-Iden'ty Observa'ons and the Joint Phase Space UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on.

More information

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation.

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. UCAR 2014 The National Center for Atmospheric Research is sponsored by the National

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information

Introduction to Ensemble Kalman Filters and the Data Assimilation Research Testbed

Introduction to Ensemble Kalman Filters and the Data Assimilation Research Testbed Introduction to Ensemble Kalman Filters and the Data Assimilation Research Testbed Jeffrey Anderson, Tim Hoar, Nancy Collins NCAR Institute for Math Applied to Geophysics pg 1 What is Data Assimilation?

More information

DART Tutorial Sec'on 1: Filtering For a One Variable System

DART Tutorial Sec'on 1: Filtering For a One Variable System DART Tutorial Sec'on 1: Filtering For a One Variable System UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Review of Covariance Localization in Ensemble Filters

Review of Covariance Localization in Ensemble Filters NOAA Earth System Research Laboratory Review of Covariance Localization in Ensemble Filters Tom Hamill NOAA Earth System Research Lab, Boulder, CO tom.hamill@noaa.gov Canonical ensemble Kalman filter update

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Accepted in Tellus A 2 October, *Correspondence

Accepted in Tellus A 2 October, *Correspondence 1 An Adaptive Covariance Inflation Error Correction Algorithm for Ensemble Filters Jeffrey L. Anderson * NCAR Data Assimilation Research Section P.O. Box 3000 Boulder, CO 80307-3000 USA Accepted in Tellus

More information

Brian J. Etherton University of North Carolina

Brian J. Etherton University of North Carolina Brian J. Etherton University of North Carolina The next 90 minutes of your life Data Assimilation Introit Different methodologies Barnes Analysis in IDV NWP Error Sources 1. Intrinsic Predictability Limitations

More information

DART Ini)al Condi)ons for a Refined Grid CAM- SE Forecast of Hurricane Katrina. Kevin Raeder (IMAGe) Colin Zarzycki (ASP)

DART Ini)al Condi)ons for a Refined Grid CAM- SE Forecast of Hurricane Katrina. Kevin Raeder (IMAGe) Colin Zarzycki (ASP) DART Ini)al Condi)ons for a Refined Grid CAM- SE Forecast of Hurricane Katrina Kevin Raeder (IMAGe) Colin Zarzycki (ASP) 1 Mo)va)on Thousands of processors on current supercomputers. - > new CAM dynamical

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Ensemble Kalman Filters for WRF-ARW. Chris Snyder MMM and IMAGe National Center for Atmospheric Research

Ensemble Kalman Filters for WRF-ARW. Chris Snyder MMM and IMAGe National Center for Atmospheric Research Ensemble Kalman Filters for WRF-ARW Chris Snyder MMM and IMAGe National Center for Atmospheric Research Preliminaries Notation: x = modelʼs state w.r.t. some discrete basis, e.g. grid-pt values y = Hx

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

Model error and parameter estimation

Model error and parameter estimation Model error and parameter estimation Chiara Piccolo and Mike Cullen ECMWF Annual Seminar, 11 September 2018 Summary The application of interest is atmospheric data assimilation focus on EDA; A good ensemble

More information

(Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme

(Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme (Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme Daryl Kleist 1, Kayo Ide 1, Rahul Mahajan 2, Deng-Shun Chen 3 1 University of Maryland - Dept. of Atmospheric

More information

DART Tutorial Part IV: Other Updates for an Observed Variable

DART Tutorial Part IV: Other Updates for an Observed Variable DART Tutorial Part IV: Other Updates for an Observed Variable UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial GSI Tutorial 2011 Background and Observation Errors: Estimation and Tuning Daryl Kleist NCEP/EMC 29-30 June 2011 GSI Tutorial 1 Background Errors 1. Background error covariance 2. Multivariate relationships

More information

Short tutorial on data assimilation

Short tutorial on data assimilation Mitglied der Helmholtz-Gemeinschaft Short tutorial on data assimilation 23 June 2015 Wolfgang Kurtz & Harrie-Jan Hendricks Franssen Institute of Bio- and Geosciences IBG-3 (Agrosphere), Forschungszentrum

More information

Background Error, Observation Error, and GSI Hybrid Analysis

Background Error, Observation Error, and GSI Hybrid Analysis 2015 GSI Community Tutorial August 11-13, 2013, NCAR, Boulder Background Error, Observation Error, and GSI Hybrid Analysis Ming Hu Developmental Testbed Center Outlines GSI fundamentals (1): Setup and

More information

Introduction to GSI Background Error Covariance (BE)

Introduction to GSI Background Error Covariance (BE) 23 Beijing GSI Tutorial May 29, 23 Beijing, China Introduction to GSI Background Error Covariance (BE) Ming Hu Developmental Testbed Center NCAR-NOAA/GSD BE related Tutorial lectures GSI Tutorial 2 Background

More information

Some Applications of WRF/DART

Some Applications of WRF/DART Some Applications of WRF/DART Chris Snyder, National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division (MMM), and Institue for Mathematics Applied to Geoscience (IMAGe) WRF/DART

More information

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data David Dowell and Wiebke Deierling National Center for Atmospheric Research, Boulder, CO Ensemble Data Assimilation

More information

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Hybrid variational-ensemble data assimilation Daryl T. Kleist Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Weather and Chaos Group Meeting 07 March 20 Variational Data Assimilation J Var J 2 2 T

More information

Objective localization of ensemble covariances: theory and applications

Objective localization of ensemble covariances: theory and applications Institutionnel Grand Public Objective localization of ensemble covariances: theory and applications Yann Michel1, B. Me ne trier2 and T. Montmerle1 Professionnel (1) Me te o-france & CNRS, Toulouse, France

More information

Juli I. Rubin. NRC Postdoctoral Research Associate Naval Research Laboratory, Monterey, CA

Juli I. Rubin. NRC Postdoctoral Research Associate Naval Research Laboratory, Monterey, CA Development of the Ensemble Navy Aerosol Analysis Prediction System and its application of the Data Assimilation Research Testbed in Support of Aerosol Forecasting Juli I. Rubin NRC Postdoctoral Research

More information

Forecasting and data assimilation

Forecasting and data assimilation Supported by the National Science Foundation DMS Forecasting and data assimilation Outline Numerical models Kalman Filter Ensembles Douglas Nychka, Thomas Bengtsson, Chris Snyder Geophysical Statistics

More information

Report on the Joint SRNWP workshop on DA-EPS Bologna, March. Nils Gustafsson Alex Deckmyn.

Report on the Joint SRNWP workshop on DA-EPS Bologna, March. Nils Gustafsson Alex Deckmyn. Report on the Joint SRNWP workshop on DA-EPS Bologna, 22-24 March Nils Gustafsson Alex Deckmyn http://www.smr.arpa.emr.it/srnwp/ Purpose of the workshop On the one hand, data assimilation techniques require

More information

GSI Tutorial Background and Observation Error Estimation and Tuning. 8/6/2013 Wan-Shu Wu 1

GSI Tutorial Background and Observation Error Estimation and Tuning. 8/6/2013 Wan-Shu Wu 1 GSI Tutorial 2013 Background and Observation Error Estimation and Tuning 8/6/2013 Wan-Shu Wu 1 Analysis system produces an analysis through the minimization of an objective function given by J = x T B

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

Numerical Weather Prediction: Data assimilation. Steven Cavallo

Numerical Weather Prediction: Data assimilation. Steven Cavallo Numerical Weather Prediction: Data assimilation Steven Cavallo Data assimilation (DA) is the process estimating the true state of a system given observations of the system and a background estimate. Observations

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

A Non-Gaussian Ensemble Filter Update for Data Assimilation

A Non-Gaussian Ensemble Filter Update for Data Assimilation 4186 M O N T H L Y W E A T H E R R E V I E W VOLUME 138 A Non-Gaussian Ensemble Filter Update for Data Assimilation JEFFREY L. ANDERSON NCAR Data Assimilation Research Section,* Boulder, Colorado (Manuscript

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

The University of Texas at Austin, Jackson School of Geosciences, Austin, Texas 2. The National Center for Atmospheric Research, Boulder, Colorado 3

The University of Texas at Austin, Jackson School of Geosciences, Austin, Texas 2. The National Center for Atmospheric Research, Boulder, Colorado 3 Assimilation of MODIS Snow Cover and GRACE Terrestrial Water Storage Data through DART/CLM4 Yong-Fei Zhang 1, Zong-Liang Yang 1, Tim J. Hoar 2, Hua Su 1, Jeffrey L. Anderson 2, Ally M. Toure 3,4, and Matthew

More information

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES Xuguang Wang*, Thomas M. Hamill, Jeffrey S. Whitaker NOAA/CIRES

More information

Comparison of 3D-Var and LETKF in an Atmospheric GCM: SPEEDY

Comparison of 3D-Var and LETKF in an Atmospheric GCM: SPEEDY Comparison of 3D-Var and LEKF in an Atmospheric GCM: SPEEDY Catherine Sabol Kayo Ide Eugenia Kalnay, akemasa Miyoshi Weather Chaos, UMD 9 April 2012 Outline SPEEDY Formulation Single Observation Eperiments

More information

Toward improved initial conditions for NCAR s real-time convection-allowing ensemble. Ryan Sobash, Glen Romine, Craig Schwartz, and Kate Fossell

Toward improved initial conditions for NCAR s real-time convection-allowing ensemble. Ryan Sobash, Glen Romine, Craig Schwartz, and Kate Fossell Toward improved initial conditions for NCAR s real-time convection-allowing ensemble Ryan Sobash, Glen Romine, Craig Schwartz, and Kate Fossell Storm-scale ensemble design Can an EnKF be used to initialize

More information

Aspects of the practical application of ensemble-based Kalman filters

Aspects of the practical application of ensemble-based Kalman filters Aspects of the practical application of ensemble-based Kalman filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center

More information

5.3 TESTING AND EVALUATION OF THE GSI DATA ASSIMILATION SYSTEM

5.3 TESTING AND EVALUATION OF THE GSI DATA ASSIMILATION SYSTEM 5.3 TESTING AND EVALUATION OF THE GSI DATA ASSIMILATION SYSTEM Kathryn M Newman*, C. Zhou, H. Shao, X.Y. Huang, M. Hu National Center for Atmospheric Research, Boulder, CO Developmental Testbed Center

More information

Bayesian Inverse problem, Data assimilation and Localization

Bayesian Inverse problem, Data assimilation and Localization Bayesian Inverse problem, Data assimilation and Localization Xin T Tong National University of Singapore ICIP, Singapore 2018 X.Tong Localization 1 / 37 Content What is Bayesian inverse problem? What is

More information

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi January 18, 2013, DA Workshop, Tachikawa, Japan Advances and Challenges in Ensemblebased Data Assimilation in Meteorology Takemasa Miyoshi RIKEN Advanced Institute for Computational Science Takemasa.Miyoshi@riken.jp

More information

A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment

A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment 5116 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment XUGUANG WANG Cooperative Institute

More information

Estimation of Surface Fluxes of Carbon, Heat, Moisture and Momentum from Atmospheric Data Assimilation

Estimation of Surface Fluxes of Carbon, Heat, Moisture and Momentum from Atmospheric Data Assimilation AICS Data Assimilation Workshop February 27, 2013 Estimation of Surface Fluxes of Carbon, Heat, Moisture and Momentum from Atmospheric Data Assimilation Ji-Sun Kang (KIAPS), Eugenia Kalnay (Univ. of Maryland,

More information

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Bo Huang and Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK, USA Acknowledgement: Junkyung Kay (OU);

More information

Satellite Observations of Greenhouse Gases

Satellite Observations of Greenhouse Gases Satellite Observations of Greenhouse Gases Richard Engelen European Centre for Medium-Range Weather Forecasts Outline Introduction Data assimilation vs. retrievals 4D-Var data assimilation Observations

More information

The hybrid ETKF- Variational data assimilation scheme in HIRLAM

The hybrid ETKF- Variational data assimilation scheme in HIRLAM The hybrid ETKF- Variational data assimilation scheme in HIRLAM (current status, problems and further developments) The Hungarian Meteorological Service, Budapest, 24.01.2011 Nils Gustafsson, Jelena Bojarova

More information

Ensemble Data Assimila.on for Climate System Component Models

Ensemble Data Assimila.on for Climate System Component Models Ensemble Data Assimila.on for Climate System Component Models Jeffrey Anderson Na.onal Center for Atmospheric Research In collabora.on with: Alicia Karspeck, Kevin Raeder, Tim Hoar, Nancy Collins IMA 11

More information

Ensemble Data Assimila.on and Uncertainty Quan.fica.on

Ensemble Data Assimila.on and Uncertainty Quan.fica.on Ensemble Data Assimila.on and Uncertainty Quan.fica.on Jeffrey Anderson, Alicia Karspeck, Tim Hoar, Nancy Collins, Kevin Raeder, Steve Yeager Na.onal Center for Atmospheric Research Ocean Sciences Mee.ng

More information

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders ASSIMILATION OF METEOSAT RADIANCE DATA WITHIN THE 4DVAR SYSTEM AT ECMWF Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders European Centre for Medium Range Weather Forecasts Shinfield Park,

More information

Signal Modeling, Statistical Inference and Data Mining in Astrophysics

Signal Modeling, Statistical Inference and Data Mining in Astrophysics ASTRONOMY 6523 Spring 2013 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Course Approach The philosophy of the course reflects that of the instructor, who takes a dualistic view

More information

Boundary Conditions for Limited-Area Ensemble Kalman Filters

Boundary Conditions for Limited-Area Ensemble Kalman Filters 2490 M O N T H L Y W E A T H E R R E V I E W VOLUME 134 Boundary Conditions for Limited-Area Ensemble Kalman Filters RYAN D. TORN AND GREGORY J. HAKIM University of Washington, Seattle, Washington CHRIS

More information

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland Error (E) Covariance Diagnostics in Ensemble Data Assimilation Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland 7 th EnKF Data Assimilation Workshop May 2016 Outline Part I. Background: E-diagnostics

More information

Comparisons between 4DEnVar and 4DVar on the Met Office global model

Comparisons between 4DEnVar and 4DVar on the Met Office global model Comparisons between 4DEnVar and 4DVar on the Met Office global model David Fairbairn University of Surrey/Met Office 26 th June 2013 Joint project by David Fairbairn, Stephen Pring, Andrew Lorenc, Neill

More information

J5.8 ESTIMATES OF BOUNDARY LAYER PROFILES BY MEANS OF ENSEMBLE-FILTER ASSIMILATION OF NEAR SURFACE OBSERVATIONS IN A PARAMETERIZED PBL

J5.8 ESTIMATES OF BOUNDARY LAYER PROFILES BY MEANS OF ENSEMBLE-FILTER ASSIMILATION OF NEAR SURFACE OBSERVATIONS IN A PARAMETERIZED PBL J5.8 ESTIMATES OF BOUNDARY LAYER PROFILES BY MEANS OF ENSEMBLE-FILTER ASSIMILATION OF NEAR SURFACE OBSERVATIONS IN A PARAMETERIZED PBL Dorita Rostkier-Edelstein 1 and Joshua P. Hacker The National Center

More information

Updates to Land DA at the Met Office

Updates to Land DA at the Met Office Updates to Land DA at the Met Office Brett Candy & Keir Bovis Satellite Soil Moisture Workshop, Amsterdam, 10th July 2014 Land DA - The Story So Far - Kalman Filter 18 months in operations - Analyses of

More information

Evaluation of a non-local observation operator in assimilation of. CHAMP radio occultation refractivity with WRF

Evaluation of a non-local observation operator in assimilation of. CHAMP radio occultation refractivity with WRF Evaluation of a non-local observation operator in assimilation of CHAMP radio occultation refractivity with WRF Hui Liu, Jeffrey Anderson, Ying-Hwa Kuo, Chris Snyder, and Alain Caya National Center for

More information

Tangent-linear and adjoint models in data assimilation

Tangent-linear and adjoint models in data assimilation Tangent-linear and adjoint models in data assimilation Marta Janisková and Philippe Lopez ECMWF Thanks to: F. Váňa, M.Fielding 2018 Annual Seminar: Earth system assimilation 10-13 September 2018 Tangent-linear

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

The Australian Operational Daily Rain Gauge Analysis

The Australian Operational Daily Rain Gauge Analysis The Australian Operational Daily Rain Gauge Analysis Beth Ebert and Gary Weymouth Bureau of Meteorology Research Centre, Melbourne, Australia e.ebert@bom.gov.au Daily rainfall data and analysis procedure

More information

Satellite Retrieval Assimilation (a modified observation operator)

Satellite Retrieval Assimilation (a modified observation operator) Satellite Retrieval Assimilation (a modified observation operator) David D. Kuhl With Istvan Szunyogh and Brad Pierce Sept. 21 2009 Weather Chaos Group Meeting Overview Introduction Derivation of retrieval

More information

Ji-Sun Kang. Pr. Eugenia Kalnay (Chair/Advisor) Pr. Ning Zeng (Co-Chair) Pr. Brian Hunt (Dean s representative) Pr. Kayo Ide Pr.

Ji-Sun Kang. Pr. Eugenia Kalnay (Chair/Advisor) Pr. Ning Zeng (Co-Chair) Pr. Brian Hunt (Dean s representative) Pr. Kayo Ide Pr. Carbon Cycle Data Assimilation Using a Coupled Atmosphere-Vegetation Model and the LETKF Ji-Sun Kang Committee in charge: Pr. Eugenia Kalnay (Chair/Advisor) Pr. Ning Zeng (Co-Chair) Pr. Brian Hunt (Dean

More information

Assimilation of cloud/precipitation data at regional scales

Assimilation of cloud/precipitation data at regional scales Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research auligne@ucar.edu Acknowledgments to: Steven Cavallo, David Dowell, Aimé Fournier, Hans

More information

GMAO Analyses and Forecasts for YOTC

GMAO Analyses and Forecasts for YOTC GMAO Analyses and Forecasts for YOTC Michele Rienecker and Max Suarez Arlindo da Silva Global Modeling and Assimilation Office NASA/Goddard Space Flight Center YOTC Implementation Planning Meeting Hawaii,

More information

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Project eam: Mark Buehner Cecilien Charette Bin He Peter Houtekamer Herschel Mitchell WWRP/HORPEX Workshop on 4D-VAR and Ensemble

More information

Data Assimilation Development for the FV3GFSv2

Data Assimilation Development for the FV3GFSv2 Data Assimilation Development for the FV3GFSv2 Catherine Thomas 1, 2, Rahul Mahajan 1, 2, Daryl Kleist 2, Emily Liu 3,2, Yanqiu Zhu 1, 2, John Derber 2, Andrew Collard 1, 2, Russ Treadon 2, Jeff Whitaker

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

Introduction to data assimilation and least squares methods

Introduction to data assimilation and least squares methods Introduction to data assimilation and least squares methods Eugenia Kalnay and many friends University of Maryland October 008 (part 1 Contents (1 Forecasting the weather - we are really getting better!

More information

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto Introduction to Data Assimilation Saroja Polavarapu Meteorological Service of Canada University of Toronto GCC Summer School, Banff. May 22-28, 2004 Outline of lectures General idea Numerical weather prediction

More information

Assimilation in the PBL

Assimilation in the PBL Assimilation in the PBL Joshua Hacker hacker@ucar.edu National Center for Atmospheric Research, Research Applications Program Data Assimilation Initiative review, Sept 2004 p.1/17 Outline DAI in my world

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Matthew Wespetal Advisor: Dr. Eugenia Kalnay UMD, AOSC Department March

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error Georg Gottwald, Lewis Mitchell, Sebastian Reich* University of Sydney, *Universität Potsdam Durham,

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

EnKF Localization Techniques and Balance

EnKF Localization Techniques and Balance EnKF Localization Techniques and Balance Steven Greybush Eugenia Kalnay, Kayo Ide, Takemasa Miyoshi, and Brian Hunt Weather Chaos Meeting September 21, 2009 Data Assimilation Equation Scalar form: x a

More information

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich Arizona State University Co-workers: Istvan Szunyogh, Brian Hunt, Ed Ott, Eugenia Kalnay, Jim Yorke, and many others http://www.weatherchaos.umd.edu

More information

Using DART Tools for CAM Development

Using DART Tools for CAM Development Using DART Tools for CAM Development Kevin Raeder, For DART: Jeff Anderson, Tim Hoar, Nancy Collins, Johnny Hendricks CSEG: Alice Bertini, Mariana Vertenstein, Steve Goldhaber, Jim Edwards And: Nick Pedatella

More information

(Statistical Forecasting: with NWP). Notes from Kalnay (2003), appendix C Postprocessing of Numerical Model Output to Obtain Station Weather Forecasts

(Statistical Forecasting: with NWP). Notes from Kalnay (2003), appendix C Postprocessing of Numerical Model Output to Obtain Station Weather Forecasts 35 (Statistical Forecasting: with NWP). Notes from Kalnay (2003), appendix C Postprocessing of Numerical Model Output to Obtain Station Weather Forecasts If the numerical model forecasts are skillful,

More information

Update on the KENDA project

Update on the KENDA project Christoph Schraff Deutscher Wetterdienst, Offenbach, Germany and many colleagues from CH, D, I, ROM, RU Km-scale ENsemble-based Data Assimilation : COSMO priority project Local Ensemble Transform Kalman

More information

Background error modelling: climatological flow-dependence

Background error modelling: climatological flow-dependence Background error modelling: climatological flow-dependence Yann MICHEL NCAR/MMM/B Meeting 16 th April 2009 1 Introduction 2 A new estimate of lengthscales 3 Climatological flow-dependence Yann MICHEL B

More information

Performance of ensemble Kalman filters with small ensembles

Performance of ensemble Kalman filters with small ensembles Performance of ensemble Kalman filters with small ensembles Xin T Tong Joint work with Andrew J. Majda National University of Singapore Sunday 28 th May, 2017 X.Tong EnKF performance 1 / 31 Content Ensemble

More information

Can hybrid-4denvar match hybrid-4dvar?

Can hybrid-4denvar match hybrid-4dvar? Comparing ensemble-variational assimilation methods for NWP: Can hybrid-4denvar match hybrid-4dvar? WWOSC, Montreal, August 2014. Andrew Lorenc, Neill Bowler, Adam Clayton, David Fairbairn and Stephen

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

Evaluating Methods to Account for System Errors in Ensemble Data Assimilation

Evaluating Methods to Account for System Errors in Ensemble Data Assimilation 3078 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 Evaluating Methods to Account for System Errors in Ensemble Data Assimilation JEFFREY S. WHITAKER AND THOMAS M. HAMILL NOAA/Earth System Research

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information