High Energy Gamma-Rays in Magnetar Powered Supernovae: Heating Efficiency and Observational Signatures

Size: px
Start display at page:

Download "High Energy Gamma-Rays in Magnetar Powered Supernovae: Heating Efficiency and Observational Signatures"

Transcription

1 High Energy Gamma-Rays in Magnetar Powered Supernovae: Heating Efficiency and Observational Signatures Dmitry A. Badjin 1,2 with Maxim V. Barkov and Sergei I. Blinnikov 1 N.L. Dukhov Research Institute of Automatics (VNIIA), Moscow, Russia 2 Institute for Theoretical and Experimental Physics, Moscow, Russia 18th Workshop on Nuclear Astrophysics Ringberg Castle March 14 19, 2016

2 2 Magnetar Powered Supernova Sources of additional power: Rotation energy potentially available: E rot = 1 2 IΩ erg ( ) Spin-down losses: L rot = L t α, τ 45 erg L 0 10 s, τ 105 s, α 2 Inner Shock heating HEGR heating! Simple deposition of L rot at the shell base seems promising for fitting observed SLSN light curves D. Kasen, L. Bildsten, ApJ, 2010, 717, p.245 C. Inserra et al. ApJ, 2013, 770:128 M. Nicholl et al. Nature, 2013, 502, p.346

3 3 Magnetar Powered Supernova Magnetar Driven Shock: 1D-simulations D.Kasen, B.Metzger, L.Bildsten, arxiv: , accepted to ApJ

4 4 Magnetar Powered Supernova Questions: Whether the magnetar powering is pronounced against the initial (strong) SLSN explosion and Ni-Co-Fe decays?? t: L M (t) L burst (t), L Ni (t) It seems better: the magnetar to be strong (but this means a short time-scale of losses) or the explosion weak (but how could it provide a strong M?) or t long (but heating power is also weak) HEGRs may be locked inside the wind cavern by high opacity for pair-production on the thermal background of ejecta, until the latter cools enough. Tests are required.

5 Tested Scenario MRI-driven Hypernova with Magnetar Powering Eburst = 1 10 foe, LM = erg, s Ni-free but with HEGRs according to Barkov M.V. & Komissarov S.S., Mon.Not.Roy.Astron.Soc., 2011, 415, pp

6 6 Magnetar Cavern Initial burst a Thermal Bomb SN ejecta (IV) expands into ISM (V) Forward Shock (FS) Magnetar e ± -wind (I) (γ e = !) is terminated by IV 3 discontinuities: Termination shock (TS), leptons-plasma Contact (CD), Inner shock (IS) 2 regions: shocked wind (II), shocked plasma (III). Plasma is hot ( K) thermal emission (TE) inwards ( free escape) and outwards (diffusion free escape) Relativistic e ± + B and TE HEGRs: synchrotron (10 MeV 10 GeV) and IC (up to 100 TeV) HEGRs + plasma (direct Compton) and TE (pair production) heating and pressure.

7 7 Methods of Testing Radiative Hydrodynamics with STELLA (Blinnikov et al., 1998) for TE: Spherical symmetric lagrangean hydrodynamics Coupled (unsplit) + multigroup time dependent radiation transport of energy and flux (0th and 1st moments of the Boltzmann equation, variable Eddington factor closure, O(v/c) in moving media) High order accurate implicit solver (2-nd in space, up to 6-th in time) Scattering and expansion opacity Artificial mixing acceleration Improvements for high-energy effects: + Source of HEGR accounts for spin-down luminosity (e ± injection), coupling of wind and plasma via pressure and energy balance. + Spectral transport of HEGRs. Energy deposition. Outcoming emission ectimation. + Optimization of moment equations closure HEGRStella (Badjin)

8 8 Wind-Plasma Coupling Scheme at TS: p e + p B = E + B2 3V 8π = Lw 4πcR 2 TS E e = L e + (η 1)L γ p e V E B = L B p B V L γ = L Syn (B, T TE ) + L IC (J(ν), B) at CD: p e + p B nkt everywhere above TS: γ + e γ + heat γ + hν e ± heat heat = E e or 3 2 nkt

9 9 HEGR Source Calculation Input: B, L e (t), dn0 e (t,γ e) dγ e STELLA Quasi-stationary fast e-cooling: dn e(γ e,t) dt = N 0(t) γ α e L e (t)γe 2, T rad or J ν (ν) from native Ne(γe,t) γ e,max t cool (T rad,b,γ + N e(γ e,t) e) t cool (T rad,b,γ e γe)dγ e = 0 dne(γe,t) dγ e dnγ(ε,t) dε Syn, dnγ(ε,t) dε IC L γ (t) HEGR spectral density over 100 MeV 100 TeV logarithmic grid special thanks to Dmitry V. Khangulyan γ e

10 10 HEGRs & Compton Scattering HEGRs are emitted by ultrarelativistic leptons strong radial collimation sharp angular dependence, low-order moment approximations do not work. Direct CS (off cold e ): HEGRs either are weakly deflected, or (otherwise) lose most of energy Strongly downscattered photons do not contribute photon density at final energy significantly Simplification: HEGRs are discretized into a set of expanding spherical shells of photons collimated within θ c < 1 3 : small-angle scattering gradual softening, large-angle scattering photon destruction, immediate energy thermalization.

11 11 HEGR Transport Equation Superposition of direct and scattered (only within θ c ) emission on every elementary path r 0 r 1 = r 0 + c t. Transfer equation formal solution: N ε(r 1, ε) = N ε(r 0, ε)e τ(ε) σtsc(ε) S C(ε) = ε max ε 1 N ε(r 0, ε 0)F(ε, ε 0) ε 0 τ(ε) = r 1 r 0 r 1 r 0 n e(r )e r r 0 χ(ε, r, t (r ))dr χ(ε 0 )dr r1 χ(ε)dr r dr d ln ε 0

12 12 Kinetics and Opacity Downscattering rate ε 0 ε (if allowed by the angular selection rule): F(ε, ε 0) = (1 + (1 + 1 ε 0 1 ε )2 + εε 0( 1 ε 0 1 ε )2 ) ε 0 ε max(ε, θ) opacity χ accounts for CS: ( 3 σ T χ KN(ε) = n e 8 ε (ε 2 2 ε ) ln(1 + 2ε) + 2ε2 (1 + ε) (1 + 2ε) 2 and pair production of photons of local effective temperature T eff : χ pp(ε, ν) = 2r2 0Θ 3 1 ν 2 sσ(s) ln(1 e νs ) ds, πλ 3 e ν(ε, T eff ) = m 2 c 4 /(εkt eff ), Θ = kt eff /m ec 2, Λ e = /m ec (derived from Gould & Schreder, 1967) ),

13 13 Calculation Setup RSG Mass: 15 25M 15 Scale factor for CE: MRI-SN burst energy erg, duration s 3, 30 L w = 3 ( ) t 2.1 erg 10 5 s s, B Magnetization parameter σ = : σl B + L e = (σ + 1)L w Lepton spectrum: γ 2 e, γ e = Output: light curves and spectra of outcoming HEGRs and observable TE during the first several years

14 14 Conditions in the Cavern R, cm t, days R src R cdb T rad B, kgs; T rad, 10 5 K

15 15 HEGR Outcome Source Outcome log L γ, erg s Bol GeV 1-10 GeV GeV TeV Strong absorption in the shell the signal is rather weak and late

16 16 HEGR Blocking Key effect: Plasma is hot a lot of thermal hν, to kill the most of HEGRs before they pass the CD HEGRs (almost) do not enter the plasma no re-heating of the shell Cold shell does not intercept HEGRs no re-heating, weak TE. Negative feedback hν γ. Magnetar energy turns into work.

17 17 Magnetar Driven Shock The MDS is radiative Dense Shell. HEGRStella Optically and geometrically thin dense shell Extremely hard for numerical differential transfer Long-characteristic integral scheme for TE Blondin, Chevalier & Frierson, ApJ, 2001, 563, p.806

18 17 Magnetar Driven Shock The MDS is radiative Dense Shell. But! It is known to be RT-unstable (Bernstein & Book 1978) HEGRStella Optically and geometrically thin dense shell Extremely hard for numerical differential transfer Long-characteristic integral scheme for TE Credit: S. Glazyrin Time to smear Artificial RT-viscosity boost

19 18 Thermal Emission: Bolometric The work is actually in progress NoHEGR NoNi 3 foe + HEGR 1.2 foe + HEGR NoHEGR M Ni log L TE,bol, erg s t, days

20 19 STELLA: 15M, 1-3 foe: Conclusions... Magnetars seem not so almighty. At least in extended envelopes. SLSN -? Distinctive magnetar tail only at the latest stages (t > T Ni Co Fe 10 2 d.) Unless the shell is too cold, its thermal background blocks the HEGRs within the cavern, otherwise it is transparent. HEGRs heat not the ejecta but the shocked wind

21 19 STELLA: 15M, 1-3 foe: Conclusions... Magnetars seem not so almighty. At least in extended envelopes. SLSN -? Distinctive magnetar tail only at the latest stages (t > T Ni Co Fe 10 2 d.) Unless the shell is too cold, its thermal background blocks the HEGRs within the cavern, otherwise it is transparent. HEGRs heat not the ejecta but the shocked wind... and new questions. Why the MDS does not shine brightly? Non-Eq emission into the central cavity or an artifact of mixing? If there are other ways of the shocked wind energy dissipation and heat conduction? The radiative thin dense shell around CD requires special TE transfer methods or properly enhanced mixing (based on multi-d analysis).

22 Thank you! 20

GRB : Modeling of Multiwavelength Data

GRB : Modeling of Multiwavelength Data GRB 090510: Modeling of Multiwavelength Data Soeb Razzaque NRC-NRL, Washington, DC Gamma Ray Bursts Workshop, Nov 8-12, GSFC Detection of GRB 090510 Fermi GBM and LAT observations Trigger on 2009 May 10

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

THE 82ND ARTHUR H. COMPTON LECTURE SERIES THE 82ND ARTHUR H. COMPTON LECTURE SERIES by Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science Department of Astronomy & Astrophysics University of Chicago

More information

PHOTOSPHERIC THERMAL RADIATION FROM GRB COLLAPSAR JETS

PHOTOSPHERIC THERMAL RADIATION FROM GRB COLLAPSAR JETS High Energy Phenomena in Relativistic Outflows III (HEPRO III) International Journal of Modern Physics: Conference Series Vol. 8 (2012) 225 230 c World Scientific Publishing Company DOI: 10.1142/S2010194512004631

More information

Radiative processes in GRB (prompt) emission. Asaf Pe er (STScI)

Radiative processes in GRB (prompt) emission. Asaf Pe er (STScI) Radiative processes in GRB (prompt) emission Asaf Pe er (STScI) May 2009 Outline Historical approach Synchrotron: pro s and co s Compton scattering in prompt emission (and why it is different than in afterglow)

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

Gammaray burst spectral evolution in the internal shock model: comparison with the observations

Gammaray burst spectral evolution in the internal shock model: comparison with the observations Gammaray burst spectral evolution in the internal shock model: comparison with the observations Ž. Bošnjak, F. Daigne, and G. Dubus Citation: AIP Conference Proceedings 1358, 59 (2011); doi: 10.1063/1.3621737

More information

arxiv:astro-ph/ v1 7 Jul 1999

arxiv:astro-ph/ v1 7 Jul 1999 Gamma-ray Burst Energetics Pawan Kumar Institute for Advanced Study, Princeton, NJ 08540 Abstract arxiv:astro-ph/9907096v1 7 Jul 1999 We estimate the fraction of the total energy in a Gamma-Ray Burst (GRB)

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

Internal conversion electrons and SN light curves

Internal conversion electrons and SN light curves Internal conversion electrons and SN light curves International School of Nuclear Physics 32nd Course: Particle and Nuclear Astrophysics September 23, 2010, Erice Ivo Rolf Seitenzahl DFG Emmy Noether Research

More information

On the location and properties of the GeV and TeV emitters of LS 5039

On the location and properties of the GeV and TeV emitters of LS 5039 On the location and properties of the GeV and TeV emitters of LS 5039 Víctor Zabalza Max-Planck Institut für Kernphysik, Heidelberg April 17, 2013 Workshop on Variable Galactic Gamma-Ray Sources Víctor

More information

Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole?

Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole? Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole? Department of Astrophysics, University of Lodz, Lodz, Poland E-mail: p.banasinski@uni.lodz.pl Wlodek

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

Hard X-ray emission from Novae

Hard X-ray emission from Novae Hard X-ray emission from Novae Indrek Vurm (Columbia University) in collaboration with: Brian D. Metzger, Andrei M. Beloborodov (Columbia) Koji Mukai (NASA) Shocks and Particle Acceleration in Novae and

More information

Theory of the prompt emission of Gamma-Ray Bursts

Theory of the prompt emission of Gamma-Ray Bursts Theory of the prompt emission of Gamma-Ray Bursts Department of Physics, NC State University, Raleigh, NC 27695-8202 E-mail: davide_lazzati@ncsu.edu Since their discovery more than 40 years ago the origin

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2 Accretion disks AGN-7:HR-2007 p. 1 AGN-7:HR-2007 p. 2 1 Quantitative overview Gas orbits in nearly circular fashion Each gas element has a small inward motion due to viscous torques, resulting in an outward

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Relativistic reconnection at the origin of the Crab gamma-ray flares

Relativistic reconnection at the origin of the Crab gamma-ray flares Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

Observations of. Pulsar Wind Nebulae

Observations of. Pulsar Wind Nebulae Observations of Pulsar Wind Nebulae I. Injection Spectrum I. Late-Phase Evolution II. PWNe and Magnetars PWNe and Their SNRs PWN Shock Reverse Shock Forward Shock Pulsar Wind Pulsar Termination Shock PWN

More information

Afterglows Theory Re em Sari - Caltech

Afterglows Theory Re em Sari - Caltech Π= Π m /3 Afterglows Theory Re em Sari - Caltech 30s 2h t -2 30m t +1/2 t Rising -1 spectrum ν 1/3 1d t -2.2 100d t -1.5 Gamma-Ray Burst: 4 Stages 1) Compact Source, E>10 51 erg 2) Relativistic Kinetic

More information

Emission Model And GRB Simulations

Emission Model And GRB Simulations Emission Model And GRB Simulations Nicola Omodei (University of Siena, INFN Pisa) 1 ISSS-L Aquila 2001 N. Omodei Spectral Properties? Data collected Range (γ) 10 KeV 10 GeV In the BATSE energy range: (25

More information

Gamma-ray emission from nova outbursts

Gamma-ray emission from nova outbursts Gamma-ray emission from nova outbursts Margarita Hernanz Institute of Space Sciences - ICE (CSIC-IEEC) Bellaterra (Barcelona), Spain Stella Novae: Past and Future Decades, Cape Town, 4-8/2/2013 M. Hernanz

More information

Isotopic yields from supernova light curves

Isotopic yields from supernova light curves Isotopic yields from supernova light curves Astrophysics and Nuclear Structure Hirschegg, January 29, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

10 Years of Super-Luminous Supernovae: Analytical and Numerical Models

10 Years of Super-Luminous Supernovae: Analytical and Numerical Models F.O.E. meeting - 6/2/2015, Raleigh, NC 10 Years of Super-Luminous Supernovae: Analytical and Numerical Models Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science

More information

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18 Pulsar Winds John Kirk Max-Planck-Institut für Kernphysik Heidelberg, Germany < > p.1/18 About 50 years after... The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957)

More information

Pulsar Winds in High Energy Astrophysics

Pulsar Winds in High Energy Astrophysics Pulsar Winds in High Energy Astrophysics Dmitry Khangulyan Institute of Space and Astronautical Science (ISAS/JAXA) The extreme Universe viewed in very high energy gamma-rays, Kashiwa 09/25/2012 OUTLINE

More information

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie High-energy emission from Gamma-Ray Bursts Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie HEPRO III High Energy Phenomena in Relativistic Outflows Barcelona, June 27

More information

ON GRB PHYSICS REVEALED BY FERMI/LAT

ON GRB PHYSICS REVEALED BY FERMI/LAT Proceedings of the 3rd Galileo Xu Guangqi Meeting International Journal of Modern Physics: Conference Series Vol. 23 (2013) 223 227 c World Scientific Publishing Company DOI: 10.1142/S2010194513011343

More information

Compton Scattering II

Compton Scattering II Compton Scattering II 1 Introduction In the previous chapter we considered the total power produced by a single electron from inverse Compton scattering. This is useful but limited information. Here we

More information

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae Ultra High Energy Cosmic Rays from Mildly Relativistic Supernovae Tata Institute of Fundamental Research Mumbai, India March 13, 2012 Outline UHECRS Chakraborti, Ray, Soderberg, Loeb, Chandra 2011 Nature

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

Radiation-hydrodynamic Models for ULXs and ULX-pulsars

Radiation-hydrodynamic Models for ULXs and ULX-pulsars Radiation-hydrodynamic Models for ULXs and ULX-pulsars Tomohisa KAWASHIMA Division of Theoretical Astrophysics, NAOJ in collaboration with Ken OHSUGA, Hiroyuki TAKAHASHI (NAOJ) Shin MINESHIGE, Takumi OGAWA

More information

Comptonization RL 7.4, 7.5, 7.6, 7.7

Comptonization RL 7.4, 7.5, 7.6, 7.7 Comptonization RL 7.4, 7.5, 7.6, 7.7 Photons scatter off (relativistic) electrons and gain energy hence electrons cool (Inverse Compton cooling, or ICC) We discussed spectra for: Inverse Compton recap

More information

Monte Carlo Radiative Transfer and Type Ia Supernovae

Monte Carlo Radiative Transfer and Type Ia Supernovae Monte Carlo Radiative Transfer and Type Ia Supernovae (MPA Garching) Markus Kromer, Wolfgang Hillebrandt, Fritz Röpke Dan Kasen, Sergei Blinnikov, Elena Sorokina Overview Introduction and motivation: Type

More information

High energy neutrino signals from NS-NS mergers

High energy neutrino signals from NS-NS mergers High energy neutrino signals from NS-NS mergers He Gao 高鹤 University of Nevada Las Vegas Collaborators: Bing Zhang, Xue-Feng Wu & Zi-Gao Dai 2013-05-08 Multi-Messenger Workshop @ KIAA EM signals for a

More information

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) What do we want to learn about supernovae? What explodes? progenitors, evolution towards explosion How does it explode? explosion mechanisms

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

arxiv: v1 [astro-ph.he] 18 Jul 2017

arxiv: v1 [astro-ph.he] 18 Jul 2017 Accepted for publication in the Astrophysical Journal Letters Preprint typeset using L A TEX style emulateapj v. 12/16/11 ULTRAVIOLET LIGHT CURVES OF GAIA16APD IN SUPERLUMINOUS SUPERNOVA MODELS arxiv:1707.05746v1

More information

WHAT DO X-RAY OBSERVATIONS

WHAT DO X-RAY OBSERVATIONS WHAT DO X-RAY OBSERVATIONS OF SNRS TELL US ABOUT THE SN AND ITS PROGENITOR DAN PATNAUDE (SAO) ANATOMY OF A SUPERNOVA REMNANT Forward Shock Cas A viewed in X-rays (Patnaude & Fesen 2009). Red corresponds

More information

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together Jonathan Granot 1 and Dafne Guetta 2 ABSTRACT arxiv:astro-ph/0211136v1 7 Nov 2002 We present the main observational features expected

More information

GRB emission models and multiwavelength properties

GRB emission models and multiwavelength properties GRB emission models and multiwavelength properties Gabriele Ghisellini INAF-Osservatorio Astronomico di Brera - Italy with the help of: Z. Bosniak, D. Burlon, A. Celotti, C. Firmani, G. Ghirlanda, D. Lazzati,

More information

Probing Pulsar Winds With X-rays!

Probing Pulsar Winds With X-rays! Probing Pulsar Winds With X-rays! Collaborators:! Bryan Gaensler! Steve Reynolds! David Helfand! Stephen Ng! Anne Lemiere! Okkie de Jager! Stephanie LaMassa! Jack Hughes! PWNe and Their SNRs! PWN Shock

More information

arxiv:astro-ph/ v2 27 Mar 2000

arxiv:astro-ph/ v2 27 Mar 2000 The Synchrotron Spectrum of Fast Cooling Electrons Revisited Jonathan Granot 1 Tsvi Piran 1 and Re em Sari 2 jgranot@nikki.fiz.huji.ac.il tsvi@nikki.fiz.huji.ac.il sari@tapir.caltech.edu arxiv:astro-ph/0001160v2

More information

The γ-ray flares from Cygnus X-3 detected by AGILE

The γ-ray flares from Cygnus X-3 detected by AGILE The γ-ray flares from Cygnus X-3 detected by AGILE (INAF-IAPS Roma) on behalf of the AGILE Team AGILE 9th Science Workshop Astrophysics with AGILE: five years of surprise ASDC c/o ESRIN, Frascati, April

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars from jet penetrability to massive stars, Yudai Suwa a and Kunihito Ioka c,d a Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan b Department of Science and Engineering,

More information

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Okkie de Jager & Stefan Ferreira (NWU, South Africa) Regis Terrier & Arache Djannati-Ataï (Univ. of Paris VII, France)

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

The AGN Jet Model of the Fermi Bubbles

The AGN Jet Model of the Fermi Bubbles The AGN Jet Model of the Fermi Bubbles Fulai Guo Shanghai Astronomical Observatory IAU 322 Symposium, Palm Cove, July 18-22, 2016 1 The All-sky Fermi View at E >10 GeV The Fermi bubbles! (NASA image based

More information

Colliding winds in massive star binaries: expectations from radio to gamma rays

Colliding winds in massive star binaries: expectations from radio to gamma rays Colliding winds in massive star binaries: expectations from radio to gamma rays Michaël De Becker Department of Astrophysics, Geophysics, and Oceanography University of Liège Belgium Outline Colliding

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Short GRB and kilonova: did observations meet our theoretical predictions?

Short GRB and kilonova: did observations meet our theoretical predictions? Short GRB and kilonova: did observations meet our theoretical predictions? Riccardo Ciolfi INAF - Astronomical Observatory of Padova INFN - Trento Institute for Fundamental Physics and Applications GW170817

More information

SIMPLE RADIATIVE TRANSFER

SIMPLE RADIATIVE TRANSFER ASTR 511/O Connell Lec 4 1 SIMPLE RADIATIVE TRANSFER The theory of radiative transfer provides the means for determining the emergent EM spectrum of a cosmic source and also for describing the effects

More information

Stochastic Wake Field particle acceleration in GRB

Stochastic Wake Field particle acceleration in GRB Stochastic Wake Field particle acceleration in GRB (image credits to CXO/NASA) G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani (5) (1) University

More information

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC Chang Dong Rho University of Rochester TeVPA 2018 Berlin, Germany 08/28/2018 Overview 2 Microquasars as sources of TeV gamma

More information

Electron Synchrotron Emission in GRB-SN Interaction: First Results

Electron Synchrotron Emission in GRB-SN Interaction: First Results Electron Synchrotron Emission in GRB-SN Interaction: First Results 1,2, Remo Ruffini 1,2, Narek Sahakyan 3 1 Sapienza - Università di Roma, Rome, Italy 2 ICRANet, Pescara, Italy 3 ICRANet - Armenia, Yerevan,

More information

Discovery and long-term study of hard X-ray emission of SN1987A with MIR/KVANT. S.A. Grebenev Space Research Institute, RAS

Discovery and long-term study of hard X-ray emission of SN1987A with MIR/KVANT. S.A. Grebenev Space Research Institute, RAS Discovery and long-term study of hard X-ray emission of SN1987A with MIR/KVANT S.A. Grebenev Space Research Institute, RAS Radioactive 56 Co in the envelope We celebrated this year the 20-years anniversary

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime Andreas von Kienlin MPE -Gamma 14. November 2003 1 Outline Time averaged GRB spectra Example spectra Instrumental response Band function

More information

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University The r-process of nucleosynthesis: overview of current status Gail McLaughlin North Carolina State University The popular press says that the gold and platinum in wedding bands is made in neutron star mergers

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

HIGH ENERGY ASTROPHYSICS - Lecture 7. PD Frank Rieger ITA & MPIK Heidelberg Wednesday

HIGH ENERGY ASTROPHYSICS - Lecture 7. PD Frank Rieger ITA & MPIK Heidelberg Wednesday HIGH ENERGY ASTROPHYSICS - Lecture 7 PD Frank Rieger ITA & MPIK Heidelberg Wednesday 1 (Inverse) Compton Scattering 1 Overview Compton Scattering, polarised and unpolarised light Di erential cross-section

More information

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) w/ Todd Thompson & Eli Waxman Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson,

More information

Observational Appearance of Black Hole Wind Effect of Electron Scattering

Observational Appearance of Black Hole Wind Effect of Electron Scattering Observational Appearance of Black Hole Wind Effect of Electron Scattering Kazuyuki OGURA Astronomical Institute Osaka Kyoiku Univ. 29 Jun 2013 Meeting of BH Horizon Project @Nagoya Univ. Contents Introduction

More information

The physical origins of the extreme luminosity for slowly fading Super-luminous Supernovae

The physical origins of the extreme luminosity for slowly fading Super-luminous Supernovae The physical origins of the extreme luminosity for slowly fading Super-luminous Supernovae Petr Baklanov, E. Sorokina, S. Blinnikov ITEP, SAI 29-30 september 2014 Petr Baklanov (petr.baklanov@itep.ru)

More information

Variability in GRBs - A Clue

Variability in GRBs - A Clue arxiv:astro-ph/9701002v1 1 Jan 1997 Variability in GRBs - A Clue Re em Sari Tsvi Piran August 10, 2018 Abstract We show that external shocks cannot produce a variable GRB, unless they are produced by an

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

MASSIVE STARS IN COLLIDING WIND SYSTEMS: THE HIGH-ENERGY GAMMA-RAY PERSPECTIVE

MASSIVE STARS IN COLLIDING WIND SYSTEMS: THE HIGH-ENERGY GAMMA-RAY PERSPECTIVE MASSIVE STARS IN COLLIDING WIND SYSTEMS: THE HIGH-ENERGY GAMMA-RAY PERSPECTIVE Anita Reimer, HEPL & KIPAC, Stanford University Scineghe 2008, Padova, Oct. 2008 Massive Stars......are hot (~3-6 10 4 K),

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2012 Lecture 6 Today s lecture Synchrotron emission Part III Synchrotron self-absorption

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? * What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? 1 * Galaxies contain massive black holes which power AGN * Gas accretes through a magnetized disk * Blazars are relativistically

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae 1 Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae Emmanouil Georgios Drimalas Department of Physics, National and Kapodistrian University of Athens Supervisor: Professor Toshikazu

More information

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars INTEGRAL & Magnetars: a high energy approach to extreme neutron stars Diego Götz CEA - Saclay - Irfu/Service d Astrophysique N. Rea (UvA), S. Zane (MSSL), R. Turolla (Uni Padova), M. Lyutikov (Purdue Univ.)

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

On the physics of colliding stellar-pulsar winds

On the physics of colliding stellar-pulsar winds On the physics of colliding stellar-pulsar winds Valentí Bosch-Ramon Universitat de Barcelona/ICC Variable Galactic Gamma-Ray Sources (II) Barcelona April 16-18, 2013 Outline 1 Introduction: previous work

More information

Hydrodynamic Evolution of GRB Afterglow

Hydrodynamic Evolution of GRB Afterglow Chin. J. Astron. Astrophys. Vol. 1, No. 4, (2001) 349 356 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Hydrodynamic Evolution of GRB Afterglow Ji-Rong

More information

Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko

Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko Space Research Institute, Moscow, Russia Basic equations: MHD +self-gravitation, infinite

More information

Broadband Emission of Magnetar Wind Nebulae

Broadband Emission of Magnetar Wind Nebulae Broadband Emission of Magnetar Wind Nebulae Shuta Tanaka ICRR, The Univ. of Tokyo 29, Oct., 2015, TeVPA 2015 @ Kashiwa 1 Contents 1. Introduction 2. Spectral Evolution of young PWNe 3. A Spectral Model

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

Pulsar Wind Nebulae: A Multiwavelength Perspective

Pulsar Wind Nebulae: A Multiwavelength Perspective Pulsar Wind Nebulae: Collaborators: J. D. Gelfand T. Temim D. Castro S. M. LaMassa B. M. Gaensler J. P. Hughes S. Park D. J. Helfand O. C. de Jager A. Lemiere S. P. Reynolds S. Funk Y. Uchiyama A Multiwavelength

More information

arxiv:astro-ph/ v3 9 Jul 2001

arxiv:astro-ph/ v3 9 Jul 2001 Afterglow Emission from Highly Collimated Jets with Flat Electron Spectra: Application to the GRB 010222 Case? arxiv:astro-ph/0105055v3 9 Jul 2001 Z. G. Dai 1 and K. S. Cheng 2 1 Department of Astronomy,

More information

MAGNETARS AS COOLING NEUTRON STARS

MAGNETARS AS COOLING NEUTRON STARS MAGNETARS AS COOLING NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, Saint-Petersburg, Russia Main coauthors: A.D. Kaminker, A.Y. Potekhin, D.A. Baiko February 2009, Aspen HISTORY The first

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

Shock Waves. = 0 (momentum conservation)

Shock Waves. = 0 (momentum conservation) PH27: Aug-Dec 2003 Shock Waves A shock wave is a surface of discontinuity moving through a medium at a speed larger than the speed of sound upstream. The change in the fluid properties upon passing the

More information

RADIATIVE TRANSFER IN AXIAL SYMMETRY

RADIATIVE TRANSFER IN AXIAL SYMMETRY Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 26 RADIATIVE TRANSFER IN AXIAL SYMMETRY Daniela Korčáková and Jiří Kubát Abstract. We present

More information

Magnetic Fields in Blazar Jets

Magnetic Fields in Blazar Jets Magnetic Fields in Blazar Jets Bidzina Z. Kapanadze Ilia State University, Tbilisi, Georgia MFPO 2010- Cracow, May 17-21 Blazars are defined as a AGN class with following features: featureless spectra;

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Correlation between X-ray and gamma-ray emission in TeV blazars

Correlation between X-ray and gamma-ray emission in TeV blazars Correlation between X-ray and gamma-ray emission in TeV blazars Krzysztof Katarzyński Toruń Centre for Astronomy, Nicolaus Copernicus University, Poland Steady Jets and Transient Jets, Bonn 7-8 April 2010

More information