Hermite-Hadamard Inequality for Geometrically Quasiconvex Functions on a Rectangular Box

Size: px
Start display at page:

Download "Hermite-Hadamard Inequality for Geometrically Quasiconvex Functions on a Rectangular Box"

Transcription

1 Mth. Si. Ltt. 5, No., (26 59 Mthmtil Sins Lttrs An Intrntionl Journl Hrmit-Hdmrd Inulit for Gomtrill Qusionv Funtions on Rtnulr Bo Ali Brni nd Ftmh Mlmir Dprtmnt of Mthmtis, Lorstn Univrsit, P. O. Bo 465, Khormbd, Irn Rivd: 27 Jul. 25, Rvisd: 2 Ot. 25, Aptd: 23 Ot. 25 Publishd onlin: Jn. 26 Abstrt: In this ppr, w introdu th onpt of omtrill usionv funtions on rtnulr bo in R 3. Thn, som Hrmit-Hdmrd tp inulitis for funtions whos third drivtivs in bsolut vlu r omtrill onv r ivn. Kwords: Hrmit-Hdmrd inulit, rtnulr bo, omtrill usionv funtions Introdution A funtion f : I R R, is sid to b onv if for vr, I nd t [,], f(t+( ttf(+( t f(. Lt f : I R b onv funtion nd,b I with <b, w hv th followin inulit ( +b f f(d 2 b f(+ f(b. 2 This rmrkbl rsult is wll known in th litrtur s Hrmit-Hdmrd inulit. Both inulitis hold in th rvrsd dirtion if f is onv. W not tht Hrmit-Hdmrd inulit m b rrdd s rfinmnt of th onpt of onvit nd it follows sil from Jnsn s inulit. Sin thn som rfinmnts of th Hrmit-Hdmrd inulit for onv funtions hv bn tnsivl invstitd b numbr of uthors, s for mpl [-,4-6]. Lt I R + : (, b n inrvl nd f : I R + b ontinuous funtion. Thn, f is sid to b omtrill onv on I, if for vr, I nd λ [,], f( λ λ f( λ f( λ. In [6], S.S. Dromir dfind onv funtions on th o-ordints (or o-ordintd onv funtions on th st :[,b][,d] in R 2 with <b nd <d s follows: Dfinition.. A funtion f : R is sid to b onv on th o-ordints on if for vr [,d] nd [,b], th prtil mppins, nd f :[,b] R, f :[,d] R, f (u f(u,, f (v f(,v, r onv. This mns tht for vr(,,(,w nd t,s [,], f(t+( t,s+(sw ts f(,+s( t f(, + t(s f(,w+( t(s f(,w. Clrl, vr onv funtion is o-ordintd onv. Furthrmor, thr ist o-ordintd onv funtions whih r not onv. Sin thn svrl importnt nrlitions introdud on this tor, s [, 8-2] nd rfrns thrin. Rll tht funtion f : I R R, is sid to b usionv if for vr, I nd λ [,], f(λ +(λ m f(, f(. In [3], M.E. Ödmir t l. introdud th notion of o-ordintd usionv funtions whih nrli th notion of o-ordintd onv funtions s follows: Dfinition.2. A funtion f : [,b][,d] Ris sid to b usionv on th o-ordints on if for vr [, d] nd [, b], th prtil mppin, f :[,b] R, f (u f(u,, Corrspondin uthor -mil: brni.@lu..ir 26 NSP Nturl Sins Publishin Cor.

2 6 A. Brni, F. Mlmir: Hrmit-Hdmrd inulit nd f :[,d] R, f (v f(,v, r usionv. This mns tht for vr (,,(,w nd s,t [,], f(t+( t,s+(sw m f(,, f(,w, f(,, f(,w. Sin thn svrl importnt nrlitions on this tor provd b M.E. Ödmir t l. in [9, 2, 3]. On th othr hnd F. Qi nd B.A. Xi in [9] introdud th notion of omtrill usionv funtions nd stblishd som intrl inulitis of Hrmit-Hdmrd tp. Dfinition.3. A funtion f : I R : [, R, is sid to b omtrill usionv on I if for vr, I nd λ [,], f( λ λ m f(, f(. Not tht if f drsin nd omtrill usionv thn, it is usionv. If f inrsin nd usionv thn, it is omtrill usionv. W rll som rsults introdud in [9]. Lmm.. Lt f : I R + : (, R, b diffrntibl funtion on I nd,b I with < b. If f L([,b] thn, (i (lnb f(b(ln f( b f( lnbln lnbln d ( t b t ln( t b t f ( t b t dt. (ii M(,b : ln( t b t dt, (2 N(,b : t b t ln( t b t dt. (3 In [4], M. E. Ödmir dfind th onpt of omtrill onv funtions on th o-ordints s follows: Dfinition.4. Lt + :[,b][,d] b subst of R 2 + with < b nd < d. A funtion f : + R is sid to b omtrill onv on th o-ordints if for vr [,d] nd [,b] th prtil mppins, nd f :[,b] R, f :[,d] R, f (u f(u,, f (v f(,v, r omtrill onv funtion. This mns tht for vr(,,(,w + nd t,s [,], f( t t, s w s ts f(,+s( t f(, + t(s f(,w+( t(s f(,w. In [5], M.E. Ödmir dfind onv funtions on rtnulr bo s follows: Lt us onsidr th rtnulr bo Ω : [,b][,d] [, f] in R 3. Th mppin : Ω R is sid to b onv on Ω if for vr(,,,(u,v,w Ω nd λ [,], (λ +(λu,λ +(λv,λ +(λw λ (,,+(λ(u,v,w. A funtion : Ω R is sid to onv on th o-ordints on Ω if for vr(, [,b][,d],(, [,b][, f] nd(, [,d][, f], th prtil mppin, :[,b][,d] R, (u,v(u,v,, [, f], :[,b][, f] R, (u,w(u,,w, [,d], :[,d][, f] R, (v,w(,v,w, [,b], r onv. In [4], th notion of o-ordintd usionv funtions on rtnulr bo in R 3 whih nrli th notion of o-ordintd onv funtions is ivn s follows: Dfinition.5. A funtion : Ω R is sid to usionv on th o-ordints on Ω if for vr (, [,b] [,d], (, [,b] [, f] nd (, [,d][, f], th prtil mppin, :[,b][,d] R, (u,v(u,v,, [, f], :[,b][, f] R, (u,w(u,,w, [,d], :[,d][, f] R, (v,w(,v,w, [,b], r usionv. This mns tht for vr (,,,(u,v,w Ω nd t,s,r [,] (t+( tu,s+(sv,r+(rw m(,,,(,,w,(,v,,(u,,, (u,v,w,(u,v,,(u,,w,(,v,w. Motivtd b bov rsults in this ppr w introdu th notion of omtrill usionv funtions on rtnulr bo in R 3. Thn, som rsults in onntion to Hrmit-Hdmrd inulit r ivn. 2 Min rsults In this stion w introdu th notion; omtrill usionv funtions on rtnulr bo for funtions dfind on rtnulr in R 3 +, whih is nrlition of th notion omtrill onv funtions on rtnulr bo. Thn, w stblish som Hrmit-Hdmrd tp inulitis for this lss of funtions. In this stion, Ω + is rtnulr bo in R 3 dfind b Ω + :[,b][,d][, f], whr,b,,d R +. In [5] th notion of o-ordintd omtrill usionv funtions on th pln in R 2 is ivn s follows: 26 NSP Nturl Sins Publishin Cor.

3 Mth. Si. Ltt. 5, No., (26 / 6 Dfinition 2.. A funtion f : + R is sid omtrill usionv funtion on + R 2 + if for vr(,,(,w + nd λ [,], f( λ λ, λ w λ m f(,, f(,w. Dfinition 2.2. Lt + :[,b][,d] b subst of R 2 + with < b nd < d. A funtion f : + R is sid to b omtrill usionv on th o-ordints on + R 2 + if for vr [,d] nd [,b] th prtil mppins nd f :[,b] R, f :[,d] R, f (u f(u,, f (v f(,v, r omtrill usionv. This mns tht for vr (,,(,w + nd s,t [,], f( t t, s w s m f(,, f(,w, f(,, f(,w. Dfinition 2.3 A funtion : Ω + R will b lld omtrill usionv on th o-ordints on Ω + R 3 if for vr (, [,b] [,d], (, [,b][, f] nd (, [,d][, f], th prtil mppin, :[,b][,d] R, (u,v(u,v,, [, f], :[,b][, f] R, (u,w(u,,w, [,d], :[,d][, f] R, (v,w(,v,w, [,b], r omtrill usionv. This mns tht for vr (,,,(u,v,w Ω + nd t,s,r [,] f( t u t, s v s, r w r m(,,,(,,w,(,v,,(u,, (u,v,w,(u,v,,(u,,w,(,v,w. Dfinition 2.4. A funtion : Ω + R is sid omtrill usionv funtion on Ω + R 3 + if for vr(,,,(u,v,w Ω + nd λ [,], ( λ u λ, λ v λ, λ w λ m (,,,(u,v,w. Th followin lmm holds. Lmm 2.. Evr omtrill usionv mppin : Ω + R is omtrill usionv on th o-ordints. Proof. Suppos tht : Ω + R is omtrill usionv on Ω +. Thn for vr (, [,b][,d], (, [,b][, f] nd (, [,d][, f], th prtil mppin, :[,b][,d] R, (u,v(u,v,, [, f], :[,b][, f] R, (u,w(u,,w, [,d], :[,d][, f] R, (v,w(,v,w, [,b], r omtrill usionv on Ω +. For λ [,] nd v,v 2 [,d], w,w 2 [, f], on hs (v λ vλ 2,w λ wλ 2 (,v λ vλ 2,w λ wλ 2 ( λ λ,v λ vλ 2,w λ wλ 2 m(,v,w,(,v 2,w 2 m (v,w, (v 2,w 2, whih omplts th proof of omtrill usionvit of on [,d][, f]. Thrfor nd is lso omtrill usionv on [,b][, f] nd [,b][,d] for ll [,d] nd [, f] os likwis nd w shll omit th dtils.. Now w introdu th followin nw lmm whih w nd to rh our ol. Lmm 2.2. Suppos tht : Ω + R b prtil diffrntibl mppin on int(ω +. If 3 tsr L(Ω + thn, (lnbln(lnd ln(ln f ln ( (,, +E F Ω t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr, whr C :(ln f ((lnd [ (lnb(b,d, f(ln(,d, f ] (ln[(lnb(b,, f(ln(,, f ], ( D :(ln (lnd [ (ln(,d,(lnb(b,d,] (ln [ (ln(b,,(lnb(,, ], (,, f E : (ln f + (,, (ln dd + +(ln d (,d, d +2 (,, (ln d +2 (b,, +(ln b d +3 (,, (ln d, +3 (4 26 NSP Nturl Sins Publishin Cor.

4 62 A. Brni, F. Mlmir: Hrmit-Hdmrd inulit whr + [,b][,d], +2 [,b][, f] nd +3 [,d][, f] r substs ofr 2 + with <b, <d nd < f, nd F : (lnb (ln (ln (ln +(ln f (ln (ln (ln +(ln d (lnd (b,, (lnd (,, (lnb (,, f d (lnb (ln (ln (ln (,, d (ln f (,d, d (ln f (,, d (b,d, (,d, (b,, f d (b,, d (,d,, f d (,,, f d Proof. W dnot th riht hnd sid of (4 b I. Lttin t b t, s d s nd r f r for t,s,r [,]. B. intrtion b prts on Ω +, w hv (lnbln(lnd ln(ln f lni (lnbln(lnd ln(ln f ln t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr (ln(ln(ln (,, (ln(ln (ln 2 (,, b 2 (,,d d (ln(ln (lnb 2 (b,, (ln 2 b (,, 2 (,,d d (lnb (ln(ln 2 (b,,d (ln (ln(ln 2 (,,d (ln(ln 2 (,,. (5 Similrl intrtion b prts in th riht sid of (5 ddu tht (lnbln(lnd ln(ln f lni (lnb (ln (ln (b,, d (b,,d (ln (ln (ln (ln (,, (,,d (ln (,, d (,,d d d (6 26 NSP Nturl Sins Publishin Cor.

5 Mth. Si. Ltt. 5, No., (26 / 63 (lnb (ln [(lnd (b,d,(ln (b,,] (b,,d (ln (ln [(lnd (,d, (ln (,,] (,,d (ln (lnd (,d,d (ln +(ln + (ln (,,d (,,. Ain intrtion b prts in th riht sid of (6 ddu tht (ln bln(lnd ln(ln f lni f (ln b(lnd (ln(b,d, (b,d, f (lnb(ln (ln(b,, (b,, (lnb f (ln(b,, (b,, d f (ln(lnd (ln(,d, (,d, f +(ln(ln (ln(,, (,, (ln f + (ln(,, (,, d (lnd f (ln(,d, (,d, d (ln f + (ln(,, (,, d f + (ln(,, (,, dd [(ln ] f(b,d, f(ln(b,d, (ln b(lnd (b,d, (7 (lnb(ln (b,, (lnb [(ln f(b,, f(ln(b,, ] (ln f(b,, f(ln (b,, (b,, d [(ln ] f(,d, f(ln(,d, (ln(lnd (,d, [(ln ] f(,, f(ln(,, +(ln(ln (,, (ln (ln f(,, f(ln (,, (,, d (lnd (ln f(,d, f(ln(,d, (,d, d (ln (ln f(,, f(ln(,, (,, d (,, (ln f(,, f(ln (,, dd. Dividin both sids of (7 b (lnbln(lnd ln(ln f ln implis tht th ution (4 holds nd proof is ompltd.. Thorm 2.. Lt : Ω + R b prtil diffrntibl mppin on int(ω + nd tsr L(Ω +. If tsr is omtrill usionv funtion on th o-ordints on 26 NSP Nturl Sins Publishin Cor.

6 64 A. Brni, F. Mlmir: Hrmit-Hdmrd inulit Ω + thn th followin inulit holds: (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F N(,b N(,d N(, f m 3 tsr (,, (,, f 3 tsr (,d, (,d, f 3 tsr (b,, (b,, f 3 tsr (b,d, 3 (b,d, f whr, C, D, nd N(, b r dfind, rsptivl, in Lmm 2.2 nd Lmm., nd E Ẽ (lnbln(lnd ln(ln f ln, F F (lnbln(lnd ln(ln f ln, whr E, F r dfind, in Lmm 2.2. Proof. From Lmm 2.2, it follows tht (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr. Sin tsr is omtrill usionv on th o-ordints on Ω +, w hv tsr (t b t, s d s, r f r m 3 tsr (,, (,, f 3 tsr (,d, (,d, f 3 (b,, f tsr (b,, 3 tsr (b,d, 3 (b,d, f (8 whr t, s, r [, ]. From this inulit nd Lmm., it follows tht t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr m 3 tsr (,, (,, f 3 tsr (,d, (,d, f 3 (b,, f tsr (b,, 3 tsr (b,d, 3 (b,d, f tsr t b t s d s r f r ln( t b t ln( s d s ln( r f r N(,b N(,d N(, f m 3 tsr (,, (,, f 3 tsr (,d, (,d, f 3 tsr (b,, (b,, f 3 tsr (b,d, 3 (b,d, f whih is th ruird inulit (8, sin t b t s d s r f r ln( t b t ln( s d s ln( r f r dtdsdr (t b t ln( t b t dt (s d s ln( s d s ds r f r ln( r f r dt N(,b N(,d N(, f. Th proof of thorm is ompltd.. Th followin orollr is n immdit onsun of thorm 2.. Corollr 2.. Suppos th onditions of th Thorm 2. r stisfid. Additionll, if 26 NSP Nturl Sins Publishin Cor.

7 Mth. Si. Ltt. 5, No., (26 / 65 ( tsr is inrsin on th o-ordints on Ω +, thn (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F N(,b N(,d N(, f (b,d, f tsr. (9 (2 tsr is drsin on th o-ordints on Ω +, thn. (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F N(,b N(,d N(, f tsr (,,. ( Thorm 2.2. Lt : Ω + R b prtil diffrntibl mppin on int(ω + nd tsr L(Ω +. If tsr is omtrill usionv funtion on th o-ordints on Ω + nd p,>, p +, thn th followin inulit holds: (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F [ N( p,b p N( p,d p N( p, f p ] /p [ m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, ] / (b,d, f ( whr, C, D, Ẽ, F nd N(,b r dfind rsptivl, in Lmm 2., Thorm 2. nd Lmm.. Proof. Suppos tht p >. From Lmm 2.2 nd wllknown Höldr inulit for tripl intrls, w obtin (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr ( p(t b pt p(s d ps p(r f pr ln( t b t ln( s d s ln( p(r f pr p dtdsdr ( 3 tsr (t b t, s d s, r f r dtdsdr. (2 Sin tsr is omtrill usionv on th o-ordints on Ω +, w obtin tsr (t b t, s d s, r f r dtdsdr m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, (b,d, f. tsr (3 W lso noti tht p(t b pt p(s d ps p(r f pr p ln( t b t ln( s d s ln( p(r f pr p dtdsdr p(t b pt ln( t b t p dt p(s d ps ln( s d s p ds p(r f pr ln( p(r f pr dr N( p,b p N( p,d p N( p, f p. (4 Combintion of (2, (3 nd (4, ivs th dsird inulit (. Hn th proof of th thorm is ompltd.. 26 NSP Nturl Sins Publishin Cor.

8 66 A. Brni, F. Mlmir: Hrmit-Hdmrd inulit Th followin orollr is n immdit onsun of thorm 2.2. Corollr 2.2. Suppos th onditions of th Thorm 2.2 r stisfid. Additionll, if ( tsr thn is inrsin on th o-ordints on Ω +, (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F [ N( p,b p N( p,d p N( p, f p ] /p (b,d, f tsr. (5 (2 tsr is drsin on th o-ordints on Ω +, thn. (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F [ N( p,b p N( p,d p N( p, f p ] /p tsr (,,. (6 Thorm 2.3. Lt : Ω + R b prtil diffrntibl mppin on int(ω + nd tsr L(Ω +. If tsr is omtrill usionv funtion on th o-ordints on Ω + for >, thn th followin inulit holds: (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F [M(,b M(,d M(, f] / [ ( 3 N ( /(,b /( N ( /(,d /( N ( /(, f /(] / (7 [ m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, ] / (b,d, f whr, C, D, Ẽ, F nd M(, b, N(, b r dfind, rsptivl, in Lmm 2.2, Thorm 2. nd Lmm.. Proof. B Lmm 2.2, Höldr s inulit, nd th omtri usinvit of on Ω +, w hv tsr (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr [ (t( b t/( (s/( d s/( (r/( f r/( ] / ln( t b t ln( s d s ln( r f r dtdsdr [ ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r ] / dtdsdr [ (t/( b t/( (s/( d s/( (r/( f r/( ln( t b t ln( s d s ln( r f r ] / dtdsdr [ m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, ] / (b,d, f tsr. 26 NSP Nturl Sins Publishin Cor.

9 Mth. Si. Ltt. 5, No., (26 / 67 Not tht b Lmm. w ddu tht, nd (t/( b t/( (s/( d s/( (r/( f r/( ln( t b t ln( s d s ln( r f r dtdsdr (t/( b t/( ln( t b t dt (s/( d s/( ln( s d s ds (r/( f r/( ln( r f r dr (3 3 N ( /(,b /( N ( /(,d /( N ( /(, f /(, ln( t b t ln( s d s ln( r f r dtds M(,b M(,d M(, f. Th proof of Thorm 2.3 is ompltd.. Thorm 2.4. Lt : Ω + R b prtil diffrntibl mppin on Ω nd 3 tsr L(Ω +. If tsr is omtrill usionv funtion on th o-ordints on Ω + nd >l>, thn (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F ( 3(/ ( 3/ l l [N ( l,b l N ( l,d l N ( l, f l] / [N ( (l/(,b (l/( N ( (l/(,d (l/( N ( (l/(, f (l/(] (/ [ m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, ] / (b,d, f (8 whr, C, D, Ẽ, F nd N(, b r dfind, rsptivl, in Lmm 2.2, Thorm 2. nd Lmm.. Proof. From Lmm 2.2, Höldr s inulit, nd th omtri usionvit of tsr on th o-ordints on Ω + w t, (lnbln(lnd ln(ln f ln (,, Ω (lnbln(lnd ln(ln f ln + Ẽ F t b t s d s r f r ln( t b t ln( s d s ln( r f r tsr (t b t, s d s, r f r dtdsdr [ (l(t/( b (lt/( (l(s/( d (ls/( (l(r/( f (lr/( ln( t b t ln( s d s ln( r f r ] / dtdsdr [ ln( l(t b lt ln( l(s d ls ln( l(r f lr tsr (t b t, s d s, r f r ] / dtdsdr [ (l(t/( b (lt/( (l(s/( d (ls/( (l(r/( f (lr/( ln( t b t ln( s d s ln( r f r ] / dtdsdr [ l(t b lt l(s d ls l(r f lr ln( t b t ln( s d s ln( r f r ] / dtdsdr [ m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, ] / (b,d, f tsr 26 NSP Nturl Sins Publishin Cor.

10 68 A. Brni, F. Mlmir: Hrmit-Hdmrd inulit ( 3(/ [N ( (l/(,b (l/( l N ( (l/(,d (l/( N ( (l/(, f (l/(] / ( 3/[ N ( l,b l N ( l,d l N ( l, f l] / l [ m 3 tsr (,, (,, f tsr (,d, (,d, f tsr (b,, (b,, f tsr (b,d, ] / (b,d, f Th proof of thorm is ompltd.. Thorm 2.5. Lt f : Ω + R b omtrill usionv funtion on th o-ordints on Ω +. If L(Ω +, thn f ( (b /2,(d /2,( f /2 (lnbln(lnd ln(ln f ln f(,, m (,,,(,, f,(b,,,(b,, f, (,d,,(,d, f,(b,d,,(b,d, f. (9 Proof. B omtri usionvit of f on o-ordints on Ω +, w hv f ( (b /2,(d /2,( f /2 m f( t b t, s d s, r f r, f( t b t, s d s, r f r m (,,,(,, f,(b,,,(b,, f, Sin (,d,,(,d, f,(b,d,,(b,d, f. f( t b t, s d s, r f r dtdsdr f( t b t, s d s, r f r dtdsdr (lnbln(lnd ln(ln f ln f(,,, (2 b intrtin in (2 w t f ( (b /2,(d /2,( f /2 m f( t b t, s d s, r f r dtdsdr, f( t b t, s d s, r f r dtdsdr, f( t b t, s d s, r f r dtdsdr (lnbln(lnd ln(ln f ln f(,, m (,,,(,, f,(b,,,(b,, f, (,d,,(,d, f,(b,d,,(b,d, f, nd proof is ompltd.. Thorm 2.6. Suppos tht,h : Ω + R r omtrill usionv funtions on th o-ordints on Ω +. If h L(Ω +. Thn, (lnbln(lnd ln(ln f ln (,, m (,, h(u,v,w,u [,b],,v [,d], w, [, f]. Proof. Lt t b t, s b s, r f r, t,s,r [,] nd usin th omtri usionvit of,h on th o-ordints on Ω + ilds (lnbln(lnd ln(ln f ln (,, f( t b t, s d s, r f r ( t b t, s d s, r f r dtdsdr m(,,,(,, f,(b,,,(b,, f, (,d,,(,d, f,(b,d,,(b,d, f m (,,,(,, f,(b,,,(b,, f, (,d,,(,d, f,(b,d,,(b,d, f, nd proof is ompltd.. 3 Conlusion This ppr is onrnd with th lbrt Hrmit-Hdmrd inulit for funtions of thr 26 NSP Nturl Sins Publishin Cor.

11 Mth. Si. Ltt. 5, No., (26 / 69 vribls. W obtind som rsults in onntion to Hrmit-Hdmrd inulit busin th notion of omtrill usionv funtions on rtnulr bo. In our opinion, dditionl rsrh should not onl fous on how to wkn th prtil diffrntibilit ondition in Lmm 2.2, but lso how to nrli th onvit. Aknowldmnt Th uthors r indbtd to rfrs for rfull rdin th ppr nd for mkin usful sustions. Rfrns [] A. Brni, S. Brni, Hrmit-Hdmrd inulitis for funtions whn powr of th bsolut vlu of th first drivtiv is P-onv, Bull. Aust. Mth. So. 86 (22, [2] A. Brni, A. G. Ghnfri nd S. S. Dromir, Hrmit- Hdmrd inulit for funtions whos drivtivs bsolut vlus r prinv, J. Inul. Appl 22, 22:247. [3] A. Brni nd F. Mlmir, Nw som Hdmrd s tp inulitis for onv funtions on rtnulr bo, submittd. [4] A. Brni nd F. Mlmir, on som nw inulitis for usionv funtions on rtnulr bo, submittd. [5] A. Brni nd F. Mlmir, Hrmit-Hdmrd inulit for omtrill usionv funtions on o-ordints, RGMIA Rsrh Rport Colltion, 8 (25, Artil 37, 8 pp. [6] S. S. Dromir, On th Hdmrd s inulit for onv funtions on th o-ordints in rtnl from th pln, Tiwn. J. Mth 5 ( [7] S. S. Dromir nd C.E.M. Pr, Sltd Topis on Hrmit-Hdmrd Tp Inulits nd Applitions, RGMIA (2, Monorphs, [ONLINE: hdmrd.htmi]. [8] U. S. Kirmi, Inulits for diffrntibl mppins nd pplitions to spil mns of rl numbrs to midpoint formul, App. Mth. Comput 47 ( [9] M. A. Ltif, S. Hussin nd S.S. Dromir, On Som nw inulit for o-ordintd usi-onv funtions, v455.pdf, 2. [] M. S. Moslhin, Mtri Hrmit-Hdmrd tp inulitis, Houston. J. Mth 39 ( [] M. E. Ödmir, A. O. Akdmir, Ç. Yıldı, On th oordintd onv funtions, Appl. Mth. Info. Si 8 ( [2] M. E. Ödmir,Ç. Yıldı nd A.O. Akdmir, On som nw Hdmrd-tp inulitis for o-ordintd usi-onv funtions, Http. J. Mth. St 4 ( [3] M. E. Ödmir, A.O. Akdmir, Ç. Yıldı, On o-ordintd usi-onv funtions, Ch. Mth. J 62 ( [4] M. E. Ödmir, On th o-ordintd omtrill onv funtions, Abstrts of MMA23 nd AMOE23, M 27-3, 23, Trtu, Estoni. [5] M. E. Ödmir, A.O. Akdmir, On som Hdmrd-tp inulitis for onv funtions on rtnulr bo, volum 2, r 2 rtil ID jn-, ps doi:.5899/2/jn-. [6] M. A. Noor, K. I. Noor, M. U. Awn nd J. Lib, On Hrmit- Hdmrd inulitis for h-prinv funtions, Filomt 28 ( [7] M. A. Noor, K. I. Noor, M. U. Awn, Hrmit- Hdmrd inulitis for rltiv smi-onv funtions nd pplitions, Filomt 28 ( [8] J. Pčrić, F. Proshn nd Y. L. Ton, Conv Funtion, Prtil Ordrins nd Sttistil Applitions, Admi Prss (992, In. [9] F. Qi nd B.Y. Xi, Som Hrmit-Hdmrd tp inulitis for omtrill usi-onv funtions, Prodins of th Indin Adm of Sin 24 ( [2] D. Y. Wn, K. L. Tsn, G. S. Yn, Som Hdmrd s inulit for o-ordintd onv funtions in rtnl from th pln, Tiwn J. Mth ( [2] B-Y. Xi, J. Hu, F. Qi, Hrmit-Hdmrd tp inulitis for tndd s-onv funtions on th o-ordints in rtnl. J. Appl. Anl 2 ( Ali Brni rivd th PhD dr in Mthmtis for Isfhn Univrsit, Irn. His rsrh intrsts r in th rs of inulitis nd nrlid onvit on Rimnnin mnifolds nd linr sps. H hs publishd rsrh rtils in rputd intrntionl journls of mthmtil sins. H is rfr of mthmtil journls. Ftmh Mlmir rivd th mstr dr in Mthmtis for Lorstn univrsit, Irn. His rsrh intrsts r in th rs of nrlid onvit. Now sh is PhD studnt of Mthmtis. 26 NSP Nturl Sins Publishin Cor.

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates Int. J. Nonliner Anl. Appl. 8 27 No. 47-6 ISSN: 28-6822 eletroni http://dx.doi.org/.2275/ijn.26.483 Hermite-Hdmrd ineulity for geometrilly usionvex funtions on o-ordintes Ali Brni Ftemeh Mlmir Deprtment

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Hermite Hadamard type inequalities for differentiable h ϕ -preinvex functions

Hermite Hadamard type inequalities for differentiable h ϕ -preinvex functions Arb J Mth (5) 4:63 76 DOI 7/s465-4-4-3 Arbin Journl of Mthmtics Muhmmd Aslm Noor Khlid Inyt Noor Muhmmd Uzir Awn Sunds Khn Hrmit Hdmrd ty inulitis for diffrntibl h ϕ -rinvx functions Rcivd: 8 Jnury 4 /

More information

On the Co-Ordinated Convex Functions

On the Co-Ordinated Convex Functions Appl. Mth. In. Si. 8, No. 3, 085-0 0 085 Applied Mthemtis & Inormtion Sienes An Interntionl Journl http://.doi.org/0.785/mis/08038 On the Co-Ordinted Convex Funtions M. Emin Özdemir, Çetin Yıldız, nd Ahmet

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Integral inequalities for n times differentiable mappings

Integral inequalities for n times differentiable mappings JACM 3, No, 36-45 8 36 Journl of Abstrct nd Computtionl Mthemtics http://wwwntmscicom/jcm Integrl ineulities for n times differentible mppings Cetin Yildiz, Sever S Drgomir Attur University, K K Eduction

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand Volum Issu July 0 ISSN: X Intrntionl Journl of Advnd Rsrh in Computr Sin nd Softwr Enginring Rsrh Ppr Avill onlin t: www.ijrss.om Dominting Funtion Thory from Nwton to Linitz s Approh of Indfinit Intgrtion

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

New general integral inequalities for quasiconvex functions

New general integral inequalities for quasiconvex functions NTMSCI 6, No 1, 1-7 18 1 New Trends in Mthemticl Sciences http://dxdoiorg/185/ntmsci1739 New generl integrl ineulities for usiconvex functions Cetin Yildiz Atturk University, K K Eduction Fculty, Deprtment

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX FACTA UNIVERSITATIS (NIŠ) Ser. Mth. Inor. Vol. 7 No 3 (), 3 336 SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX Muhd Aer Lti nd

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...?

Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...? Discrt mth Prctic Fl Em.) Fd 4 (i ) i=.) Fd i= 6 i.) Wht is th 6st trm th squnc 7,, 5, 9,...? 4.) Wht s th 57th trm, 6,, 4,...? 5.) Wht s th sum th first 60 trms th squnc, 5, 7, 9,...? 6.) Suppos st A

More information

Vr Vr

Vr Vr F rt l Pr nt t r : xt rn l ppl t n : Pr nt rv nd PD RDT V t : t t : p bl ( ll R lt: 00.00 L n : n L t pd t : 0 6 20 8 :06: 6 pt (p bl Vr.2 8.0 20 8.0. 6 TH N PD PPL T N N RL http : h b. x v t h. p V l

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN Som Rsults on ntrval Valud uzzy Nutrosophi Soft Sts SSN 239-9725. rokiarani Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator amilnadu ndia. R. Sumathi Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Th pr nt n f r n th f ft nth nt r b R b rt Pr t r. Pr t r, R b rt, b. 868. xf rd : Pr nt d f r th B bl r ph l t t th xf rd n v r t Pr, 00. http://hdl.handle.net/2027/nyp.33433006349173 P bl D n n th n

More information

Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates

Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates Avilble online t www.tjns.om J. Nonliner Si. Appl. 9 06), 5900 5908 Reserh Artile Some integrl inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes Yu-Mei Bi, Feng Qi b,, College o Mthemtis,

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

The study of dual integral equations with generalized Legendre functions

The study of dual integral equations with generalized Legendre functions J. Mth. Anl. Appl. 34 (5) 75 733 www.elsevier.om/lote/jm The study of dul integrl equtions with generlized Legendre funtions B.M. Singh, J. Rokne,R.S.Dhliwl Deprtment of Mthemtis, The University of Clgry,

More information

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex Krgujev Journl of Mthetis Volue 38 4, Pges 5 46 SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex MUHAMMAD AMER LATIF Abstrt In

More information

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets Hrdy Sps, Hyprfuntions, Psudo-Diffrntil Oprtors nd Wvlts Colltions from lrtur Th Hrdy Sp nd Hilbrt Sls Lt : s /, t thn th Rimnn Hypothsis is th sttmnt tht / ( s is nlyti on th hlf-pln Th ppropr Hilbrt

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Fractional Topological Insulators A Bosonization Approach

Fractional Topological Insulators A Bosonization Approach Journl of Modrn Physis 06 7 8-8 Publishd Onlin Jnury 06 in Sis. http://www.sirp.or/journl/jmp http://d.doi.or/0.46/jmp.06.70 rtionl Topoloil Insultors A Boniztion Approh D. Shmltzr Physis Dprtmnt City

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

Some new integral inequalities for n-times differentiable convex and concave functions

Some new integral inequalities for n-times differentiable convex and concave functions Avilble online t wwwisr-ublictionscom/jns J Nonliner Sci Al, 10 017, 6141 6148 Reserch Article Journl Homege: wwwtjnscom - wwwisr-ublictionscom/jns Some new integrl ineulities for n-times differentible

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

An inequality related to η-convex functions (II)

An inequality related to η-convex functions (II) Int. J. Nonliner Anl. Appl. 6 (15) No., 7-33 ISSN: 8-68 (electronic) http://d.doi.org/1.75/ijn.15.51 An inequlity relted to η-conve functions (II) M. Eshghi Gordji, S. S. Drgomir b, M. Rostmin Delvr, Deprtment

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

MATHEMATICS FOR MANAGEMENT BBMP1103

MATHEMATICS FOR MANAGEMENT BBMP1103 Objctivs: TOPIC : EXPONENTIAL AND LOGARITHM FUNCTIONS. Idntif pnntils nd lgrithmic functins. Idntif th grph f n pnntil nd lgrithmic functins. Clcult qutins using prprtis f pnntils. Clcult qutins using

More information

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions Avilble online t www.tjns.com J. Nonliner Sci. Appl. 8 5, 7 Reserch Article Some ineulities of Hermite-Hdmrd type for n times differentible ρ, m geometriclly convex functions Fiz Zfr,, Humir Klsoom, Nwb

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave Applied Mthemticl Sciences Vol. 9 05 no. 5-36 HIKARI Ltd www.m-hikri.com http://d.doi.org/0.988/ms.05.9 Hermite-Hdmrd Type Ineulities for the Functions whose Second Derivtives in Absolute Vlue re Conve

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Hadamard-Type Inequalities for s-convex Functions

Hadamard-Type Inequalities for s-convex Functions Interntionl Mthemtil Forum, 3, 008, no. 40, 965-975 Hdmrd-Type Inequlitie or -Convex Funtion Mohmmd Alomri nd Mlin Dru Shool o Mthemtil Siene Fulty o Siene nd Tehnology Univeriti Kebngn Mlyi Bngi 43600

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex Mly J Mt 34 93 3 On Hermite-Hdmrd tye integrl ineulities for functions whose second derivtive re nonconvex Mehmet Zeki SARIKAYA, Hkn Bozkurt nd Mehmet Eyü KİRİŞ b Dertment of Mthemtics, Fculty of Science

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information