Study on a high efficiency thermoacoustic engine

Size: px
Start display at page:

Download "Study on a high efficiency thermoacoustic engine"

Transcription

1 International Workshop on Construction of Low-Carbon Society Using Superconducting and Cryogenics Technology (March 7-9, 2016) Study on a high efficiency thermoacoustic engine Shinya Hasegawa Hideki Kimura Kota Fukuda Shun Takahashi Kazuto Kuzuu E. M. Sharify (Presenter) Mariko Senga Tokai University ( Dep. of Prime Mover Engineering ) ( Dep. of Electrical & Electronic Eng. ) ( Dep. of Aeronautic & Astronautics ) ( Dep. of Prime Mover Engineering ) ( Dep. of Prime Mover Engineering ) ( Dep. of Prime Mover Engineering ) ( Graduate School of Engineering )

2 Introduction The thermoacoustic engine (TE) is an energy-conversion device which converts heat and acoustic power and has no moving parts! Thermoacoustic engine with high efficiency was first realized in (SWIFT, NATURE, 1999) Power generation Power Heat source Acoustic wave + ー 2

3 Introduction Maintenance-free: absence of moving parts and simplicity of the components High efficiency: changes the heat flow to the acoustic power based on the Carnot cycle. Low-cost structure: extremely simple structure that works through the pipe and does not require special parts. 3

4 比カルノー効率 [%] Introduction High efficiency at low temperature: Regenerator with high thermal efficiency could be obtained when : I. the phase difference between the pressure and the mean velocity is close to zero. II. III. hydraulic radius much less than thermal penetration depth to reduce viscous losses in the regenerators, z value be sufficiently large ωτ z/ρ m c 30 Multiple heat sources: Generally in the factory the waste heat is generated in different location rather than one place. While, the waste heat device can recover heat from single location of the heat source. 4

5 Acoustic Power Introduction To overcome this problem : I. Low temperature operating TA engine with high efficiency: Using multistage thermoacoustic engines with high acoustic impedance that operate by multiple heat sources is used. II. III. Reducing the non-linear effects: Using PIV, LIF and numerical methods to suppress the minor loss and mass flow. Compact, high-output linear generator: Local high acoustic impedance Compact Highoutput linear generator ハイスピード YLF レーザ KANOMAX DYLF-L300 デジタルハイスピードカメラ KANOMAX HSS-7 Reducing the non-linear effects 5

6 Introduction To overcome this problem : I. Low temperature operating TA engine with high efficiency: II. Reducing the non-linear effects: III. Compact, high-output linear generator: In order to evaluate the TE more quantitatively. Total heat Q in0 = Q prog + Q stand +Q D +Q κ Thermal efficiency of oscillating flow W η = Q prog + Q stand +Q D 6

7 The cascade thermoacoustic engine 音響パワー By controlling the acoustic field, high local acoustic impedance in regenerator area are achieved, which was more than 5 times of the acoustic impedance of the acoustic waves propagating in outside of regenerator area. 1 Local high acoustic Imp. The energy conversion with high efficiency is realized by using multiple regenerators with high acoustic impedance. 7

8 The cascade thermoacoustic engine The acoustic power increase as the absolute temperature ratio T H /T R increase: T H Wout Win P. H. Ceperley, J. Acoust. Soc. Am., 66, , TC By using multiple regenerator : W out W in T T H C n Therefore, it is possible to increase the power gain for a low temperature ratio as well. T. Biwa et.al., J. Acoust. Soc. Am., 129, ,

9 The cascade thermoacoustic engine The engine unit JTEKT PD104K FOSTEX FW108N Waveguide (φ14) Flow channel diameter : 0.48mm, 30mm 9

10 The high efficiency thermoacoustic engine Acoustic power More than 50% of the Carnot efficiency achieved when the temperature of the cold and hot heat exchangers were around 300K and 600K, respectively. More than 50% of the Carnot efficiency 10

11 The high efficiency thermoacoustic engine In 1979, Ceperley proposed a traveling-wave thermoacoustic engine in which the acoustic power was amplified by traveling-wave propagation through a differentially heated regenerators *P. H. Ceperley, J. Acoust. Soc. Am., 66, ,(1979). In 1985, Ceperley realized the relationship between the specific acoustic impedance z (= p / u) and thermal efficiency Acoustic impedance z=10ρ m c Specific Carnot efficiency η 2 =79% *P. H. Ceperley, Gain and efficiency of a short traveling wave heat engine, J. Acoust. Soc. Am. 77 (3), (1985). 11

12 The high efficiency thermoacoustic engine In 1999, Backhaus built a quarter-wavelength mode prototype traveling-wave thermoacoustic engine and introduced a resonator in a looped tube and with high acoustic impedance ( z=30 ρ m c) in the regenerator area, they achieved 42% of the Carnot eff. Following the concept of Backhaus and Swift et al, Tijani built thermal efficiency with 49% of the Carnot efficiency in S. Backhaus and G. W. Swift, A thermoacoustic stirling engine, Nature (London) 399, (1999). However, due to the lack of the boundary condition, it is difficult to install the regenerator at exactly peak acoustic impedance for a quarter-wavelength mode. Reduction in the efficiency 12

13 The high efficiency thermoacoustic engine By the driver, the acoustic field at the regenerator area are controlled. 6.01m Unit Linear motor :Pressure transducers Ambient HX Hot HX HX:Heat exchangers Regenerator Linear motor Power amplifier Function generator Installing linear motor on the left and right side and controlling the phase and amplitude by function generator, the specific acoustic impedance can be changed at the end of the unit such as 10ρ m c,5ρ m c,2ρ m c,1ρ m c. Operating frequency: 35Hz Working gas: helium 10 atm TH: 300 TC: 20 The zero phase difference between pressure and velocity amplitude at downstream part 20 W acoustic power at downstream part. 13

14 The high efficiency thermoacoustic engine Heat exchanger (Tapered fin) Plate thickness : 1.0mm gap between each plate:2.0 mm Materials: Etched stainless steel mesh length :30mm diameter :40mm Flow channel :0.3mm ωτ: porosity :77.85% 14

15 The thermoacoustic electrical generator Through analysis of dynamic magnetic field, the prototype of linear power generator is designed which generates the output power of 200W with 80% eff. To convert high frequency (50-200) acoustic power with small strokes into the electric power, new linear generator is required which is capable of switching rapidly between the magnetic poles of the generator. Coil Outer yoke (axis) Outer yoke (cover) Mover Permanent magnet Compacted and High-output linear generator 15

16 The thermoacoustic electrical generator Moving-coil linear generator 2004,S. Backhaus 120Hz => 58W S. Backhaus, E. Tward and M. Petach: Applied Physics. Lett., 85, pp (2004). Moving-magnet type linear generator 2014,Z. Wu 64Hz => 1043W Z. Wu, L. Zhang, W. Dai and E. Luo: Investigation on a 1 kw travelingwave thermoacoustic electrical generator, Applied Energy, 124, pp (2014). Moving-coil type Moving-magnet type Low output High 16 light the mover Heavy 16

17 Energy flow around the engine core plates To construct the optimized regenerator and exchangers, it is essential to realize the energy flow around the regenerator and heat exchanges. PIV, LIF, and CFD are the basic tools. 17

18 Energy flow around the engine core plates Work Flow Heat Flow Enthalpy Flow Q = T m s=aρ m T m S u t r I = A P u r t H = Q+I = Aρ m C p T u t r The enthalpy flow can be driven from the temperature and velocity. 18

19 Energy flow around the engine core plates Measuring velocity amplitude (u) Measuring Temperature variation (T) PIV (particle image velocimetry) LIF(Laser-induced fluorescence) The enthalpy flow in the core can be measured 19

20 Energy flow around the engine core plates Loud Speaker X= m 1.77 m 3.71 m 45mm 3mm 4mm 45mm PIV YAG Laser Power Amplifier Function Generator PIV Controller PIV High speed Camera Measuring oscillatory flow in the vicinity of a parallel plates placed in a traveling-wave thermoacoustic using the PIV 20

21 Energy flow around the engine core plates Measurement of velocity amplitude distribution by PIV PIV analysis Measuring the velocity distribution in the parallel plate 21

22 Energy flow around the engine core plates Comparison of the PIV and analytical results velocity amplitude distribution in the parallel plate Comparison of experimental and analytical results Future Plan: measuring the temperature and enthalpy flow by LIF 22

23 Governing equations were two-dimensional compressible Navier-Stokes equations: y F x E y F x E t Q v v y yy yx yy yx v x xy xx xy xx u T v u F T v u E v p e p v vu v F u p e uv p u u E e v u Q 0, 0, ) (, ) (, 2 2 The pressure p is related to the total energy e per unit mass by the equation of state: v u p e The temperature T in the energy equation was estimated using the specific heat at constant pressure C p based on the ideal gas law: v u p e T C p 23 Energy flow around the engine core plates

24 Energy flow around the engine core plates Kazuto Kuzuu, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschede 24

25 Energy flow around the engine core plates Temperature field F03 F04 u-velocity observed phase u observed phase disp F02 10 Temperature distribution around the engine HEX REG CEX Uave (m/s) F01 F F06 F F07 F F F10-15 F phase (degrees) Displacement (mm) F=60 degs F=120 degs F=180 degs F=240 degs F=300 degs F=360 degs Kazuto Kuzuu, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschede 25

26 Energy flow around the engine core plates Reproduction of a self-sustained oscillation u-velocity pressure u (m/s) P (Pa) time (sec) Time variation of velocity and pressure amplitude Closed end at (x,y) = (1.04,0.0) Open end Kazuto Kuzuu, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschede 26

27 Energy flow around the engine core plates Verification of the simulation Phase variation of section average velocity and displacement amplitude at x= F02 F03 F04 u-velocity observed phase u observed phase disp Lines : CFD Symbols : Linear analysis Comparison of velocity profiles Uave (m/s) F01 F F06 F F07 F F F10-15 F Displacement (mm) phase (degrees) y (mm) 0 y (mm) F01 F02 F03 F04 F05 F06 F07 F08 F09 U (m/s) F10 F11 F12 F01 F02 F03 x = m (middle section of REG) Closed end F04 F05 F06 F07 F08 F09 F10 F11 F F01 F02 F03 F04 F05 F06 F07 F08 F09 U (m/s) F10 F11 F12 F01 F02 F03 x = 2.00 m (section of resonance tube) Open end F04 F05 F06 F07 F08 F09 F10 F11 F12 Kazuto Kuzuu, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschede 27

28 Energy flow around the engine core plates i. Pressure: 0.1Mpa ii. iii. iv. Working Fluid: Air Frequency: Hz The temperatures of cold and hot heat exchanges are set 300K and 600K, respectively Displacement amplitudes : 25%, 50%, 75%, 100%, 125%, and 150% of the regenerator length 180mm 67.5mm 15mm 15mm 15mm 67.5mm A.W Impedance-matching Boundary condition 300K T 300K X 600K 600K Schematic of the computation domain 1.5mm 4mm 1.5mm Impedance-matching Boundary condition E.M. Sharify, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschede 28

29 E.M. Sharify, Shun Takahashi, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschede The acoustic load is defined by a linear system consisting of mass, spring and damper components with the periodic input force p =Psin(ωt+φ) and periodic output velocity u =Usin(ωt): Φ U P c Φ U P k m p u dt k cu dt du m cos sin Parameters m, c and k for each system are determined: L L L L L U P c k m 0 F F R R R R R R R R R U P c U P k m cos sin Schematic of the IMB condition 29 Energy flow around the engine core plates

30 Energy flow around the engine core plates 300K T 600K X A. wave 300K 600K Temperature a) Oscillation amp. 50% of the regenerator length (10 Hz) Temperature b) Oscillation amp. 100% of the regenerator length (10 Hz) Temperature c) Oscillation amp. 150% of the regenerator length (10 Hz) E.M. Sharify, Shun Takahashi, Shinya Hasegawa, 3 rd International Workshop on Thermoacoustics Oct Enschde 30

31 Energy flow around the engine core plates 10Hz 30Hz 40Hz 50Hz 31

T. Yazaki Department of Physics, Aichi University, Kariya 448, Japan

T. Yazaki Department of Physics, Aichi University, Kariya 448, Japan Experimental studies of a thermoacoustic Stirling prime mover and its application to a cooler Y. Ueda, a) T. Biwa, and U. Mizutani Department of Crystalline Materials Science, Nagoya University, Nagoya

More information

Design of Standing Wave Type Thermoacoustic Prime Mover for 300 Hz Operating Frequency

Design of Standing Wave Type Thermoacoustic Prime Mover for 300 Hz Operating Frequency Design of Standing Wave Type Thermoacoustic Prime Mover for 300 Hz Operating Frequency S.M.Mehta 1, K.P.Desai 2, H.B.Naik 2, M.D.Atrey 3 1 L. D. College of Engineering, Ahmedabad, Gujarat, India 2 S. V.

More information

Numerical investigation of a looped-tube traveling-wave thermoacoustic generator with a bypass pipe

Numerical investigation of a looped-tube traveling-wave thermoacoustic generator with a bypass pipe Available online at www.sciencedirect.com ScienceDirect Energy Procedia 142 (217) 1474 1481 www.elsevier.com/locate/procedia 9th International Conference on Applied Energy, ICAE217, 21-24 August 217, Cardiff,

More information

Development of parallel thermoacoustic engine: Evaluations of onset temperature ratio and thermal efficiency

Development of parallel thermoacoustic engine: Evaluations of onset temperature ratio and thermal efficiency Acoust. Sci. & Tech. 36, 2 (215) PAPER #215 The Acoustical Society of Japan Development of parallel thermoacoustic engine: Evaluations of onset temperature ratio and thermal efficiency Yosuke Nakano 1;,

More information

Experimental Investigation on a Single-Stage Stirling-Type Pulse Tube Cryocooler Working below 30 K

Experimental Investigation on a Single-Stage Stirling-Type Pulse Tube Cryocooler Working below 30 K Experimental Investigation on a Single-Stage Stirling-Type Pulse Tube Cryocooler Working below 30 K J. Ren 1, 2, W. Dai 1, E. Luo 1, X. Wang 1, 2, J. Hu 1 1 Chinese Academy of Sciences, Beijing 100190,

More information

Thermoacoustic analysis of a pulse tube refrigerator

Thermoacoustic analysis of a pulse tube refrigerator Journal of Physics: Conference Series Thermoacoustic analysis of a pulse tube refrigerator To cite this article: T Biwa 2012 J. Phys.: Conf. Ser. 400 052001 View the article online for updates and enhancements.

More information

arxiv:physics/ v1 [physics.flu-dyn] 12 Oct 2006

arxiv:physics/ v1 [physics.flu-dyn] 12 Oct 2006 arxiv:physics/0610086v1 [physics.flu-dyn] 12 Oct 2006 Heat to electricity thermoacoustic-magnetohydrodynamic conversion A. A. Castrejón-Pita and G. Huelsz Centro de Investigación en Energía, Universidad

More information

Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery

Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery K. De Blok Aster Thermoakoestische Systemen, Smeestraat 11, NL 8194 LG Veessen, Netherlands c.m.deblok@aster-thermoacoustics.com

More information

Vankudoth Raju* et al. ISSN: [IJESAT] [International Journal of Engineering Science & Advanced Technology] Volume-6, Issue-1,

Vankudoth Raju* et al. ISSN: [IJESAT] [International Journal of Engineering Science & Advanced Technology] Volume-6, Issue-1, The Crystal-Growth Control-Substance from Organism in Thermal Engineering Vankudoth Raju Asst Professor,Department of Mechanical Engineering,Princeton College of Engineering & Technology,Ghatkesar,TS,

More information

Al-Kayiem, A., and Yu, Z. (2016) Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe. Energy, 112, pp. 111-120. There may be differences between this version

More information

Low operating temperature integral systems

Low operating temperature integral systems Acoustics-8 Paris Low operating temperature integral systems A novel hybrid configuration TA engine Kees de Blok Aster Thermoakoestische Systemen General system aspects Reduction of average regenerator

More information

Experimental Investigation On Thermo- Acoustic Refrigerator

Experimental Investigation On Thermo- Acoustic Refrigerator ISSN 2395-1621 Experimental Investigation On Thermo- Acoustic Refrigerator #1 A.R.Suware 1 ashishsuware@gmail.com #1 Master of Engineering Student, Mechanical Engineering, MAEER S MIT, Kothrud-Pune ABSTRACT

More information

Numerical Simulation of Heat Exchanger's Length's Effect in a Thermoacoustic Engine

Numerical Simulation of Heat Exchanger's Length's Effect in a Thermoacoustic Engine Journal of Physical Science and Application 5 (2015) 61-65 doi: 10.17265/2159-5348/2015.01.009 D DAVID PUBLISHING Numerical Simulation of Heat Exchanger's Length's Effect in a Thermoacoustic Engine Mohamed

More information

Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors To cite this article: K Nakano

More information

INVESTIGATION OF AN ATMOSPHERIC PRESSURE THERMOACOUSTIC COOLING SYSTEM BY VARYING ITS OPERATING FREQUENCY

INVESTIGATION OF AN ATMOSPHERIC PRESSURE THERMOACOUSTIC COOLING SYSTEM BY VARYING ITS OPERATING FREQUENCY Journal of Engineering Science and Technology Vol. 8, No. 3 (2013) 364-371 School of Engineering, Taylor s University INVESTIGATION OF AN ATMOSPHERIC PRESSURE THERMOACOUSTIC COOLING SYSTEM BY VARYING ITS

More information

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Yu, Z., Jaworski, A.J., and Backhaus, S. (2012) Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy. Applied Energy, 99.

More information

FEASIBILITY ANALYSIS OF AN OPEN CYCLE THERMOACOUSTIC ENGINE WITH INTERNAL PULSE COMBUSTION. A Dissertation Presented to The Academic Faculty

FEASIBILITY ANALYSIS OF AN OPEN CYCLE THERMOACOUSTIC ENGINE WITH INTERNAL PULSE COMBUSTION. A Dissertation Presented to The Academic Faculty FEASIBILITY ANALYSIS OF AN OPEN CYCLE THERMOACOUSTIC ENGINE WITH INTERNAL PULSE COMBUSTION A Dissertation Presented to The Academic Faculty By Nathan T. Weiland In Partial Fulfillment of the Requirements

More information

Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics

Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics ECN-RX--05-163 Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics J.A. Lycklama à Nijeholt a) M.E.H. Tijani b)c) S. Spoelstra b) ~) Nuc]ear Research & Consultancy Group,

More information

Effect of Sub-Loop Tube on Energy Conversion Efficiency of Loop-Tube-Type Thermoacoustic System

Effect of Sub-Loop Tube on Energy Conversion Efficiency of Loop-Tube-Type Thermoacoustic System Proceedings of 2 th International Congress on Acoustics, ICA 21 23-27 August 21, Sydney, Australia Effect of Sub-Loop Tube on Energy Conversion Efficiency of Loop-Tube-Type Thermoacoustic System Shin-ichi

More information

Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study

Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study arxiv:158.5119v1 [physics.flu-dyn] 2 Aug 215 Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study Jet pump design guidelines Joris P. Oosterhuis a), Simon Bühler,

More information

Oscillating Flow Characteristics of a Regenerator under Low Temperature Conditions

Oscillating Flow Characteristics of a Regenerator under Low Temperature Conditions Oscillating Flow Characteristics of a generator under Low Temperature Conditions K. Yuan, L. Wang, Y.K. Hou, Y. Zhou, J.T. Liang, Y.L. Ju * Cryogenic laboratory, Technical Institute of Physics and Chemistry,

More information

A gas-spring system for optimizing loudspeakers in thermoacoustic refrigerators Tijani, M.E.H.; Zeegers, J.C.H.; de Waele, A.T.A.M.

A gas-spring system for optimizing loudspeakers in thermoacoustic refrigerators Tijani, M.E.H.; Zeegers, J.C.H.; de Waele, A.T.A.M. A gas-spring system for optimizing loudspeakers in thermoacoustic refrigerators Tijani, M.E.H.; Zeegers, J.C.H.; de Waele, A.T.A.M. Published in: Journal of Applied Physics DOI: 10.1063/1.1492867 Published:

More information

Mathewlal T 1, GauravSingh 2, Chetan Devadiga 3, Nehal Mendhe 3, 1 Mechanical Engineering Department, Fr CRIT, Vashi, Mumbai.

Mathewlal T 1, GauravSingh 2, Chetan Devadiga 3, Nehal Mendhe 3, 1 Mechanical Engineering Department, Fr CRIT, Vashi, Mumbai. Demonstration of Thermo Acoustic Refrigeration by Setting up an Experimental Model Mathewlal T 1, GauravSingh 2, Chetan Devadiga 3, Nehal Mendhe 3, 1 Mechanical Engineering Department, Fr CRIT, Vashi,

More information

ABSTRACT. Daniel George Chinn, Master of Science, Professor Amr Baz, Mechanical Engineering

ABSTRACT. Daniel George Chinn, Master of Science, Professor Amr Baz, Mechanical Engineering ABSTRACT Title of Document: PIEZOELECTRICALLY-DRIVEN THERMOACOUSTIC REFRIGERATOR Daniel George Chinn, Master of Science, 2010 Directed By: Professor Amr Baz, Mechanical Engineering Thermoacoustic refrigeration

More information

Comparison of Fluid Flow and Heat Transfer for 1D and 2D Models of an In-Line Pulse Tube Refrigerator

Comparison of Fluid Flow and Heat Transfer for 1D and 2D Models of an In-Line Pulse Tube Refrigerator 205 1 Comparison of Fluid Flow and Heat Transfer for 1D and 2D Models of an In-Line Pulse Tube Refrigerator K.W. Martin 1,2, C. Dodson 1, A. Razani 3 1 Spacecraft Component Thermal Research Group Kirtland

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 9, 23 http://acousticalsociety.org/ ICA 23 Montreal Montreal, Canada 2-7 June 23 Engineering Acoustics Session aea: Thermoacoustics I aea8. Computational fluid

More information

Visualization of Secondary Flow in an Inclined Double-Inlet Pulse Tube Refrigerator

Visualization of Secondary Flow in an Inclined Double-Inlet Pulse Tube Refrigerator Visualization of Secondary Flow in an Inclined Double-Inlet Pulse Tube Refrigerator M. Shiraishi 1, M. Murakami 2, A. Nakano 3 and T. Iida 3 1 National Institute of AIST Tsukuba 305-8564 Japan 2 University

More information

INVESTIGATION OF THERMOACOUSTIC PERFORMANCE OF STANDING AND TRAVELING WAVE THERMOACOUSTIC ENGINES

INVESTIGATION OF THERMOACOUSTIC PERFORMANCE OF STANDING AND TRAVELING WAVE THERMOACOUSTIC ENGINES INVESTIGATION OF THERMOACOUSTIC PERFORMANCE OF STANDING AND TRAVELING WAVE THERMOACOUSTIC ENGINES by Konstantin N. Tourkov B.S. in Mechanical Engineering, University of Pittsburgh, 2011 Submitted to the

More information

Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core

Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core Matthieu Guedra, a) Guillaume Penelet, Pierrick Lotton, and Jean-Pierre

More information

I. INTRODUCTION. J. Acoust. Soc. Am. 114 (4), Pt. 1, October /2003/114(4)/1905/15/$ Acoustical Society of America

I. INTRODUCTION. J. Acoust. Soc. Am. 114 (4), Pt. 1, October /2003/114(4)/1905/15/$ Acoustical Society of America A cascade thermoacoustic engine D. L. Gardner and G. W. Swift a) Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Received 11 April 2003; revised

More information

White Rose Research Online URL for this paper: Version: Accepted Version

White Rose Research Online URL for this paper:  Version: Accepted Version This is a repository copy of Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators. White Rose Research Online URL for this paper:

More information

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System Journal of Magnetics 18(3), 250-254 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave

More information

Evaluation of a surface acoustic wave motor with a multi-contact-point slider

Evaluation of a surface acoustic wave motor with a multi-contact-point slider Smart Mater. Struct. 7 (1998) 305 311. Printed in the UK PII: S0964-1726(98)91230-7 Evaluation of a surface acoustic wave motor with a multi-contact-point slider Minoru Kuribayashi Kurosawa, Makoto Chiba

More information

Modelling and optimisation of acoustic inertance segments for thermoacoustic devices

Modelling and optimisation of acoustic inertance segments for thermoacoustic devices Modelling and optimisation of acoustic inertance segments for thermoacoustic devices Luke Zoontjens, Luke, Carl Q. Howard, Carl, Anthony C. Zander, Ben S. Cazzolato, B School of Mechanical Engineering,

More information

Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K

Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K N. Matsumoto, Y. Yasukawa, K. Ohshima, T. Takeuchi, K. Yoshizawa, T. Matsushita, Y. Mizoguchi, and A. Ikura Fuji Electric

More information

AN OVERVIEW OF STACK DESIGN FOR A THERMOACOUSTIC REFRIGERATOR

AN OVERVIEW OF STACK DESIGN FOR A THERMOACOUSTIC REFRIGERATOR AN OVERVIEW OF STACK DESIGN FOR A THERMOACOUSTIC REFRIGERATOR Bhansali P. S 1, Patunkar P. P 2, Gorade S. V 3, Adhav S. S 4, Botre S. S 5 1,2,3,4 Student, Department of Mechanical Engineering, Sinhgad

More information

A Genetic Algorithm for Optimization Design of Thermoacoustic Refrigerators

A Genetic Algorithm for Optimization Design of Thermoacoustic Refrigerators Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 207 A Genetic Algorithm for Optimization Design of Thermoacoustic

More information

ScienceDirect. Finite element analysis and optimization of flexure bearing for linear motor compressor

ScienceDirect. Finite element analysis and optimization of flexure bearing for linear motor compressor Available online at www.sciencedirect.com ScienceDirect Physics Procedia 67 (2015 ) 379 385 25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014,

More information

TACS : Thermo Acoustic Cooling System

TACS : Thermo Acoustic Cooling System TACS : Thermo Acoustic Cooling System Z. Zarid, C. Gamba, A. Brusseaux, C. Laborie, and K. Briens Abstract Cooling with sound is a physical phenomenon allowed by Thermo-Acoustics in which acoustic energy

More information

However, Ceperley did not discuss two features that we find are vital for practical operation of such refrigerators and INTRODUCTION

However, Ceperley did not discuss two features that we find are vital for practical operation of such refrigerators and INTRODUCTION Acoustic recovery of lost power in pulse tube refrigerators G. W. Swift, D. L. Gardner, and S. Backhaus Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico

More information

Ben T. Zinn School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Ben T. Zinn School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 Open cycle traveling wave thermoacoustics: Energy fluxes and thermodynamics Nathan T. Weiland a) School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 Ben T. Zinn School

More information

Design of thermoacoustic refrigerators

Design of thermoacoustic refrigerators Cryogenics 42 (2002) 49 57 www.elsevier.com/locate/cryogenics Design of thermoacoustic refrigerators M.E.H. Tijani, J.C.H. Zeegers, A.T.A.M. de Waele * Department of Applied Physics, Eindhoven University

More information

Table A.1 Nomenclature Symbol Unit Description A m 2 Area (surface) a m, / Thickness, fraction of refrigerant seen by a single highfield

Table A.1 Nomenclature Symbol Unit Description A m 2 Area (surface) a m, / Thickness, fraction of refrigerant seen by a single highfield Appendix See Tables A.1, A.2 and A.3. Table A.1 Nomenclature Symbol Unit Description A m 2 Area (surface) a m, / Thickness, fraction of refrigerant seen by a single highfield region a 0 / Geometry factor

More information

Dynamic Modelling of a

Dynamic Modelling of a Dynamic Modelling of a Two-Phase Thermofluidic Oscillator for Efficient Low Grade Heat Utilization: Effect of Fluid Inertia Roochi Solanki, Amparo Galindo and Christos Markides Department of Chemical Engineering,

More information

Interfacial waves in steady and oscillatory, two-layer Couette flows

Interfacial waves in steady and oscillatory, two-layer Couette flows Interfacial waves in steady and oscillatory, two-layer Couette flows M. J. McCready Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 Page 1 Acknowledgments Students: M.

More information

(Received on Mar. 30, 2013 and accepted on Jul. 11, 2013)

(Received on Mar. 30, 2013 and accepted on Jul. 11, 2013) Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 38 (23) (23) - 59-66 Optimal Placement of Permanent Magnets in a Hybrid Magnetic evitation System for Thin Steel Plate by Takayoshi NARITA *, Shinya

More information

Influence of stack plate thickness and voltage input on the performance of loudspeaker-driven thermoacoustic refrigerator

Influence of stack plate thickness and voltage input on the performance of loudspeaker-driven thermoacoustic refrigerator Journal of Physics: Conference Series Influence of stack plate thickness and voltage input on the performance of loudspeaker-driven thermoacoustic refrigerator To cite this article: Nandy Putra and Dinni

More information

Vibration Control Effects of Tuned Cradle Damped Mass Damper

Vibration Control Effects of Tuned Cradle Damped Mass Damper Journal of Applied Mechanics Vol. Vol.13, (August pp.587-594 2010) (August 2010) JSCE JSCE Vibration Control Effects of Tuned Cradle Damped Mass Damper Hiromitsu TAKEI* and Yoji SHIMAZAKI** * MS Dept.

More information

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method R. Lerch a, M. Kaltenbacher a and M. Meiler b a Univ. Erlangen-Nuremberg, Dept. of Sensor Technology, Paul-Gordan-Str.

More information

Available online at ScienceDirect. Energy Procedia 74 (2015 )

Available online at  ScienceDirect. Energy Procedia 74 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 74 (015 ) 118 1191 International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15

More information

henrik johansson Thermoacoustic heat pump as a possibility to increase the efficiency of a tumble dryer

henrik johansson Thermoacoustic heat pump as a possibility to increase the efficiency of a tumble dryer Thermoacoustic heat pump as a possibility to increase the efficiency of a tumble dryer henrik johansson chalmers university of technology se 412 96 Göteborg, Sweden Phone: + 46 - (0)31 772 10 00 Web: www.chalmers.se

More information

REAL-TIME MEASUREMENTS OF LINEAR ALTERNATOR PERFORMANCE INDICES UNDER THERMOACOUSTIC- POWER-CONVERSION CONDITIONS

REAL-TIME MEASUREMENTS OF LINEAR ALTERNATOR PERFORMANCE INDICES UNDER THERMOACOUSTIC- POWER-CONVERSION CONDITIONS REAL-TIME MEASUREMENTS OF LINEAR ALTERNATOR PERFORMANCE INDICES UNDER THERMOACOUSTIC- POWER-CONVERSION CONDITIONS A.H. Ibrahim 1, A.Y. Abdelwahed and M. Abdou The American University in Cairo, School of

More information

Problem 10 Rijke s tube Team «12FM», Novosibirsk Artem Redko

Problem 10 Rijke s tube Team «12FM», Novosibirsk Artem Redko The 5th International Young Naturalists' Tournament Municipal Autonomous Institution of General Education of the city of Novosibirsk «Gymnasium 12» Problem 10 Rijke s tube Team «12FM», Novosibirsk chnmk@mail.ru

More information

Flow and Heat Transfer Processes in an Inertance type Pulse Tube Refrigerator

Flow and Heat Transfer Processes in an Inertance type Pulse Tube Refrigerator Flow and Heat Transfer Processes in an Inertance type Pulse Tube Refrigerator D. Antao and B. Farouk Department of Mechanical Engineering and Mechanics Drexel University Philadelphia, PA 19104 ABSTRACT

More information

System design of 60K Stirling-type co-axial pulse tube coolers for HTS RF filters

System design of 60K Stirling-type co-axial pulse tube coolers for HTS RF filters System design of 60K Stirling-type co-axial pulse tube coolers for HTS RF filters Y. L. Ju, K. Yuan, Y. K. Hou, W. Jing, J. T. Liang and Y. Zhou Cryogenic Laboratory, Technical Institute of Physics and

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST Alternative Siting February 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE

More information

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA Simulation of Horn Driver Response by Direct Combination of Compression Driver Response and Horn FEA Dario Cinanni CIARE, Italy Corresponding author: CIARE S.r.l., strada Fontenuovo 306/a, 60019 Senigallia

More information

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers Dr. Julie Slaughter ETREMA Products, Inc Ames, IA 1 ETREMA Products, Inc. Designer and manufacturer of technology

More information

Thermoacoustic Sensor for Nuclear Fuel Temperature Monitoring and Heat Transfer Enhancement

Thermoacoustic Sensor for Nuclear Fuel Temperature Monitoring and Heat Transfer Enhancement 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 20-24 May 2013, Le Mans, France www.ndt.net/?id=15518 Thermoacoustic Sensor for Nuclear Fuel Temperature Monitoring

More information

DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR

DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR Alwin Jose 1,Fredy Chacko 2,Jackson K Jose 3, Jomy Joseph 4,Kiran Paliakkara 5, Sreejith K 6 1,2,3,4,5 UG Scholars, Dept. of Mechanical Engineering

More information

Thermal Analysis of Shell-and-Tube Thermoacoustic Heat Exchangers

Thermal Analysis of Shell-and-Tube Thermoacoustic Heat Exchangers entropy Article Thermal Analysis of Shell-and-Tube Thermoacoustic Heat Exchangers Mohammad Gholamrezaei * and Kaveh Ghorbanian Department of Aerospace Engineering, Sharif University of Technology, Tehran

More information

Thermoacoustic Devices

Thermoacoustic Devices Thermoacoustic Devices Peter in t panhuis Sjoerd Rienstra Han Slot 9th May 2007 Introduction Thermoacoustics All effects in acoustics in which heat conduction and entropy variations play a role. (Rott,

More information

Helmholtz resonator with multi-perforated plate

Helmholtz resonator with multi-perforated plate Helmholtz resonator with multi-perforated plate Diogo Filipe Alves Cabral diogo.a.cabral@ist.utl.pt Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal November 2016 Abstract The present

More information

Design and Assembly of a Thermoacoustic Engine Prototype

Design and Assembly of a Thermoacoustic Engine Prototype Sophie Collard Design and Assembly of a Thermoacoustic Engine Prototype Subtitle Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Environmental Engineering Design and Assembly

More information

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF CERN Accelerator School RF Cavities Erk Jensen CERN BE-RF CERN Accelerator School, Varna 010 - "Introduction to Accelerator Physics" What is a cavity? 3-Sept-010 CAS Varna/Bulgaria 010- RF Cavities Lorentz

More information

Ion Beam Sources for Neutral Beam Injectors: studies and design for components active cooling and caesium ovens

Ion Beam Sources for Neutral Beam Injectors: studies and design for components active cooling and caesium ovens Ion Beam Sources for Neutral Beam Injectors: studies and design for components active cooling and caesium ovens Andrea Rizzolo Consorzio RFX, Padova, Italy andrea.rizzolo@igi.cnr.it Advanced Physics Courses,

More information

A Model for Exergy Efficiency and Analysis of Regenerators

A Model for Exergy Efficiency and Analysis of Regenerators A Model for Exergy Efficiency and Analysis of Regenerators C Dodson 1,, A Razani 1, and T Roberts 1 1 Air Force Research aboratory Kirtland AFB, NM, 87117-5776 The University of New Mexico Albuquerque,

More information

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS Dong Yang and Aimee S. Morgans Department of Aeronautics, Imperial College London, London, UK, SW7 AZ email: d.yang13@imperial.ac.uk Helmholtz

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

Physics 202 Exam 1. May 1, 2013

Physics 202 Exam 1. May 1, 2013 Name: Physics 202 Exam 1 May 1, 2013 Word Problems Show all your work and circle your final answer. (Ten points each.) 1. If 2.4 m 3 of a gas initially at STP is compressed to 1.6 m 3 and its temperature

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume Number, June.6 ISSN 995-6665 Pages 99-4 Computational Fluid Dynamics of Plate Fin and Circular Pin Fin Heat Sins Mohammad Saraireh *

More information

(Received on Mar. 30, 2013 and accepted on Jul. 11, 2013)

(Received on Mar. 30, 2013 and accepted on Jul. 11, 2013) Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 38 (3) (3) - 53-58 Effect of a Magnetic Field from the Horiontal Direction on a Magnetically Levitated Steel Plate (Fundamental Considerations on

More information

Final Exam Concept Map

Final Exam Concept Map Final Exam Concept Map Rule of thumb to study for any comprehensive final exam - start with what you know - look at the quiz problems. If you did not do well on the quizzes, you should certainly learn

More information

Investigation of Cryogenic Cooling Systems Activated by Piezoelectric Elements

Investigation of Cryogenic Cooling Systems Activated by Piezoelectric Elements Investigation of Cryogenic Cooling Systems Activated by Piezoelectric Elements S. Sobol, G. Grossman Technion Israel Institute of Technology Haifa, Israel 3 ABSTRACT A compressor for a cryocooler based

More information

Theoretical and Experimental Research on a Two-Cold-Finger Pulse Tube Cooler

Theoretical and Experimental Research on a Two-Cold-Finger Pulse Tube Cooler 199 Theoretical and Experimental Research on a Two-Cold-Finger Pulse Tube Cooler H.Wei 1,2, M. Zhao 1, H. Chen 1, J. Cai 1 1 Key Laboratory of Space Energy Conversion Technologies, Technical Institute

More information

CEA Saclay Seminar. Cryogenic Research for HTS Transmission Cables in Korea

CEA Saclay Seminar. Cryogenic Research for HTS Transmission Cables in Korea CEA Saclay Seminar Cryogenic Research for HTS Transmission Cables in Korea Overview 10 min 10 kw Brayton Refrigerator 10 min He-LN 2 Heat Exchanger 15 min Cryogenic Design for Future 15 min April 22, 2016

More information

CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers

CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers I.Nachman 1, N. Pundak 1, and G. Grossman 2 1 Ricor Cryogenic and Vacuum Systems En Harod Ihud 18960, Israel 2 Faculty of Mechanical

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 13, 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Development of a new linear actuator for Androids

Development of a new linear actuator for Androids 8 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-3, 8 Development of a new linear actuator for Androids Masayuki MISHIMA, Hiroshi ISHIGURO and Katsuhiro HIRATA, Member,

More information

This is a repository copy of Thermal performance of finned-tube thermoacoustic heat exchangers in oscillatory flow conditions.

This is a repository copy of Thermal performance of finned-tube thermoacoustic heat exchangers in oscillatory flow conditions. This is a repository copy of Thermal performance of finned-tube thermoacoustic heat exchangers in oscillatory flow conditions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/91976/

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

MEASUREMENTS OF THERMAL FIELD AT STACK EXTREMITIES OF A STANDING WAVE THERMOACOUSTIC HEAT PUMP

MEASUREMENTS OF THERMAL FIELD AT STACK EXTREMITIES OF A STANDING WAVE THERMOACOUSTIC HEAT PUMP Frontiers in Heat and Mass Transfer (FHMT),, 0106 (11) DOI: 10.5098/hmt.v.1.06 Frontiers in Heat and Mass Transfer Available at www.thermalfluidscentral.org MEASUREMENTS OF THERMAL FIELD AT STACK EXTREMITIES

More information

Study on A Standing Wave Thermoacoustic Refrigerator Made of Readily Available Materials

Study on A Standing Wave Thermoacoustic Refrigerator Made of Readily Available Materials International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1 Study on A Standing Wave Thermoacoustic Refrigerator Made of Readily Available Materials Jinshah B S*, Ajith

More information

ACTIVE CONTROL OF THERMOACOUSTIC AMPLIFICATION IN A THERMO-ACOUSTO-ELECTRIC ENGINE. 1 Introduction

ACTIVE CONTROL OF THERMOACOUSTIC AMPLIFICATION IN A THERMO-ACOUSTO-ELECTRIC ENGINE. 1 Introduction n 3 l - Int l Summer School and Workshop on Non-Normal and Nonlinear Effects in Aero- and Thermoacoustics, June 18 21, 2013, Munich ACTIVE CONTROL OF THERMOACOUSTIC AMPLIFICATION IN A THERMO-ACOUSTO-ELECTRIC

More information

Phys102 Term: 103 First Major- July 16, 2011

Phys102 Term: 103 First Major- July 16, 2011 Q1. A stretched string has a length of.00 m and a mass of 3.40 g. A transverse sinusoidal wave is travelling on this string, and is given by y (x, t) = 0.030 sin (0.75 x 16 t), where x and y are in meters,

More information

Author's personal copy

Author's personal copy Energy Conversion Management 65 (2013) 810 818 Contents lists available at SciVerse ScienceDirect Energy Conversion Management journal homepage: www.elsevier.com/locate/enconman Thermodynamic analysis

More information

Thermoacoustic Devices

Thermoacoustic Devices Thermoacoustic Devices Peter in t panhuis Sjoerd Rienstra Han Slot 24th April 2008 Down-well power generation Vortex shedding in side branch Vortex shedding creates standing wave Porous medium near closed

More information

APPLICATION OF THE THEORY OF SONICS IN THE DESIGN OF PERCUSSIVE EQUIPMENT FOR ROCK CUTTING

APPLICATION OF THE THEORY OF SONICS IN THE DESIGN OF PERCUSSIVE EQUIPMENT FOR ROCK CUTTING Annals of the University of Petroşani, Mechanical Engineering, 18 (2016), 5-10 5 APPLICATION OF THE THEORY OF SONICS IN THE DESIGN OF PERCUSSIVE EQUIPMENT FOR ROCK CUTTING IOSIF ANDRAS 1, ANDREI ANDRAS

More information

Strength Study of Spiral Flexure Spring of Stirling Cryocooler

Strength Study of Spiral Flexure Spring of Stirling Cryocooler Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Strength Study of Spiral of Stirling Cryocooler WANG Wen-Rui, NIE Shuai, ZHANG Jia-Ming School of Mechanical Engineering, University of Science

More information

Design of structural components and radial-build for FFHR-d1

Design of structural components and radial-build for FFHR-d1 Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN 1 Design of structural components

More information

Generation and Acceleration of High-Density Helicon Plasma Using Permanent Magnets for the Completely Electrodeless Propulsion System )

Generation and Acceleration of High-Density Helicon Plasma Using Permanent Magnets for the Completely Electrodeless Propulsion System ) Generation and Acceleration of High-Density Helicon Plasma Using Permanent Magnets for the Completely Electrodeless Propulsion System ) Shuhei OTSUKA, Toshiki NAKAGAWA, Hiroki ISHII, Naoto TESHIGAHARA,

More information

Measuring the performance of different stack materials in thermoacoustic device

Measuring the performance of different stack materials in thermoacoustic device ROSKILDE UNIVERSITY 2015 Measuring the performance of different stack materials in thermoacoustic device David Bartos, Sonja Kurzbach, Zuzanna Filipiak, Maros Petro Supervisor: Wence Xaio 2 nd semester

More information

ABSTRACT. Mostafa Nouh, Doctor of Philosophy, 2013

ABSTRACT. Mostafa Nouh, Doctor of Philosophy, 2013 ABSTRACT Title of Document: THERMOACOUSTIC-PIEZOELECTRIC SYSTEMS WITH DYNAMIC MAGNIFIERS Mostafa Nouh, Doctor of Philosophy, 2013 Directed By: Professor Amr Baz Department of Mechanical Engineering Thermoacoustic

More information

Numerical Simulation on Flow and Heat Transfer in Oscillating Heat Pipes

Numerical Simulation on Flow and Heat Transfer in Oscillating Heat Pipes 10th IHPS, Taipei, Taiwan, Nov. 6-9, 11 Numerical Simulation on Flow and Heat Transfer in Oscillating Heat Pipes S.F. Wang a,*, Z.R. Lin a, Z.Y. Lee b, and L.W. Zhang b a Key Laboratory of Enhanced Heat

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Simulations of steady and oscillating flow in diffusers

Simulations of steady and oscillating flow in diffusers Simulations of steady and oscillating flow in diffusers L. Schoenmaker Delft University of Technology MSc track: Sustainable Process & Energy Technology Simulations of steady and oscillating flow in diffusers

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please check): INSTRUCTIONS:

More information

Multiscale Hydrodynamic Phenomena

Multiscale Hydrodynamic Phenomena M2, Fluid mechanics 2014/2015 Friday, December 5th, 2014 Multiscale Hydrodynamic Phenomena Part I. : 90 minutes, NO documents 1. Quick Questions In few words : 1.1 What is dominant balance? 1.2 What is

More information

Simulation of a Thermo-Acoustic Refrigerator

Simulation of a Thermo-Acoustic Refrigerator Simulation of a Thermo-Acoustic Refrigerator Sohaib Ahmed 1, Abdul Rehman 1, Ammad Fareed 1, Syed Muhammad Sabih ul Haque 1, Ali Muhammad Hadi 1 1 National University of Sciences and Technology (NUST),

More information