Bayesian Approaches for Model Evaluation and Uncertainty Estimation

Size: px
Start display at page:

Download "Bayesian Approaches for Model Evaluation and Uncertainty Estimation"

Transcription

1 Bayesian Approaches for Model Evaluation and Uncertainty Estimation Tsuyoshi TADA National Defense Academy, Japan APHW 2006 Bangkok 1

2 Introduction In wellgauged basins Parameters can be obtained by calibrations. In ungauged or poorgauged basins Parameters have to be estimated according to Physical knowledge (conductivity, roughness, remotesensing, etc ) Logical or theoretical knowledge (upscaling, downscaling, etc ) Stochastic or statistical knowledge (range, mean value, covariance, probability, etc ) Combination of these method 2

3 Introduction Bayesian approaches for parameter estimation and uncertainty analysis have been proposed. Integration of prior knowledge and observation Improvement of prediction performance in poorgauged basin Purpose of this study Which model should we select? Which model can utilize prior knowledge effectively? New evaluation methodology or criterion is needed. 3

4 Model Structure (lumped conceptual model) P E P E 1BFI P E A11 S k, p C BFI S surf H1 B1 A12 Z12 A2 Z11 S = kq p 1K surf H2 Z2 S base B2 A3 Storage function (simplified) 1K base H3 B3 Z3 2 parameters (0 initial conditions) AWBM (Australian Water Balance Model) H4 A4 6 parameters (2 initial conditions) Sugawara s Tank model 16 parameters (4 initial conditions) 4

5 Bayesian methodology Based on the Generalised Likelihood Uncertainty Estimation (Beven and Binley,1992) No single optimum parameter set exists (equifinality) Montecarlo simulation (multiple parameter sets are considerd) Bayesian inference L( y θ) π ( θ) P( θ y) = C π (θ) : Prior distribution Probability density of parameter set θ (prior knowledge) L (y θ) : Likelihood distribution Likelihood of observation data y with given parameter θ P (θ y) : Posterior distribution Probability density of parameter θ with given observation y Details are described later 5

6 Scheme of this study Observation Target basin s observation data y Prior knowledge Training basins optimum parameter sets θ k opt Optimimum parameter set θ opt (y) Likelihood distribution L (y θ) P ( θ y) L = ( y θ) π ( θ) C Prior distribution π (θ) Posterior distribution P (θ y) Target basins Prediction Target basin s Prediction Target basin s Prediction 6

7 Study Area Target Basins (ungauged or poorgauged) Training Basins (wellgauged) km 2 chatchment area Coverd with forest over 5080% Contain no dam In the same climate (temperate zone) Little effect from snow Japane Iwai, 555km 2 Ohnogi, 304km 2 Bansho, 278km 2 7

8 Data Set Target Basins for calibration and likelihood distribution for validation Training Basins for prior distribution Long term prediction in poorgauged basin is assumed Calibration period is 1 year (1992). Prediction and validation period is 10 years ( ). The target region is wellgauged in whole. 8

9 Training Basins Optimum Parameter sets 42 optimum parameter sets are calculated 14 basins x 3 years SCEUA and PSO (Particle Swarm Optimization) algorithm Storage function Tank model AWBM 9

10 Generating Prior Distribution Prior distribution π (θ) is generated by optimum parameter sets of training basins. Storage function Tank model p B2 Z3 log(k ) Multivariate normal distribution The 1st order approximation (easy to handle) Equifinality can be reflected ( ) N ( ) B1 Z2 1 1 T ( ) ( ) p 2 10 π θ = θ, = exp θ θ θ θ ( 2π )

11 Generating Likelihood Distribution Likelihood distribution L (y θ) is generated by observation data y of target basins. Error model (Gaussian error model) The residual is normally distributed. y i = M i (θ) + N (0, σ 2 ) Error variance σ is proportional to the data variance. Likelihood function Respecting the rules of Bayesian inference When the additional observation becomes available, likelihood distribution can be updated. L yt + T θ = L yt θ L yt θ ( ) ( ) ( ) n 2 2 { ( )} { ( )} 1 yi M y M i θ θ L( y θ) = T T E( θ y) n i i i= 1 exp exp α exp α, 2 n i= 1 2πσ 2σ 2 ( yi y ) i= 1 11

12 Generating Posterior Distribution Posterior distribution is generated from π (θ) and L (y θ). Sampling 10,000 montecarlo samples θ by MCMC Calculating prior distribution π (θ) Calculating simulated streamflow of all samples Evaluating likelihood distribution L (y θ) Using observation data y in the calibration period Evaluating the posterior distribution P (θ y) P (θ y) = L (y θ) π (θ) / C P L π = x θ θ θ 12

13 Prediction from Posterior distribution Optimum parameter set Montecarlo samples Posterior distribution P(θ y) q P weighted predictions θ 2 θ 1 t q Optimum prediction Likelihood weighted ensemble mean Confidence interval Empirical Probability density t 13

14 Result (Storage function) E = 0.61 E = 0.65 E = 0.19 shrink adapt Optimum parameter set θ opt (y 92 ) Posterior distribution P(θ y 92 ) Prior distribution π (θ) In most periods, π (θ) shows the best fitting. However, only few peaks are overestimated eminently. 14

15 Result (AWBM) E = 0.70 E = 0.69 E = 0.68 Optimum parameter set θ opt (y 92 ) Posterior distribution P(θ y 92 ) Prior distribution π (θ) Mathematically optimum parameter set is not qualitatively optimum. 15

16 Result (Tank model) E = 0.64 E = 0.68 E = 0.73 Optimum parameter set θ opt (y 92 ) Posterior distribution P(θ y 92 ) Prior distribution π (θ) Insufficient calibration data is damaging for prediction. 16

17 Result Nashsutcliffe efficiency of Calibration(1992) and Prediction ( ) Storage function AWBM Tank model Optimum parameter set Posterior distribution Prior distribution Calibration with 1 year data Calibration with sufficient data AWBM is best for prediction for conventional prediction. Tank model is best for prediction with prior knowledge. Tank model is NOT best for conventional prediction Too complex to predict with insufficient observation data 17

18 BIC (Bayesian information criterion) Marginal distribution largest is the best model ( ) ( ) π ( ) p y = L y θ θ dθ BIC (laplace approximation) smallest is the best model { L( ) π ( ) d } L( ˆ ) k ( n) BIC = 2log y θ θ θ 2log y θ + log SIC (Schwarz s information criterion; Gaussian error model) RSE SIC = nlog + klog n n ( ) n: number of data k: number of parameter RSE: root square error 18

19 Result (SIC) Storage function AWBM Tank model Optimum parameter set Posterior distribution Prior distribution Calibration accuracy SIC SIC may represent the model performance with prior knowledge. Storage function is misevaluated. Further research is required 19

20 Summary Prior knowledge is represented by the probability density (prior distribution) of optimum parameter sets in training basins, and is approximated by multivariate normal distribution. Posterior distribution is calculated with the prior distribution and observation data based on bayesian inference. Prediction of streamflow and its uncertainty is calculated from the prior and the posterior distribution. Prediction performance of these models are evaluated. Prediction performance with prior knowledge can be evaluated by SIC (BIC). 20

21 Thank you for your attention 21

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Development of Stochastic Artificial Neural Networks for Hydrological Prediction

Development of Stochastic Artificial Neural Networks for Hydrological Prediction Development of Stochastic Artificial Neural Networks for Hydrological Prediction G. B. Kingston, M. F. Lambert and H. R. Maier Centre for Applied Modelling in Water Engineering, School of Civil and Environmental

More information

Uncertainty propagation in a sequential model for flood forecasting

Uncertainty propagation in a sequential model for flood forecasting Predictions in Ungauged Basins: Promise and Progress (Proceedings of symposium S7 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS Publ. 303, 2006. 177 Uncertainty

More information

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals Overall Measures of GOF Deviance: this measures the overall likelihood of the model given a parameter vector D( θ) = 2 log L( θ) This can be averaged

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

The Generalized Likelihood Uncertainty Estimation methodology

The Generalized Likelihood Uncertainty Estimation methodology CHAPTER 4 The Generalized Likelihood Uncertainty Estimation methodology Calibration and uncertainty estimation based upon a statistical framework is aimed at finding an optimal set of models, parameters

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Fusing point and areal level space-time data. data with application to wet deposition

Fusing point and areal level space-time data. data with application to wet deposition Fusing point and areal level space-time data with application to wet deposition Alan Gelfand Duke University Joint work with Sujit Sahu and David Holland Chemical Deposition Combustion of fossil fuel produces

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Estimation of Operational Risk Capital Charge under Parameter Uncertainty

Estimation of Operational Risk Capital Charge under Parameter Uncertainty Estimation of Operational Risk Capital Charge under Parameter Uncertainty Pavel V. Shevchenko Principal Research Scientist, CSIRO Mathematical and Information Sciences, Sydney, Locked Bag 17, North Ryde,

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM Lecture 9 SEM, Statistical Modeling, AI, and Data Mining I. Terminology of SEM Related Concepts: Causal Modeling Path Analysis Structural Equation Modeling Latent variables (Factors measurable, but thru

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study

Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study Gunter Spöck, Hannes Kazianka, Jürgen Pilz Department of Statistics, University of Klagenfurt, Austria hannes.kazianka@uni-klu.ac.at

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Introduction to emulators - the what, the when, the why

Introduction to emulators - the what, the when, the why School of Earth and Environment INSTITUTE FOR CLIMATE & ATMOSPHERIC SCIENCE Introduction to emulators - the what, the when, the why Dr Lindsay Lee 1 What is a simulator? A simulator is a computer code

More information

Use of Bayesian multivariate prediction models to optimize chromatographic methods

Use of Bayesian multivariate prediction models to optimize chromatographic methods Use of Bayesian multivariate prediction models to optimize chromatographic methods UCB Pharma! Braine lʼalleud (Belgium)! May 2010 Pierre Lebrun, ULg & Arlenda Bruno Boulanger, ULg & Arlenda Philippe Lambert,

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Bayesian methods in economics and finance

Bayesian methods in economics and finance 1/26 Bayesian methods in economics and finance Linear regression: Bayesian model selection and sparsity priors Linear Regression 2/26 Linear regression Model for relationship between (several) independent

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration

Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration Bayes Factors, posterior predictives, short intro to RJMCMC Thermodynamic Integration Dave Campbell 2016 Bayesian Statistical Inference P(θ Y ) P(Y θ)π(θ) Once you have posterior samples you can compute

More information

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Brian Williams and Rick Picard LA-UR-12-22467 Statistical Sciences Group, Los Alamos National Laboratory Abstract Importance

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Overview Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Probabilistic Interpretation: Linear Regression Assume output y is generated

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Supplementary Note on Bayesian analysis

Supplementary Note on Bayesian analysis Supplementary Note on Bayesian analysis Structured variability of muscle activations supports the minimal intervention principle of motor control Francisco J. Valero-Cuevas 1,2,3, Madhusudhan Venkadesan

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M PD M = PD θ, MPθ Mdθ Lecture 14 : Variational Bayes where θ are the parameters of the model and Pθ M is

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I 1 Sum rule: If set {x i } is exhaustive and exclusive, pr(x

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization. Subhash Kalla LSU Christopher D. White LSU James S.

Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization. Subhash Kalla LSU Christopher D. White LSU James S. Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization Subhash Kalla LSU Christopher D. White LSU James S. Gunning CSIRO Contents Context of this research Background Data integration

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling G. B. Kingston, H. R. Maier and M. F. Lambert Centre for Applied Modelling in Water Engineering, School

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

A Probabilistic Framework for solving Inverse Problems. Lambros S. Katafygiotis, Ph.D.

A Probabilistic Framework for solving Inverse Problems. Lambros S. Katafygiotis, Ph.D. A Probabilistic Framework for solving Inverse Problems Lambros S. Katafygiotis, Ph.D. OUTLINE Introduction to basic concepts of Bayesian Statistics Inverse Problems in Civil Engineering Probabilistic Model

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Cross-sectional space-time modeling using ARNN(p, n) processes

Cross-sectional space-time modeling using ARNN(p, n) processes Cross-sectional space-time modeling using ARNN(p, n) processes W. Polasek K. Kakamu September, 006 Abstract We suggest a new class of cross-sectional space-time models based on local AR models and nearest

More information

Bayesian tsunami fragility modeling considering input data uncertainty

Bayesian tsunami fragility modeling considering input data uncertainty Bayesian tsunami fragility modeling considering input data uncertainty Raffaele De Risi Research Associate University of Bristol United Kingdom De Risi, R., Goda, K., Mori, N., & Yasuda, T. (2016). Bayesian

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

The Bayesian Approach to Multi-equation Econometric Model Estimation

The Bayesian Approach to Multi-equation Econometric Model Estimation Journal of Statistical and Econometric Methods, vol.3, no.1, 2014, 85-96 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 The Bayesian Approach to Multi-equation Econometric Model Estimation

More information

SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION

SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION International Journal for Uncertainty Quantification, ():xxx xxx, 0 SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION Zhen Jiang, Daniel W. Apley, & Wei

More information

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I. Vector Autoregressive Model Vector Autoregressions II Empirical Macroeconomics - Lect 2 Dr. Ana Beatriz Galvao Queen Mary University of London January 2012 A VAR(p) model of the m 1 vector of time series

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

November 2002 STA Random Effects Selection in Linear Mixed Models

November 2002 STA Random Effects Selection in Linear Mixed Models November 2002 STA216 1 Random Effects Selection in Linear Mixed Models November 2002 STA216 2 Introduction It is common practice in many applications to collect multiple measurements on a subject. Linear

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information