Circuit Theorems DR. GYURCSEK ISTVÁN

Size: px
Start display at page:

Download "Circuit Theorems DR. GYURCSEK ISTVÁN"

Transcription

1 DR. GYURCSEK ISTVÁN Circuit Theorems Sources and additional materials (recommended) q Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN: q Ch. Alexander, M. Sadiku: Fundamentals of Electric Circuits, 6th Ed., McGraw Hill NY 2016, ISBN: q Simonyi K.: Villamosságtan. AK Budapest 1983, ISBN: q Dr. Selmeczi K. Schnöller A.: Villamosságtan 1. MK Budapest 2002, TK szám: 49203/I q Dr. Selmeczi K. Schnöller A.: Villamosságtan 2. TK Budapest 2002, ISBN: q Zombory L.: Elektromágneses terek. MK Budapest 2006, ( 1 gyurcsek.istvan@mik.pte.hu

2 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 2 gyurcsek.istvan@mik.pte.hu

3 Linearity Property (A) Conditions of linearity (Mathematics) Homogeneity / = 0(1) ( $ / = 0(( $ 1) Additivity / + = 0 1 +, / - = / + + / - = (B) Linear circuit (no independent source internally) Linear relationship bw. v S input (excitation) and i output (response) Homogeneity Additivity! = # $ % & ( $! = # $ (( $ % & )! + = # $ % &+,! - = # $ % &-! + +! - = # $ % &+ + # $ % &- = # $ % &+ + % &- (C) OUTCOMES IN CIRCUIT ANALYSIS 1 [HOMOGENEITY] [NEXT SLIDE EXAMPLE]; 2 [ADDITIVITY] [SUPERPOSITION PRINCIPLE] (D) WARNING! The power relation is nonlinear!! =! - + $ 4 2! =! - - $ 4 567! + +! =! + +! - - $ 4 =! - + $ 4 +! - - $ $! + $! - $ gyurcsek.istvan@mik.pte.hu

4 Calc. Example with Homogeneity Find I 0 in the circuit.! : #$$%&' ( ) = 1, 8 : ( 9 = ( / + ( ) = 3, > : (? = ( 9 + ( < = 5, - :. / = ( ) = 8. : :. 9 = ( / = : A%B (? DEFG = ( H = = 15, 5 : ( / =. / 4 = 2, ; : ( < =. 9 7 = 2, I : Bh%$ ( ) DEFG = 5 3 ( ) = 3, 4 gyurcsek.istvan@mik.pte.hu

5 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 5 gyurcsek.istvan@mik.pte.hu

6 Superposition Principle Steps to apply q Turn off independent sources except one and find output. q Repeat it for each of independent sources. q Find total by adding all the contributions. Example Find v by using superposition.! =! # +! % 12( # 6 = 0 ( # = 0.5 /! # = 4( # = 2 1 or! # = = 2 1 ( 5 = = 2 /! % = 4( 5 = 8 1! =! # +! % = = gyurcsek.istvan@mik.pte.hu

7 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 7 gyurcsek.istvan@mik.pte.hu

8 Source Transform Source transformation q Another tool for simplifying circuits q Active equivalent transformation q For real generators only! (/ 0, ) / 78 = / 9 = / $ 78 = & 9 6 /!h#$#%&% () & +, = $. /, 12342% () & +, = &.!h#$#%&% 5) $ +, = $., 12342% 5) $ +, = &. 6 / & 9 = $ 78 / 8 gyurcsek.istvan@mik.pte.hu

9 Calculation Example v 0 =?! = & 2 = 0.4 * +, = 8! = 3.2. /0 +, = 2 34 &! = 2 & & 2 = gyurcsek.istvan@mik.pte.hu

10 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 10 gyurcsek.istvan@mik.pte.hu

11 Thevenin s Theorem ' "# = ( )*! "# =! %& 11 gyurcsek.istvan@mik.pte.hu

12 Thevenin s Theorem Determining R Th q CASE 1 no dependent sources q CASE 2 dependent sources also! "# =! %&! "# = ' ( ) ( Another way (later on)! "# = ' *+ ),+ 12 gyurcsek.istvan@mik.pte.hu

13 Calculation Example Find the current through the 6, 16 and 36 ohms load.! "# = = 4 * = 4 Ω / / 0 / 1 = 0 / 1 = 2 3, / 0 = "# = 12 / 0 / 1 = 12 * 2.5 = "# = 7 "# 12 7 "# = 30 7 < = = 7 "#! "# +! = = ! = = 3, 1.5, gyurcsek.istvan@mik.pte.hu

14 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 14 gyurcsek.istvan@mik.pte.hu

15 Norton s Theorem +, = ( )' +, = * "# * "# = % &'! "#! "# = % &' ( )' = * "# +, =!, 15 gyurcsek.istvan@mik.pte.hu

16 Calculation Example Find the Norton equivalent circuit.! " = = 5 ) = 4 Ω 16 gyurcsek.istvan@mik.pte.hu

17 Calculation Example! " = 2 %, 20! ( 4! " 12 = 0! ( = 1 % =! -. = / 0 17 gyurcsek.istvan@mik.pte.hu

18 Calculation Example Alternatively & ' = ( )* + )*! " = 2 % 25! - 4! " 12 = 0! - = 0.8 % 5 67 = ( )* = 5! - = 4 ( & ' = ( )* + )* = 4 4 = 1 % 18 gyurcsek.istvan@mik.pte.hu

19 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 19 gyurcsek.istvan@mik.pte.hu

20 Maximum Power Transfer! = # $ % & = ' () % () + % & $ % & +! $ % () + % $ & 2% & % () + % & $ % () + % & 2% & = ' +% () & % () + %. = ' () & % () + % / = 0 & % () = % & + $! $ +% == ' () $ + % () % & & +% & % () + % / & < 0 >?@#>A>!BCDE! 123 = ' () $ 4% () 6 =! 123! 7 = $ ' () 8 4% () $ = 0.5 = 50% ' () 8 2% () 20 gyurcsek.istvan@mik.pte.hu

21 Calculation Example Find R L for maximum power transfer. Find the maximum power.! "# = = 5 + 6, = 9 Ω = 0, 1 3 = = , "# = 0 7 "# =22 V! ; =! "# = 9 Ω, < =>? = 223 4, 9 = B 21 gyurcsek.istvan@mik.pte.hu

22 q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 22 gyurcsek.istvan@mik.pte.hu

23 Real Voltage and Current Sources! " =! $ % " % $ + % " ' " = ' $ % ( % ( + % " 23 gyurcsek.istvan@mik.pte.hu

24 Questions

Resonance Circuits DR. GYURCSEK ISTVÁN

Resonance Circuits DR. GYURCSEK ISTVÁN DR. GYURCSEK ISTVÁN Resonance Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 016, ISBN:978-3-330-71341-3 Ch. Alexander, M. Sadiku:

More information

Introduction to Electrical Engineering

Introduction to Electrical Engineering DR. GYURCSEK ISTVÁN Introduction to Electrical Engineering Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016 ISBN:978-3-330-71341-3 1

More information

Frequency Response DR. GYURCSEK ISTVÁN

Frequency Response DR. GYURCSEK ISTVÁN DR. GYURCSEK ISTVÁN Frequency Response Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander, M. Sadiku:

More information

Overview of Electromagnetic Fields 2

Overview of Electromagnetic Fields 2 DR. GYURCSEK ISTVÁN Overview of Eectromagnetic Fieds 2 Magnetic Fied, Couped Fieds Sources and additiona materias (recommended) Dr. Gyurcsek Dr. Emer: Theories in Eectric Circuits, GobeEdit, 2016, ISBN:978-3-330-71341-3

More information

Chapter 4 Circuit Theorems

Chapter 4 Circuit Theorems Chapter 4 Circuit Theorems 1. Linearity and Proportionality. Source Transformation 3. Superposition Theorem 4. Thevenin s Theorem and Norton s Theorem 5. Maximum Power Transfer Theorem Mazita Sem 1 111

More information

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs BME/ISE 3511 Bioelectronics - Test Three Course Notes Fall 2016 Delta & Y Configurations, Principles of Superposition, esistor Voltage Divider Designs Use following techniques to solve for current through

More information

Chapter 4 Circuit Theorems: Linearity & Superposition

Chapter 4 Circuit Theorems: Linearity & Superposition Chapter 4 Circuit Theorems: Linearity & Superposition Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt MSA Summer Course: Electric Circuit Analysis

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

UNIVERSITY F P RTLAND Sch l f Engineering

UNIVERSITY F P RTLAND Sch l f Engineering UNIVERSITY F P RTLAND Sch l f Engineering EE271-Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems - p. 1 of 5 - Electrical

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

D C Circuit Analysis and Network Theorems:

D C Circuit Analysis and Network Theorems: UNIT-1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,

More information

CHAPTER 4. Circuit Theorems

CHAPTER 4. Circuit Theorems CHAPTER 4 Circuit Theorems The growth in areas of application of electrical circuits has led to an evolution from simple to complex circuits. To handle such complexity, engineers over the years have developed

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

Chapter 6: Series-Parallel Circuits

Chapter 6: Series-Parallel Circuits Chapter 6: Series-Parallel Circuits Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Identifying series-parallel relationships Most practical

More information

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design 320ampmodels.tex Page 1 ECE 320 Amplifier Models ECE 320 Linear Active Circuit Design 320ampmodels.tex Page 2 2Port Networks A 2port network is any circiut with two pairs of wires connecting to the outside

More information

EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems

EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Linearity

More information

DC Circuits Analysis

DC Circuits Analysis Western Technical College 10660117 DC Circuits Analysis Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 54.00 This course provides

More information

OUTCOME 3 - TUTORIAL 2

OUTCOME 3 - TUTORIAL 2 Unit : Unit code: QCF evel: 4 Credit value: 15 SYABUS Engineering Science /601/1404 OUTCOME 3 - TUTORIA Be able to apply DC theory to solve electrical and electronic engineering problems DC electrical

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Chapter 3 Methods of Analysis: 1) Nodal Analysis

Chapter 3 Methods of Analysis: 1) Nodal Analysis Chapter 3 Methods of Analysis: 1) Nodal Analysis Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt MSA Summer Course: Electric Circuit Analysis I (ESE

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

EE40. Lec 3. Basic Circuit Analysis. Prof. Nathan Cheung. Reading: Hambley Chapter 2

EE40. Lec 3. Basic Circuit Analysis. Prof. Nathan Cheung. Reading: Hambley Chapter 2 EE40 Lec 3 Basic Circuit Analysis Prof. Nathan Cheung 09/03/009 eading: Hambley Chapter Slide Outline Chapter esistors in Series oltage Divider Conductances in Parallel Current Divider Node-oltage Analysis

More information

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence

More information

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302 Subject Code: 03EC0302 Subject Name: Circuits and Networks B. Tech. Year II (Semester III) Objective: After completion of this course, student will be able to: 1. To introduce electric circuits and its

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton

Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton Session 1d of Basic Electricity A Fairfield University E-Course Powered by LearnLinc Basic Electricity Two Parts Electron Flow and Resistance

More information

Homework 1 solutions

Homework 1 solutions Electric Circuits 1 Homework 1 solutions (Due date: 2014/3/3) This assignment covers Ch1 and Ch2 of the textbook. The full credit is 100 points. For each question, detailed derivation processes and accurate

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Engineering Science. Unit level 4 Credit value 15. Introduction. Learning Outcomes

Engineering Science. Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 3: Unit code Unit type Engineering Science T/615/1477 Core Unit level 4 Credit value 15 Introduction Engineering is a discipline that uses scientific theory to design, develop or maintain structures,

More information

Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

CHAPTER FOUR CIRCUIT THEOREMS

CHAPTER FOUR CIRCUIT THEOREMS 4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over

More information

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

MAE140 - Linear Circuits - Fall 14 Midterm, November 6 MAE140 - Linear Circuits - Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

Lecture Notes on DC Network Theory

Lecture Notes on DC Network Theory Federal University, Ndufu-Alike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by

More information

Lab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips

Lab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips Lab Week 6 Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips Quiz 3 Voltage Divider (20 pts.) Please clear desks and turn

More information

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steady-state analysis. Learn how to apply nodal and mesh analysis in the frequency

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

Transient Analysis of First-Order Circuits: Approaches and Recommendations

Transient Analysis of First-Order Circuits: Approaches and Recommendations Transient Analysis of First-Order Circuits: Approaches and Recommendations Khalid Al-Olimat Heath LeBlanc ECCS Department ECCS Department Ohio Northern University Ohio Northern University Ada, OH 45810

More information

ECE2262 Electric Circuits

ECE2262 Electric Circuits ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence

More information

Study Notes on Network Theorems for GATE 2017

Study Notes on Network Theorems for GATE 2017 Study Notes on Network Theorems for GATE 2017 Network Theorems is a highly important and scoring topic in GATE. This topic carries a substantial weight age in GATE. Although the Theorems might appear to

More information

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Alternating Current Circuits : Basic Law Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Alternating

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Electrical Engineering Technology

Electrical Engineering Technology Electrical Engineering Technology 1 ECET 17700 - DAQ & Control Systems Lecture # 9 Loading, Thévenin Model & Norton Model Professors Robert Herrick & J. Michael Jacob Module 1 Circuit Loading Lecture 9

More information

Bridge Circuits. DR. GYURCSEK ISTVÁN Classic Electrical Measurements 3

Bridge Circuits. DR. GYURCSEK ISTVÁN Classic Electrical Measurements 3 DR. GYURCSEK ISTVÁN Classic Electrical Measurements 3 Bridge Circuits Sources and additional materials (recommended) q I. Gyurcsek: Fundamentals of Electrical Measurements, PTE MIK 2018 (manuscript) q

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Impedance and Admittance Parameters

Impedance and Admittance Parameters 1/31/011 mpedance and Admittance Parameters lecture 1/ mpedance and Admittance Parameters Say we wish to connect the put of one circuit to the input of another. #1 put port input port # The terms input

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Kirchhoff Laws against Node-Voltage nalysis and Millman's Theorem Marcela Niculae and C. M. Niculae 2 on arbu theoretical high school, ucharest 2 University of ucharest, Faculty of physics, tomistilor

More information

Electrical Circuits I Lecture 8

Electrical Circuits I Lecture 8 Electrical Circuits I Lecture 8 Thevenin and Norton theorems Thevenin theorem tells us that we can replace the entire network, exclusive of the load resistor, by an equivalent circuit

More information

One-Port Networks. One-Port. Network

One-Port Networks. One-Port. Network TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Engineering Science. 1 Be able to determine the behavioural characteristics of elements of static engineering systems

Engineering Science. 1 Be able to determine the behavioural characteristics of elements of static engineering systems Unit 2: Engineering Science Unit code: L/601/1404 QCF level: 4 Credit value: 15 Aim This unit aims to provide learners with an understanding of the mechanical and electrical principles that underpin mechanical

More information

Fault Locating PRESENTED BY ERIK SCHELLENBERG IDAHO POWER

Fault Locating PRESENTED BY ERIK SCHELLENBERG IDAHO POWER Fault Locating PRESENTED BY ERIK SCHELLENBERG IDAHO POWER Topics Impedance Based Reactance Method Takagi Method Modifications to Takagi Method TWS & Double Ended Negative Sequence One Line Equivalent Thevenin

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EECE25 Circuit Analysis I Set 4: Capacitors, Inductors, and First-Order Linear Circuits Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

Electric Circuits I. Midterm #1

Electric Circuits I. Midterm #1 The University of Toledo Section number s5ms_elci7.fm - Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm

More information

15.9 TWO-PORTS* . (15.114) R Thout = v 2a

15.9 TWO-PORTS* . (15.114) R Thout = v 2a 15.9 TWOPORTS* It should be obvious by now that circuits with dependent sources can perform much more interesting and useful signal processing than those constructed solely from twoterminal resistive elements.

More information

Lecture 0. EE206 Electronics I

Lecture 0. EE206 Electronics I Lecture 0 Course Overview EE206 Electronics I Course description: Theory, characteristics and operation of diodes, bipolar junction transistors and MOSFET transistors. When: Tue Thu 10:30-12:20 (Lectures)

More information

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Problem info Geometry model Labelled Objects Results Nonlinear dependencies Problem info Problem type: Transient Magnetics (integration time: 9.99999993922529E-09 s.) Geometry model class: Plane-Parallel Problem database file names: Problem: circuit.pbm Geometry: Circuit.mod Material

More information

1.7 Delta-Star Transformation

1.7 Delta-Star Transformation S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

.. Use of non-programmable scientific calculator is permitted.

.. Use of non-programmable scientific calculator is permitted. This question paper contains 8+3 printed pages] Roll No. S. No. of Question Paper 7981 Cnique Paper Code 1\;ame of the Paper ~ame of the Course Semester Duration : 3 Hours 2511102 Circuit Analysis [DC-1.1]

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better.

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better. Prepared by: P. Blake Reviewed by: M. Mayfield Date prepared: March 13, 2017 C&GE approved: April 17, 2017 Board approved: May 10, 2017 Semester effective: Spring 2018 Engineering (ENGR) 2000 Circuit Analysis

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below. F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is

More information

A two-port network is an electrical network with two separate ports

A two-port network is an electrical network with two separate ports 5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

More information

Updated: Page 1 of 6

Updated: Page 1 of 6 MASTER SYLLABUS 2018-2019 A. Academic Division: Business, Industry, and Technology B. Discipline: Electronic Engineering Technology C. Course Number and Title: ELET1510 DC Electricity D. Course Coordinator:

More information

Fundamental of Electrical circuits

Fundamental of Electrical circuits Fundamental of Electrical circuits 1 Course Description: Electrical units and definitions: Voltage, current, power, energy, circuit elements: resistors, capacitors, inductors, independent and dependent

More information

BASIC CALCULATION FOR DC ELECTRICAL CIRCUIT

BASIC CALCULATION FOR DC ELECTRICAL CIRCUIT BASIC CALCULATION FOR DC ELECTRICAL CIRCUIT PREPARING STUDENTS FOR AC ELECTRICAL CIRCUIT PROBLEM SOLVING FAIZAL BIN MOHAMAD TWON TAWI FAIZAL BIN MOHAMAD TWON TAWI NOR HANIDA BINTI AHMAD NURUL HIDAYAH BT.

More information

Lab #3 Linearity, Proportionality, and Superposition

Lab #3 Linearity, Proportionality, and Superposition This lab experiment will focus on three concepts. Those concepts are linearity, proportionality, and superposition. Linearity and proportionality are like twins; they look similar at first glance, but

More information

DC STEADY STATE CIRCUIT ANALYSIS

DC STEADY STATE CIRCUIT ANALYSIS DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

KIRCHHOFF LOWS AGAINST NODE-VOLTAGE ANALYSIS AND MILLMAN'S THEOREM

KIRCHHOFF LOWS AGAINST NODE-VOLTAGE ANALYSIS AND MILLMAN'S THEOREM KRCHHOFF LOWS GNST NODE-VOLTGE NLYSS ND MLLMN'S THEOREM MRCEL NCULE, C. M. NCULE The present paper aims at introducing a new method for teaching electric circuits in high schools. Using the Kirchhoff's

More information

ELECTRIC CIRCUITS I (ELCT 301)

ELECTRIC CIRCUITS I (ELCT 301) German University in Cairo Faculty of Information Engineering and Technology (IET) ELECTRIC CIRCUITS I (ELCT 301) LECTURE 1: BASIC CONCEPTS COURSE INSTRUCTOR Instructor: Prof. Dr. Eng. Yasser G. Hegazy

More information

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B.

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B. Questions on Thevenin Equivalent Circuits Fall 2004 2. Thevenin Circuits (25 points) Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between

More information

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS OBJECTIVES 1) To introduce the Source Transformation 2) To consider the concepts of Linearity and Superposition

More information

Chapter 5 Steady-State Sinusoidal Analysis

Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steady-state

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One

NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One I. CATALOG DESCRIPTION: A. Department Information: Division: Technical and Workforce Development Department: Electricity/Electronics Course ID: ELECTR 0 Course Title: Direct Current Circuit Analysis Lecture:

More information

Electronics II. Midterm #1

Electronics II. Midterm #1 The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

Errors in Electrical Measurements

Errors in Electrical Measurements 1 Errors in Electrical Measurements Systematic error every times you measure e.g. loading or insertion of the measurement instrument Meter error scaling (inaccurate marking), pointer bending, friction,

More information

15EE103L ELECTRIC CIRCUITS LAB RECORD

15EE103L ELECTRIC CIRCUITS LAB RECORD 15EE103L ELECTRIC CIRCUITS LAB RECORD REGISTER NO: NAME OF THE STUDENT: SEMESTER: DEPARTMENT: INDEX SHEET S.No. Date of Experiment Name of the Experiment Date of submission Marks Staff Sign 1 Verification

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

Classic Electrical Measurements 1

Classic Electrical Measurements 1 DR. GYURCSEK ISTVÁN Classic Electrical Measurements 1 Indicating Measurement Instruments Sources and additional materials (recommended) S. Tumanski:Principles of electrical measurement, CRC Press 2006.

More information

EE1003 ANALYSIS OF ELECTRIC CIRCUITS

EE1003 ANALYSIS OF ELECTRIC CIRCUITS L T P C EE1003 ANALYSIS OF ELECTIC CICUITS 3 1 0 4 Total Contact Hours - 60 Prerequisite EE1001-Basic al Engineering PUPOSE To enrich the students to acquire knowledge about the basics of circuit analysis,

More information

EIE/ENE 104 Electric Circuit Theory

EIE/ENE 104 Electric Circuit Theory EIE/ENE 104 Electric Circuit Theory Lecture 01a: Circuit Analysis and Electrical Engineering Week #1 : Dejwoot KHAWPARISUTH office: CB40906 Tel: 02-470-9065 Email: dejwoot.kha@kmutt.ac.th http://webstaff.kmutt.ac.th/~dejwoot.kha/

More information

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -

More information

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

MAE140 - Linear Circuits - Winter 09 Midterm, February 5 Instructions MAE40 - Linear ircuits - Winter 09 Midterm, February 5 (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10. This homework is due November 9, 2015, at Noon.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10. This homework is due November 9, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10 This homework is due November 9, 2015, at Noon. 1. Homework process and study group Who else did you

More information

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts Lecture 1: Introduction Some Definitions: Current (I): Amount of electric charge (Q) moving past a point per unit time I dq/dt Coulombs/sec units Amps (1 Coulomb 6x10 18 electrons) oltage (): Work needed

More information