Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification

Size: px
Start display at page:

Download "Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification"

Transcription

1 Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification Ján Šimkanin and Pavel Hejda Institute of Geophysics, Academy of Sciences of CR, Prague, Czech Republic

2 Parameters Parameter Core Dynamo models R a /R ac 1 (R a ) 1 50 E O(10 15 ) O(10 7 ) P m O(10 7 ) P r P mmin 450E 3/4 Christensen, Olson and Glatzmaier (1999)

3 Non-uniform stratification Braginsky (1964) stable CMB unstable ICB 10% of the shell is stably stratified and 90% unstably

4 Governing equations ( ) V E t + (V )V 2 V + 21 z V + P = r = R a T + 1 ( B) B, r o P m B t T t + (V )T = 1 2 T + H, P r V = 0, B = 0 = (V B) + 1 P m 2 B,

5 Boundary conditions the non-penetrating and no-slip boundary conditions for the velocity field at the rigid surfaces the constant temperature T i = 1 and T o = 0 at the inner (ICB) and outer (CMB) boundaries of the shell, respectively the CMB is electrically insulating, while the ICB is electrically conducting

6 Case E = 10 3 E = 10 3, P m = 3 (P mmin = 2.5), P r = 0.2, 1, R a = 190, 250 H = 2.78 for P r = for P r = 0.2 MAG

7 10000 KINETIC ENERGY 1000 E k 100 P r = 1 UNI P r = 0.2 UNI P r = 1 NON-UNI P r = 0.2 NON-UNI τ = R a

8 MAGNETIC ENERGY E m 1000 τ = R a P r = 1 UNI P r = 0.2 UNI P r = 1 NON-UNI P r = 0.2 NON-UNI

9 B r at r = 0.85 RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= ( P r = UNI 250 UNI 190 NON UNI 250 NON UNI P r = UNI 250 UNI 190 NON UNI 250 NON UNI )

10 V r at r = 0.85 RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= ( P r = UNI 250 UNI 190 NON UNI 250 NON UNI P r = UNI 250 UNI 190 NON UNI 250 NON UNI )

11 B at r = r o ( P r = UNI 250 NON UNI P r = UNI 250 NON UNI )

12 B r and V r at r = 0.85 P m = 3, 15, 35 P r = 0.2 RADIAL FIELD r= RADIAL FIELD r= RADIAL FIELD r= RADIAL VELOCITY r= RADIAL VELOCITY r= RADIAL VELOCITY r= ( B r 190 UNI, P m = UNI, P m = UNI, P m = 35 V r 190 UNI, P m = UNI, P m = UNI, P m = 35 )

13 Rossby number R o (P r = 1)/R o (P r = 0.2) R a = 190 UNI R a = 190 NON-UNI R a = 250 UNI R a = 250 NON-UNI R o = V/LΩ = ER m P 1 m

14 Conclusions - stratification the influence of non-uniform stratification is for our parameters weak thin stably stratified region very slightly destabilizes the dynamo for P r = 1, while for P r = 0.2 either does not influence or very slightly stabilizes the dynamo we do not observe in our dynamos an eastward drift (Stanley and Mohammadi (2008)) of magnetic flux spots in the equatorial regions, it is always westward our stably stratified layer is not very strongly stratified, i.e. our model is perhaps characterized by the mild stable stratification

15 Case E = 10 4 E = 10 4, P m = 1, 0.75, 0.5 (P mmin = 0.45), P r = 0.2, R a = 850, 1200, 1550 H = 0 PARODY and DMFI Aubert, Aurnou and Wicht (2008)

16 KINETIC ENERGY FOR E = 10-4 P m = 1 P m = 0.75 P m = E k τ = R a

17 MAGNETIC ENERGY FOR E = E m τ = P m = 1 P m = 0.75 P m = R a

18 B r for R a = 1550 and P m = 1

19 B r for R a = 1550 and P m = 0.75

20 B r for R a = 1550 and P m = 0.5

21 Case E = 10 5 E = 10 5, P m = 0.5, 0.25, 0.1 (P mmin = 0.08), P r = 0.2, R a = 8000, H = 0 PARODY and DMFI Aubert, Aurnou and Wicht (2008)

22 KINETIC ENERGY FOR E = e+07 E k 1e+06 τ = 5 P m = 0.5 P m = 0.25 P m = R a

23 1e+07 MAGNETIC ENERGY FOR E = 10-5 P m = 0.5 P m = 0.25 P m = 0.1 8e+06 6e+06 E m 4e+06 2e+06 τ = R a

24 B r for R a = 8000 and P m = 0.5

25 B r for R a = 8000 and P m = 0.25

26 B r for R a = 8000 and P m = 0.1

27 Rossby number E = 10 4 R a = 1550 R o (P m = 1)/R o (P m = 0.75) 0.98 R o (P m = 1)/R o (P m = 0.5) 0.94 R o (P m = 0.75)/R o (P m = 0.5) 0.97 E = 10 5 R a = 8000 R o (P m = 0.5)/R o (P m = 0.25) 0.87 R o (P m = 0.5)/R o (P m = 0.1) 0.71 R o (P m = 0.25)/R o (P m = 0.1) 0.81

28 Conclusions - P r and P m for P r 1 and P m 1 the inertia is weak, dynamos are mostly dipolar and large-scale flows are columnar (e.g., Christensen and Aubert (2006)) for P r < 1 the inertia becomes important but it depends on P m. For P r < 1 and P m 1 (rather P m P mmin ) is similar to P r 1 and P m 1, i.e. the inertia is again weak and dynamos are mostly dipolar and large-scale flows are columnar, while for P r < 1 and P m < 1 (rather P m P mmin ) the inertia becomes important and it is possible to observe the breakdown of the columnar structure of the convection in consequence of the dipolar structure breaks generally down. Fluid motion becomes strong in the polar regions and the magnetic field is convected out of polar regions (Sreenivasan and Jones (2006))

29 Busse and Simitev (2005) observed at low values of P m a transition to hemispherical dynamos and at even lower values of P m a further transition to quadrupolar dynamos (stress-free boundary conditions). These transitions are observed neither in Sreenivasan and Jones (2006) (no-slip boundary conditions, P m = P r = 1, 0.5, 0.2) nor in our study (no-slip boundary conditions) dipolar dynamo breaks down in Sreenivasan and Jones (2006) for P m = P r = 0.2 (P m < P mmin ), while our magnetic field is dipolar and does not weaken because our P m is greater or close to the value of P mmin. The inertia becomes important but our dynamos remain dipolar it is possible to conclude that P m governs a measure of inertia for low P r, i.e. a measure of inertia depends on how far we are from P mmin

30 the real Earth s core - E = 10 15, P m = 10 7, P r = 0.2, P mmin , i.e. the geodynamo works in the mode P m P mmin Šimkanin, J. and Hejda P., Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification. Geophys. J. Int., 185, Šimkanin, J. and Hejda P., Magnetic fields generated by hydromagnetic dynamos at the low Prandtl number in dependence on the Ekman and magnetic Prandtl numbers. Earth Planet. Sci. Lett., submitted

31 THANK YOU

Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers Contributions to Geophysics and Geodesy Vol. 47/4, 2017 (261 276) Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers Ján ŠIMKANIN,Juraj KYSELICA Institute

More information

Hydromagnetic dynamos at the low Ekman and magnetic Prandtl numbers

Hydromagnetic dynamos at the low Ekman and magnetic Prandtl numbers Contributions to Geophysics and Geodesy Vol. 46/3, 2016 (221 244) Hydromagnetic dynamos at the low Ekman and magnetic Prandtl numbers Ján ŠIMKANIN Institute of Geophysics, Academy of Sciences of the Czech

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12574 1 Parameter space exploration and rationale for parameter choices Here we give a detailed account of the parameter space exploration (Extended Data Table 1) carried out in support

More information

A dynamo model for axisymmetrizing Saturn s magnetic field

A dynamo model for axisymmetrizing Saturn s magnetic field Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl041752, 2010 A dynamo model for axisymmetrizing Saturn s magnetic field S. Stanley 1 Received 11 November 2009; revised

More information

Magnetic reversals from planetary dynamo waves

Magnetic reversals from planetary dynamo waves Letter doi:1.138/nature19842 Magnetic reversals from planetary dynamo waves Andrey Sheyko 1, Christopher C. Finlay 2 & Andrew Jackson 1 A striking feature of many natural dynamos is their ability to undergo

More information

Emmanuel DORMY (CNRS / ENS)

Emmanuel DORMY (CNRS / ENS) Emmanuel DORMY (CNRS / ENS) dormy@phys.ens.fr The Earth s internal structure Mantle Fluid outer core ICB 3480 km 6366 km 1221 km Inner core CMB Roberts & King 2013 Governing Equations Governing Equations

More information

Powering Ganymede s dynamo

Powering Ganymede s dynamo JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012je004052, 2012 Powering Ganymede s dynamo X. Zhan 1 and G. Schubert 1 Received 12 January 2012; revised 3 July 2012; accepted 6 July 2012; published

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

FDEPS Kyoto: Bibliography for the lecture notes. Planetary interiors: Magnetic fields, Convection and Dynamo Theory

FDEPS Kyoto: Bibliography for the lecture notes. Planetary interiors: Magnetic fields, Convection and Dynamo Theory FDEPS Kyoto: Bibliography for the lecture notes Planetary interiors: Magnetic fields, Convection and Dynamo Theory Chris Jones, University of Leeds, UK November 2017 1. Observational background to planetary

More information

Planetary dynamos: Dipole-multipole transition and dipole reversals

Planetary dynamos: Dipole-multipole transition and dipole reversals Planetary dynamos: Dipole-multipole transition and dipole reversals Ulrich Christensen Max-Planck-Institute for Solar System Research Katlenburg-Lindau, Germany in collaboration with Hagay Amit, Julien

More information

Planetary core dynamics and convective heat transfer scalingy

Planetary core dynamics and convective heat transfer scalingy Geophysical and Astrophysical Fluid Dynamics, Vol. 101, Nos. 5 6, October December 2007, 327 345 Planetary core dynamics and convective heat transfer scalingy J. M. AURNOU* Department of Earth and Space

More information

Dynamo Scaling Laws and Applications to the Planets

Dynamo Scaling Laws and Applications to the Planets Space Sci Rev (2010) 152: 565 590 DOI 10.1007/s11214-009-9553-2 Dynamo Scaling Laws and Applications to the Planets U.R. Christensen Received: 6 February 2009 / Accepted: 8 June 2009 / Published online:

More information

Iron snow zones as a mechanism for generating Mercury s weak observed magnetic field

Iron snow zones as a mechanism for generating Mercury s weak observed magnetic field JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009je003528, 2010 Iron snow zones as a mechanism for generating Mercury s weak observed magnetic field R. Vilim, 1 S. Stanley, 1 and S. A. Hauck

More information

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field Center for Turbulence Research Proceedings of the Summer Program 2010 475 Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field By R. D. Simitev, F.

More information

Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields

Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields Geophys. J. Int. (006) 66, 97 4 doi: 0./j.365-46X.006.03009.x Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields U. R. Christensen

More information

VARYING THE SPHERICAL SHELL GEOMETRY IN ROTATING THERMAL CONVECTION

VARYING THE SPHERICAL SHELL GEOMETRY IN ROTATING THERMAL CONVECTION Geophysical and Astrophysical Fluid Dynamics Vol. 98, No. 2, April 2004, pp. 153 169 VARYING THE SPHERICAL SHELL GEOMETRY IN ROTATING THERMAL CONVECTION F.M. AL-SHAMALI a, *, M.H. HEIMPEL a and J.M. AURNOU

More information

A numerical study of dynamo action as a function of spherical shell geometry

A numerical study of dynamo action as a function of spherical shell geometry Earth and Planetary Science Letters 236 (2005) 542 557 www.elsevier.com/locate/epsl A numerical study of dynamo action as a function of spherical shell geometry M.H. Heimpel a, *, J.M. Aurnou b, F.M. Al-Shamali

More information

Energy transfers during dynamo reversals

Energy transfers during dynamo reversals December 213 EPL, 14 (213) 692 doi: 1.129/295-575/14/692 www.epljournal.org Energy transfers during dynamo reversals Pankaj Mishra 1, Christophe Gissinger 1, Emmanuel Dormy 2 and Stephan Fauve 1 1 Laboratoire

More information

THE EARTH S MAGNETIC FIELD AND ITS DYNAMO ORIGIN

THE EARTH S MAGNETIC FIELD AND ITS DYNAMO ORIGIN ARTICLE THE EARTH S MAGNETIC FIELD AND ITS DYNAMO ORIGIN BINOD SREENIVASAN* The Earth s magnetic field is powered by convection occurring in its fluid outer core. Variations in the intensity of core convection

More information

A hemispherical dynamo model : Implications for the Martian crustal magnetization

A hemispherical dynamo model : Implications for the Martian crustal magnetization A hemispherical dynamo model : Implications for the Martian crustal magnetization Wieland Dietrich 1,2 & Johannes Wicht 2 2 Max-Planck-Institut für Sonnensystemforschung, arxiv:1402.0337v1 [astro-ph.ep]

More information

2. Magnetic Mixing Flows LXXXXX

2. Magnetic Mixing Flows LXXXXX Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, LXXXXX, doi:10.1029/2009gl038130, 2009 2 Geomagnetic dipole moment collapse by convective mixing in the core 3 Lijun Liu 1 and Peter Olson

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401,

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401, The geodynamo Reading: Fowler Ch 8, p373-381 Glatzmaier et al. Nature 401, 885-890 1999 Previously The Earth s magnetic field TODAY: how is the Earth s field generated? 1 Generating the Earth s magnetic

More information

On dynamo action produced by boundary thermal coupling

On dynamo action produced by boundary thermal coupling On dynamo action produced by boundary thermal coupling Binod Sreenivasan To cite this version: Binod Sreenivasan. On dynamo action produced by boundary thermal coupling. Physics of the Earth and Planetary

More information

A numerical dynamo benchmark

A numerical dynamo benchmark Physics of the Earth and Planetary Interiors 128 (2001) 25 34 A numerical dynamo benchmark U.R. Christensen a,, J. Aubert b, P. Cardin b, E. Dormy c, S. Gibbons d, G.A. Glatzmaier e, E. Grote f, Y. Honkura

More information

Geomagnetic dipole moment collapse by convective mixing in the core

Geomagnetic dipole moment collapse by convective mixing in the core Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L10305, doi:10.1029/2009gl038130, 2009 Geomagnetic dipole moment collapse by convective mixing in the core Lijun Liu 1 and Peter Olson

More information

Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation Geophys. J. Int. (2008) 175, 913 924 doi: 10.1111/j.1365-246X.2008.03948.x Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation Hagay Amit 1 and Ulrich R. Christensen

More information

GEODYNAMO: NUMERICAL SIMULATIONS

GEODYNAMO: NUMERICAL SIMULATIONS Comp. by: womat Date:9/2/07 Time:20:05:52 Stage:First Proof File Path://spiina1001z/womat/production/ 302 GEODYNAMO: NUMERICAL SIMULATIONS The energy sources on the right-hand side of Eq. (5) are the same

More information

Convection-driven dynamos in the limit of rapid rotation

Convection-driven dynamos in the limit of rapid rotation Convection-driven dynamos in the limit of rapid rotation Michael A. Calkins Jonathan M. Aurnou (UCLA), Keith Julien (CU), Louie Long (CU), Philippe Marti (CU), Steven M. Tobias (Leeds) *Department of Physics,

More information

On the role of thermal boundary conditions in dynamo scaling laws

On the role of thermal boundary conditions in dynamo scaling laws Geophysical & Astrophysical Fluid Dynamics ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: http://www.tandfonline.com/loi/ggaf20 On the role of thermal boundary conditions in dynamo scaling

More information

Talks. December 2011.

Talks. December 2011. Talks Oliveira, J.S., Langlais, B., Amit, H., Pais, M.A., Modeling the magnetic field of Mercury using the Time Dependent Equivalent Source Dipole method. European Geosciences Union, Vienna, Austria, April

More information

Turbulent geodynamo simulations: a leap towards Earth s core

Turbulent geodynamo simulations: a leap towards Earth s core Turbulent geodynamo simulations: a leap towards Earth s core N. Schaeffer 1, D. Jault 1, H.-C. Nataf 1, A. Fournier 2 1 Univ. Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France arxiv:1701.01299v3

More information

Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn

Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn Icarus 196 (2008) 16 34 www.elsevier.com/locate/icarus Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn Ulrich R. Christensen, Johannes Wicht Max-Planck-Institut

More information

Scaling laws for dynamos in rotating spheres: from planets to stars

Scaling laws for dynamos in rotating spheres: from planets to stars Scaling laws for dynamos in rotating spheres: from planets to stars Ulrich Christensen Max Planck Institute for Solar System Research, Katlenburg- Lindau, Germany In collaboration with: Julien Aubert,

More information

Morphology of field reversals in turbulent dynamos

Morphology of field reversals in turbulent dynamos May EPL, 9 () 49 doi:.9/95-575/9/49 www.epljournal.org C. Gissinger,, E. Dormy and S. Fauve Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 6, Université Paris Diderot,

More information

Theoretical Geomagnetism. Lecture 3. Core Dynamics I: Rotating Convection in Spherical Geometry

Theoretical Geomagnetism. Lecture 3. Core Dynamics I: Rotating Convection in Spherical Geometry Theoretical Geomagnetism Lecture 3 Core Dynamics I: Rotating Convection in Spherical Geometry 1 3.0 Ingredients of core dynamics Rotation places constraints on motions. Thermal (and chemical buoyancy)

More information

ARTICLE IN PRESS Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx

ARTICLE IN PRESS Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Geodynamo

More information

The effects of rotation rate on deep convection in giant planets with small solid cores

The effects of rotation rate on deep convection in giant planets with small solid cores ARTICLE IN PRESS Planetary and Space Science 55 (2007) 407 412 www.elsevier.com/locate/pss The effects of rotation rate on deep convection in giant planets with small solid cores Martha Evonuk, Gary A.

More information

Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: Implications for the Earth s core

Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: Implications for the Earth s core JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B8, 2169, 10.1029/2001JB000548, 2002 Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: Implications

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2014) 198, 828 847 GJI Geomagnetism, rock magnetism and palaeomagnetism doi: 10.1093/gji/ggu159 Predictive scaling laws for spherical rotating dynamos

More information

Generation of magnetic fields by large-scale vortices in rotating convection

Generation of magnetic fields by large-scale vortices in rotating convection Generation of magnetic fields by large-scale vortices in rotating convection Céline Guervilly, David Hughes & Chris Jones School of Mathematics, University of Leeds, UK Generation of the geomagnetic field

More information

GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY?

GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY? Annu. Rev. Earth Planet. Sci. 2002. 30:237 57 DOI: 10.1146/annurev.earth.30.091201.140817 Copyright c 2002 by Annual Reviews. All rights reserved GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY? Gary A. Glatzmaier

More information

Differential rotation in giant planets maintained by density-stratified turbulent convection

Differential rotation in giant planets maintained by density-stratified turbulent convection Geophysical and Astrophysical Fluid Dynamics Vol. 103, No. 1, February 2009, 31 51 Differential rotation in giant planets maintained by density-stratified turbulent convection GARY A. GLATZMAIER*y, MARTHA

More information

Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations

Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14204, doi:10.1029/2008gl034183, 2008 Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations W. Kuang, 1 W. Jiang, 2 and T. Wang

More information

arxiv: v1 [physics.geo-ph] 10 Oct 2016

arxiv: v1 [physics.geo-ph] 10 Oct 2016 Approaching a realistic force balance in geodynamo simulations arxiv:1610.03107v1 [physics.geo-ph] 10 Oct 2016 Rakesh Yadav, 1, 2 Thomas Gastine, 2, 3 Ulrich Christensen, 2 Scott J. Wolk, 1 and Katja Poppenhaeger

More information

Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn

Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn Icarus 187 (2007) 540 557 www.elsevier.com/locate/icarus Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn Moritz Heimpel a,,

More information

Convective heat transfer and the pattern of thermal emission on the gas giants

Convective heat transfer and the pattern of thermal emission on the gas giants Geophys. J. Int. (2008) 173, 793 801 doi: 10.1111/j.1365-246X.2008.03764.x Convective heat transfer and the pattern of thermal emission on the gas giants Jonathan Aurnou, 1 Moritz Heimpel, 2 Lorraine Allen,

More information

LETTERS. Thermochemical flows couple the Earth s inner core growth to mantle heterogeneity

LETTERS. Thermochemical flows couple the Earth s inner core growth to mantle heterogeneity Vol 454 7 August 28 doi:1.138/nature719 Thermochemical flows couple the Earth s inner core growth to mantle heterogeneity Julien Aubert 1, Hagay Amit 2, Gauthier Hulot 2 & Peter Olson 3 Seismic waves sampling

More information

Asymptotic theory for torsional convection in rotating fluid spheres

Asymptotic theory for torsional convection in rotating fluid spheres Under consideration for publication in J. Fluid Mech. 1 Asymptotic theory for torsional convection in rotating fluid spheres By KEKE Z H A N G 1, KAMENG L A M A N D DALI K O N G 3 1,3 College of Engineering,

More information

Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields

Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields F. Pétrélis, A. Alexakis, C. Gissinger 1 1 Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université

More information

Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle

Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle University of Cambridge DAMTP, Astrophysics Group Seminar 2014-11-17 Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle R.D. Simitev F.H. Busse School of

More information

Pacific Secular Variation A result of hot lower mantle. David Gubbins School of Earth Sciences University of Leeds

Pacific Secular Variation A result of hot lower mantle. David Gubbins School of Earth Sciences University of Leeds Pacific Secular Variation A result of hot lower mantle David Gubbins School of Earth Sciences University of Leeds Thermal Core-Mantle Interaction (hot) (cold) Lateral variations in heat flux boundary condition

More information

The effects of vigorous mixing in a convective model of zonal flow on the ice giants

The effects of vigorous mixing in a convective model of zonal flow on the ice giants Icarus 190 (2007) 110 126 www.elsevier.com/locate/icarus The effects of vigorous mixing in a convective model of zonal flow on the ice giants Jonathan Aurnou a,, Moritz Heimpel b, Johannes Wicht c a Earth

More information

Geodynamo Simulations and Electromagnetic Induction Studies

Geodynamo Simulations and Electromagnetic Induction Studies Chapter 2 Solid Earth Simulation Geodynamo Simulations and Electromagnetic Induction Studies Project Representative Yozo Hamano Japan Agency for Marine-Earth Science and Technology Authors Yozo Hamano

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Time-average and time-dependent parts of core flow

Time-average and time-dependent parts of core flow Physics of the Earth and Planetary Interiors 155 (2006) 120 139 Time-average and time-dependent parts of core flow Hagay Amit, Peter Olson Department of Earth and Planetary Sciences, Johns Hopkins University,

More information

The role of the Earth s mantle in controlling the frequency of geomagnetic reversals

The role of the Earth s mantle in controlling the frequency of geomagnetic reversals The role of the Earth s mantle in controlling the frequency of geomagnetic reversals Gary A. Glatzmaier*, Robert. Coe*, Lionel Hongre* & Paul H. Roberts * Earth ciences Department, University of California,

More information

Geomagnetic Dynamo Theory

Geomagnetic Dynamo Theory Max Planck Institute for Solar System Research Katlenburg-Lindau, Germany International School of Space Science Geomagnetism and Ionosphere L Aquila, Italy 7-11 April 2008 Outline Introduction 1 Introduction

More information

arxiv: v2 [astro-ph.sr] 20 Nov 2014

arxiv: v2 [astro-ph.sr] 20 Nov 2014 Astronomy & Astrophysics manuscript no. paper c ESO 2018 April 4, 2018 Formation of starspots in self-consistent global dynamo models: Polar spots on cool stars Rakesh K. Yadav 1,2, Thomas Gastine 1, Ulrich

More information

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 11 NOVEMBER 2004 Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell Fujihiro Hamba a) Institute of Industrial Science,

More information

Extracting scaling laws from numerical dynamo models

Extracting scaling laws from numerical dynamo models Extracting scaling laws from numerical dynamo models Z. Stelzer and A. Jackson Earth and Planetary Magnetism Group, ETH Zurich, Switzerland zacharias.stelzer@erdw.ethz.ch arxiv:1307.3938v1 [physics.geo-ph]

More information

Convective heat transfer in planetary dynamo models

Convective heat transfer in planetary dynamo models Article Volume 11, Number 6 29 June 2010 Q06016, doi:10.1029/2010gc003053 ISSN: 1525 2027 Click Here for Full Article Convective heat transfer in planetary dynamo models Eric M. King and Krista M. Soderlund

More information

MIXED-PARITY SOLUTIONS IN A MEAN-FIELD DYNAMO MODEL

MIXED-PARITY SOLUTIONS IN A MEAN-FIELD DYNAMO MODEL MIXED-PARITY SOLUTIONS IN A MEAN-FIELD DYNAMO MODEL R. HOLLERBACH Dept. of Mathematics, University of Glasgow, UK1 G.A. GLATZMAIER Inst. of Geophysics and Planetary Physics, Los Alamos Natl. Lab., USA2

More information

10.08 Planetary Dynamos

10.08 Planetary Dynamos 10.08 Planetary Dynamos F. H. Busse, Physikalisches Institut der Universität Bayreuth, Bayreuth, Germany R. Simitev, University of Glasgow, Glasgow, UK ª 2007 Elsevier B.V. All rights reserved. 10.08.1

More information

The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow

The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow Geophys. J. Int. (2002) 151, 809 823 The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow Peter Olson 1 and U. R. Christensen 2 1 Department of Earth and Planetary

More information

Planetary interiors: Magnetic fields, Convection and Dynamo Theory 1. Observational background to planetary structure

Planetary interiors: Magnetic fields, Convection and Dynamo Theory 1. Observational background to planetary structure Planetary interiors: Magnetic fields, Convection and Dynamo Theory 1. Observational background to planetary structure Chris Jones, Department of Applied Mathematics University of Leeds UK FDEPS Lecture

More information

2D STUDIES OF VARIOUS APPROXIMATIONS USED FOR MODELING CONVECTION IN GIANT PLANETS

2D STUDIES OF VARIOUS APPROXIMATIONS USED FOR MODELING CONVECTION IN GIANT PLANETS Geophysical and Astrophysical Fluid Dynamics Vol. 98, No. 3, June 2004, pp. 241 255 2D STUDIES OF VARIOUS APPROXIMATIONS USED FOR MODELING CONVECTION IN GIANT PLANETS MARTHA EVONUK* and GARY A. GLATZMAIER

More information

Rotating dynamo turbulence: theoretical and numerical insights

Rotating dynamo turbulence: theoretical and numerical insights Rotating dynamo turbulence: theoretical and numerical insights Nathanaël Schaeffer 1, H.-C. Nataf 1, A. Fournier 2, J. Aubert 2, D. Jault 1, F. Plunian 1, P. Zitzke 1 1: ISTerre / CNRS /Université Joseph

More information

This is an author produced version of Rapid dynamics of the Earth's core.

This is an author produced version of Rapid dynamics of the Earth's core. This is an author produced version of Rapid dynamics of the Earth's core. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76955/ Article: Cox, GA and Brown, WJ (213) Rapid

More information

arxiv: v1 [astro-ph] 7 Jan 2009

arxiv: v1 [astro-ph] 7 Jan 2009 Universal Heliophysical Processes Proceedings IAU Symposium No. 257, 2009 N. Gopalswamy et al. c 2009 International Astronomical Union DOI: 00.0000/X000000000000000X Solar and planetary dynamos: comparison

More information

Earth and Planetary Science Letters

Earth and Planetary Science Letters Earth and Planetary Science Letters 333 334 (2012) 9 20 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The influence

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2014) 196, 712 723 Advance Access publication 2013 November 21 doi: 10.1093/gji/ggt425 GJI Geomagnetism, rock magnetism and palaeomagnetism A spherical

More information

Diffusive magnetic images of upwelling patterns in the core

Diffusive magnetic images of upwelling patterns in the core JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B12, 2348, doi:10.1029/2001jb000384, 2002 Diffusive magnetic images of upwelling patterns in the core Peter Olson, Ikuro Sumita, 1 and Jonathan Aurnou 2 Department

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)

More information

arxiv: v1 [astro-ph.ep] 28 Jan 2015

arxiv: v1 [astro-ph.ep] 28 Jan 2015 A Gaussian Model for Simulated Geomagnetic Field Reversals arxiv:1501.07118v1 [astro-ph.ep] 28 Jan 2015 Abstract Johannes Wicht 1 and Domenico Meduri 1,2 1 Max-Planck-Institut für Sonnensystemforschung,

More information

Oscillatory dynamos and their induction mechanisms

Oscillatory dynamos and their induction mechanisms Astronomy & Astrophysics manuscript no. oscillatory 1712 c ESO 2011 January 11, 2011 Oscillatory dynamos and their induction mechanisms M. Schrinner 1, L. Petitdemange 2, and E. Dormy 1 1 MAG (ENS/IPGP),

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Turbulence in geodynamo simulations

Turbulence in geodynamo simulations Turbulence in geodynamo simulations Nathanaël Schaeffer, A. Fournier, D. Jault, J. Aubert, H-C. Nataf,... ISTerre / CNRS / Université Grenoble Alpes Journée des utilisateurs CIMENT, Grenoble, 23 June 2016

More information

Planetary Dynamos 1. HISTORICAL INTRODUCTION. PACS numbers:

Planetary Dynamos 1. HISTORICAL INTRODUCTION. PACS numbers: Planetary Dynamos F. H. Busse 1 and R. Simitev 2 1 Physikalisches Institut der Universität Bayreuth, D-95440 Bayreuth, Germany 2 Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK email:

More information

This is a repository copy of Hysteresis of dynamos in rotating spherical shell convection.

This is a repository copy of Hysteresis of dynamos in rotating spherical shell convection. This is a repository copy of Hysteresis of dynamos in rotating spherical shell convection. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/115356/ Version: Accepted Version

More information

arxiv: v1 [astro-ph.sr] 8 Dec 2017

arxiv: v1 [astro-ph.sr] 8 Dec 2017 Astronomy & Astrophysics manuscript no. 3729_corr_final c ESO 208 July 22, 208 Gravity darkening in late-type stars. The Coriolis effect. R. Raynaud, M. Rieutord 2, 3, L. Petitdemange, T. Gastine 5, and

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Physics of the Earth and Planetary Interiors

Physics of the Earth and Planetary Interiors Physics of the Earth and Planetary Interiors 246 (2015) 52 71 Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Invited

More information

B.A. Geophysics Columbia University (1986) at the. September, 1992

B.A. Geophysics Columbia University (1986) at the. September, 1992 MAGNETOHYDRODYNAMICS OF THE EARTH'S CORE 1) STEADY, ROTATING MAGNETOCONVECTION 2) MAGNETIC ROSSBY WAVES by MICHAEL I. BERGMAN B.A. Geophysics Columbia University (1986) Submitted to the Department of Earth,

More information

Geodynamo α-effect derived from box simulations of rotating magnetoconvection

Geodynamo α-effect derived from box simulations of rotating magnetoconvection Physics of the Earth and Planetary Interiors 152 (2005) 90 102 Geodynamo α-effect derived from box simulations of rotating magnetoconvection A. Giesecke, U. Ziegler, G. Rüdiger Astrophysikalisches Institut

More information

Exploring the physics of the Earth s core with numerical simulations

Exploring the physics of the Earth s core with numerical simulations Exploring the physics of the Earth s core with numerical simulations Nathanaël Schaeffer To cite this version: Nathanaël Schaeffer. Exploring the physics of the Earth s core with numerical simulations.

More information

Thermal Convection in a 3D Rotating Density-Stratified Giant

Thermal Convection in a 3D Rotating Density-Stratified Giant submitted to Phys. Earth. Planet. Int. Thermal Convection in a 3D Rotating Density-Stratified Giant Planet without a Core M. Evonuk 1 and G.A. Glatzmaier 2 1 Theoretische Physik I, Universität Bayreuth,

More information

Does inertia determine the magnetic topology of low-mass stars?

Does inertia determine the magnetic topology of low-mass stars? Does inertia determine the magnetic topology of low-mass stars? Julien Morin Institut für Astrophysik Göttingen T. Gastine Max Planck Institut für Sonnensystemforschung A. Reiners Institut für Astrophysik

More information

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 The Earth Mainly dipolar magnetic field Would decay in 20kyr if not regenerated Declination of the

More information

The evolution of the core-surface flow over the last seven thousands years

The evolution of the core-surface flow over the last seven thousands years JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jb005024, 2008 The evolution of the core-surface flow over the last seven thousands years I. Wardinski 1 and M. Korte 1 Received 1 March 2007;

More information

Planetary Dynamos: A Brief Overview

Planetary Dynamos: A Brief Overview Planetary Dynamos: A Brief Overview Nick Featherstone Dept. of Applied Mathematics & Research Computing University of Colorado 04/22/15 HAO Colloquium Series 1 ( with contributions and inspiration from

More information

Baroclinically-driven flows and dynamo action in rotating spherical fluid shells

Baroclinically-driven flows and dynamo action in rotating spherical fluid shells Geophysical & Astrophysical Fluid Dynamics ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: http://www.tandfonline.com/loi/ggaf20 Baroclinically-driven flows and dynamo action in rotating spherical

More information

Minimal models of the Solar cycle

Minimal models of the Solar cycle Minimal models of the Solar cycle Friedrich H Busse 1,3 and Radostin D Simitev 2,3 1 Institute of Physics, University of Bayreuth, Bayreuth D-954, Germany 2 School of Mathematics & Statistics, University

More information

Magnetostrophic MRI in the Earth s outer core

Magnetostrophic MRI in the Earth s outer core GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15305, doi:10.109/008gl034395, 008 Magnetostrophic MRI in the Earth s outer core Ludovic Petitdemange, 1, Emmanuel Dormy, 1,3 and Steven A. Balbus 1, Received 18

More information

Q: Why do the Sun and planets have magnetic fields?

Q: Why do the Sun and planets have magnetic fields? Q: Why do the Sun and planets have magnetic fields? Dana Longcope Montana State University w/ liberal borrowing from Bagenal, Stanley, Christensen, Schrijver, Charbonneau, Q: Why do the Sun and planets

More information

Numerical modeling of the geodynamo' of field generation and equilibration

Numerical modeling of the geodynamo' of field generation and equilibration JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B5, PAGES 10,383-10,404, MAY 10, 1999 Numerical modeling of the geodynamo' of field generation and equilibration Mechanisms Peter Olson Department of Earth

More information

Instability of Ekman Hartmann boundary layers, with application to the fluid flow near the core mantle boundary

Instability of Ekman Hartmann boundary layers, with application to the fluid flow near the core mantle boundary Physics of the Earth and Planetary Interiors 124 (2001) 283 294 Instability of Ekman Hartmann boundary layers, with application to the fluid flow near the core mantle boundary Benoît Desjardins a, Emmanuel

More information

arxiv: v1 [physics.flu-dyn] 27 Jul 2017

arxiv: v1 [physics.flu-dyn] 27 Jul 2017 Geophysical and Astrophysical Fluid Dynamics Vol. xx, No. xx, 2017, 1 10 arxiv:1707.08846v1 [physics.flu-dyn] 27 Jul 2017 Baroclinically-driven flows and dynamo action in rotating spherical fluid shells

More information

Stratified Convection Driven by Internal Heating

Stratified Convection Driven by Internal Heating Stratified Convection Driven by Internal Heating (a convective amplitudes talk) Nick Featherstone Collaborators: Brad Hindman Mark Miesch Juri Toomre The Rossby Number typical velocity v Rotational Timescale

More information

Experiments on convection in Earth s core tangent cylinder

Experiments on convection in Earth s core tangent cylinder R Available online at www.sciencedirect.com Earth and Planetary Science Letters 212 (2003) 119^134 www.elsevier.com/locate/epsl Experiments on convection in Earth s core tangent cylinder Jonathan Aurnou

More information