Compensation 8. f4 that separate these regions of stability and instability. The characteristic S 0 L U T I 0 N S
|
|
- Ursula Craig
- 3 years ago
- Views:
Transcription
1 S 0 L U T I 0 N S Compensation 8 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. As suggested in Lecture 8, to perform a Nyquist analysis, we first sketch the Bode plot. The transfer function of interest is the af product given by 106(0.01s + 1)2 a(s)f(s) = (S + 1)2 4 (S8.1) (s + 1)~ Using the methods of Section 3.4 of the textbook, the Bode plot is sketched in Figure S8.1. From this Bode plot, a gain-phase Nyquist plot is generated in Figure S8.2. From this figure, it is apparent that for some range of intermediate values off, the - 1 points will be enclosed within the contour, and the system will be unstable. However, for small enough or large enough values off, the system will be stable. For instance, from Figure S8.2, the system is stable iff = 1, and it is certainly stable for any f > 1. This same result can be obtained from a root-locus construction as shown in Figure S8.3. Because the two zeros are a factor of 100 farther from the origin than the three poles, the root-locus branches will initially follow asymptotes of ± 60* and 180* from the real axis, by Rules 7 and 5. The two branches that leave the real axis at ± 60' will enter the right half of the s plane at about W = 1.7 for large enough values of fa. However, these two branches must rejoin the negative real axis at a point to the left of the two poles at s = -100, by Rules 2 and 3. Thus the branches cross back into the left half of the s plane and the system is stable for sufficiently large f. (Because only a qualitative analysis is required, the exact point at which the branches reenter the negative real axis will not be solved for.) Thus, both the Nyquist and root-locus analyses indicate that the system is stable for small values off, unstable for intermediate values off, and stable for large f. Now, we can use a Routh analysis to determine the values of f4 that separate these regions of stability and instability. The characteristic equation is Solution 8.1 (P4.13) 1+ a(s)f = f (0.S 0 (S8.2) (s + 1) 0 After clearing fractions and collecting terms, we have
2 S8-2 ElectronicFeedback Systems Figure S8.1 Bode plot for Problem 8.1 (P4.13) f Ia(s)fo I 10 5 f f 0 slope = f f fo f, = -1 CO -90* * 4a(s)fo
3 Compensation S8-3 Figure S8.2 Nyquist plot for Problem 8.1 (P4.13). Ia(s)fo 10 6 f af plane 10 5 f 10 4 f 10 2 f 10fo * <4ta(s)f, 0.lf
4 S8-4 ElectronicFeedback Systems Figure S8.3 Root locus for Problem 8.1 (P4.13). S plane
5 Compensation S8-5 s' + ( fo)s 2 + (3 + 2 X 10 4 fo)s fo = 0 From the polynomial, the Routh array is constructed as X 10 4 fo fo (S8.3) 2X 10 6 f X 10 6 fo (S8.4) fo f0 0 The third row becomes zero (indicating poles on the imaginary axis) when which is solved by 2x 10 6 f x 10 6 fo + 8 = 0 (S8.5) 0.94 X 106 ± \/(0.94 X 106)2-64 x X 10 6 = (S8.6) = 8.5 X 106, 0.47 (S8.7) Note that high numerical precision is required to extract the root atfo = 8.5 X This problem could be avoided by framing the Routh calculation in terms of a 0 fo. However, a scientific calculator can carry out this calculation with sufficient accuracy. We carry this precision only where necessary, and round the answers of Equation S8.7 to two significant figures. The third row is negative for Thus, the system is stable for fo < 8.5 X 10-6 and 8.5 X 10-6 < fo < 0.47 (S8.8) fo > 0.47 (S8.9) which are the two borderline values the problem statement asks for.
6 S8-6 ElectronicFeedbackSystems Solution 8.2 (P5.1) The circuit of Figure S8.4 provides an ideal gain of -10, allows lowering of the loop-transmission magnitude. The block diagram for this connection is as in Figure S8.5. and Figure S8.4 Connection with gain of -10, which allows lowering of the loop-transmission magnitude. 1OR R Vi ar + a(s) y-.o Figure S8.5 Block diagram for circuit of Figure S8.4. The value of R cancels out of both blocks in which it appears. After algebraically reducing the expressions in these blocks, we have the diagram of Figure S8.6.
7 Compensation S8-7 Figure S8.6 Reduced block diagram for Problem 8.2 (P5.1). This can be further reduced as shown in Figure S8.7. Figure S8.7 Reduced block diagram for Problem 8.2 (P5.1). From the form of the block diagram, this system has an ideal gain of - 10 as stated earlier. The negative of the loop transmission is -L.T. = a(s) a 10 + Ila (S8.10) 2 X 10' a (0.ls + 1)(10-5 s + 1) Ila From Figure 4.26b, the required damping ratio for P = 1.1 is approximately 0.6. From Figure 4.26a, this implies a phase margin of about 580. That is, the loop-transmission phase must be at the crossover frequency we. The form of a(s) allows us to readily solve for this frequency, because at frequencies where the two poles at s = - 10' are contributing any significant phase shift, the pole at s = - 10 is contributing -90* of phase. Thus, at w,, the phase due to the two poles must be - 32*. Applying Equation 3.47 from the textbook, we can write -32* = -2 tan-' 10-5We (S8.11)
8 S8-8 ElectronicFeedback Systems which is solved for oc as OC = 105 tan 160 = 2.87 X 104 rad/sec (S8.12) Now, we need to pick a to set the loop-transmission magnitude equal to unity at this frequency. Applying Equation 3.46 to the three poles gives X (100o2 + 1) Substituting in oc = 2.87 X 104 gives which is solved by 1 = 64.4 a 10 + Ila a ~ 0.19 a 10 + Ila Thus, the value of the attenuation resistor is 0.19R. (S8.13) (S8.14) (S8.15) Solution 8.3 (P5.2) This is the same topology as in Problem 8.2 (P5.1). The only difference is that the noise voltage E, adds directly to the error signal, and the ideal gain is -1 rather than -10. The appropriate modifications to the block diagram of Figure S8.5 give the block diagram of Figure S8.8, which represents the connection of Figure 5.23a. Figure S8.8 Block diagram for circuit of Figure 5.23a. E, Vi y,
9 Compensation S8-9 By a block-diagram manipulation, Figure S8.8 reduces to Figure S8.9. En Figure S8.9 diagram. Reduced block Vi V From Figure S8.9, at frequencies where Ia(s) V E(s) I(s) a a a I + 2a (S8.16) V 0 (s) For a >> 1,this ratio is about 2. For a < 1,the ratio becomes Es(s) very large, verifying the assertion at the end of Section that this type of attenuation increases voltage noise at the amplifier output.
10 MIT OpenCourseWare RES Electronic Feedback Systems Spring 2013 For information about citing these materials or our Terms of Use, visit:
Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S
Root Locus S5-1 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the
1(b) Compensation Example S 0 L U T I 0 N S
S 0 L U T I 0 N S Compensation Example I 1U Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. (a) The solution of this problem is outlined in
Locus 6. More Root S 0 L U T I 0 N S. Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook.
S 0 L U T I 0 N S More Root Locus 6 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. For the first transfer function a(s), the root locus is
Introduction to Systems with Dynamics
S 0 L U T I 0 N S Introduction to Systems with Dynamics I- 3 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. From Figure 3.6 on page 79 of the
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
1, I. Compensation (cont.) Operational Amplifier. Ks 2 S O L U TI OO N S
S O L U TI OO N S Operational Amplifier Compensation (cont.) 3 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. With minor-loop compensation,
Root Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
STABILITY OF CLOSED-LOOP CONTOL SYSTEMS
CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control
2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology
Nyquist Stability Criteria
Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Introduction to
IC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
Analysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Reading: ise: Chapter 8 Massachusetts
Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year
Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system
ECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
Controls Problems for Qualifying Exam - Spring 2014
Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram
Digital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such
Control Systems. Root Locus & Pole Assignment. L. Lanari
Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root
Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus
Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
ECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Routh-Hurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform
Homework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
6.302 Feedback Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due
FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY
FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION
H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )
.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a
Table of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun
Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)
Feedback. Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS)
Feedback Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices,
CONTROL SYSTEM STABILITY. CHARACTERISTIC EQUATION: The overall transfer function for a. where A B X Y are polynomials. Substitution into the TF gives:
CONTROL SYSTEM STABILITY CHARACTERISTIC EQUATION: The overall transfer function for a feedback control system is: TF = G / [1+GH]. The G and H functions can be put into the form: G(S) = A(S) / B(S) H(S)
7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
Homework 7 - Solutions
Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
Control Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
Recitation 11: Time delays
Recitation : Time delays Emilio Frazzoli Laboratory for Information and Decision Systems Massachusetts Institute of Technology November, 00. Introduction and motivation. Delays are incurred when the controller
STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable
ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Bounded-input bounded-output (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated
CHAPTER # 9 ROOT LOCUS ANALYSES
F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1
ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University
ECEN 67 (ESS) Op-Amps Stability and Frequency Compensation Techniques Analog & Mixed-Signal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative
Laplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
Index. Index. More information. in this web service Cambridge University Press
A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
An Internal Stability Example
An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and
Lecture 1 Root Locus
Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the
Electronic. Systems. Feedback. MIT Video Course. Video Course Manual. James K. Roberge
0 Massachusetts Institute of Technology Center for Advanced Engineering Study MIT Video Course Video Course Manual Electronic Feedback Systems James K. Roberge Professor of Electrical Engineering, MIT
Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs
ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING
EC 2255 - CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
Topic # Feedback Control Systems
Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19
CDS 101/110a: Lecture 8-1 Frequency Domain Design
CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
Control Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
CONTROL * ~ SYSTEMS ENGINEERING
CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control
C 0 U R S E A N. Problems
C 0 U R S E A N Problems S 0 L U T I 0 N S Introduction and Basic Concepts Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. Following the example
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,
HANDOUT E.22 - EXAMPLES ON STABILITY ANALYSIS
Example 1 HANDOUT E. - EXAMPLES ON STABILITY ANALYSIS Determine the stability of the system whose characteristics equation given by 6 3 = s + s + 3s + s + s + s +. The above polynomial satisfies the necessary
Control Systems. University Questions
University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
Essence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
Feedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A
10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative
INTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant
Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust
2.010 Fall 2000 Solution of Homework Assignment 8
2.1 Fall 2 Solution of Homework Assignment 8 1. Root Locus Analysis of Hydraulic Servomechanism. The block diagram of the controlled hydraulic servomechanism is shown in Fig. 1 e r e error + i Σ C(s) P(s)
Course Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques
ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =
ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.
ESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.
SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..
I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF
EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
Electronics II. Final Examination
The University of Toledo f6fs_elct7.fm - Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm - Problem 5 points Given is
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
D G 2 H + + D 2
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The
(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback
Analysis and Design of Analog Integrated Circuits Lecture 12 Feedback Michael H. Perrott March 11, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Open Loop Versus Closed Loop Amplifier
VALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8
Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by
University of Science and Technology, Sudan Department of Chemical Engineering.
ISO 91:28 Certified Volume 3, Issue 6, November 214 Design and Decoupling of Control System for a Continuous Stirred Tank Reactor (CSTR) Georgeous, N.B *1 and Gasmalseed, G.A, Abdalla, B.K (1-2) University
CYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
2.004 Dynamics and Control II Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts