MATHEMATICS Class 12 FOR JEE MAIN & ADVANCED. Indefinite Integration. Exhaustive Theory. Formula Sheet Problems

Size: px
Start display at page:

Download "MATHEMATICS Class 12 FOR JEE MAIN & ADVANCED. Indefinite Integration. Exhaustive Theory. Formula Sheet Problems"

Transcription

1 Clss 07-8 MATHEMATICS FOR JEE MAIN & ADVANCED SECOND EDITION Ehustiv Thory (Now Rvisd) Formul Sht Problms bsd on ltst JEE pttrn (Nw) Problms of prvious 35 yrs of AIEEE (JEE Min) nd IIT-JEE (JEE Adv) 5000+Illustrtions nd Solvd Empls Dtild Solutions of ll problms vilbl Topi Covrd Indfinit Intgrtion Mstrj Conpts Tips & Triks, Fts, Nots, Misonptions, Ky Tk Awys, Problm Solving Ttis MstrjEssntil Qustions rommndd for rvision

2 . INDEFINITE INTEGRATION. INTRODUCTION Intgrtion is rvrs pross of diffrntition. Th intgrl or primitiv of funtion f() with rspt to is diffrntil funtion φ() suh tht th drivtiv of φ() with rspt to is th givn funtion f(). It is prssd symbolilly s f()d φ() d Thus. f()d φ () () f() d φ. Th pross of finding th intgrl of funtion is lld Intgrtion nd th givn funtion is lld Intgrnd. Now, it is obvious tht th oprtion of intgrtion is th invrs oprtion of diffrntition. Hn th intgrl of funtion is lso nmd s th nti-drivtiv of tht funtion. Furthr w obsrv tht ( ) ( ) d d d d + k d d d + + onstnt So w lwys dd onstnt to th intgrl of funtion, whih is lld th onstnt of Intgrtion. It is gnrlly dnotd by. Du to th prsn of this rbitrry onstnt suh n intgrl is lld n Indfinit Intgrl.. ELEMENTERY INTEGRATION Th following intgrls r dirtly obtind from th drivtivs of stndrd funtions. () 0.d (b).d + () k.d k + (k R) (d) () (f) n+ n d + (n ) n+ d log + d +

3 . Indfinit Intgrtion (g) d + log + log (h) sin d os + (i) os d sin + 3. BASIC THEOREMS OF INTEGRATION If f(), g() r two funtions of vribl nd k is onstnt, thn () k f()d k f()d (b) f() ± g() d f()d ± g()d d () ( f()d) (d) d f() d f() d f() d + MASTERJEE CONCEPTS Th rsults of intgrtion r vry diffrnt from diffrntition. Thr is no stndrd formul for intgrtion. Alwys mk sur to writ th onstnt of intgrtion. NEVER ssum it s zro from your sid. Vibhv Gupt (JEE 009, AIR54) Illustrtion : Evlut: sin d os thrfor w n split Sol: As w know, f() ± g() d f()d ± g()d sin d os s sin d os sin d d nd thn by solving w n gt rsult. os os sin d d s d tns d tn s + os os Illustrtion : Evlut: + sin d Sol: Hr rsult. sin + os nd sin sin os, thrfor by using ths formul nd solving w will gt th + sin d sin + os + sin os d (sin + os ) d (sin+ os)d sin d + os d os + sin +

4 Mthmtis. 3 4 Illustrtion 3: Evlut: sin d Sol: Hr s w know, os sin, Now by putting this in th bov intgrtion nd solving w will gt th trm ( os os + )d 4, Aftr tht by using th formul + os 4 os w n solv th problm givn bov. sin 4 d os d ( os + os )d 4 + os 4 os + d (3 4 os + os 4)d sin + + C 8 4 sin4 3 3 Illustrtion 4: If f'() 4 suh tht f()0,thn, find f() (JEE ADVANCED) Sol: Hr f'() thrfor f() 4 d 4 4 hn by splitting this intgrtion nd solving w will gt th rsult. W hv, d 3 3 f() 4 d f() 4 d 4 d d 4 d 3 d C + + C (i) 4 Givn f() + + C 0 3 Putting th vlu of C in (i), w gt C C METHODS OF INTEGRATION 4 9 f() Whn th intgrnd n t b rdud into som stndrd form thn intgrtion is prformd using following mthods 4. Intgrtion by Substitution 4.. Intgrnd is Funtion of Anothr Funtion ' If th intgrl is of th form f φ() φ ()d, thn w put φ () t so tht φ ' () ddt. Now intgrl is rdud f(t) dt. MASTERJEE CONCEPTS In this mthod th funtion is brokn into two ftors so tht on ftor n b prssd in trms of th funtion whos diffrntil offiint is th sond ftor. In s of objtiv qustions in whih dirt indfinit intgrtion is skd, funtion bing vry omplitd to intgrt, thn try diffrntiting th options.

5 .4 Indfinit Intgrtion If d I, thn I is Equl to sin( )os( b) () sin( ) log sin( b) os( b) + C (b) sin( ) log os( b) os( b) + C () sin( ) log sin( + b) os( b) + C (d) sin( ) log os( + b) os( b) + C Vibhv KrishnnJEE 009, AIR Illustrtion 5: Evlut: tn s d Sol:This problm is bsd on intgrtion using substitution mthod. In this w n put t nd thrfor ddt nd thn solving w will gt th rsult. Lt t ddt d dt tn s d tntstdt st s Intgrnd is th Produt of Funtion nd its Drivtiv If th intgrl is of th form I f ' () f() d w put f() t nd onvrt it into stndrd intgrl. Illustrtion 6: Evlut: tns d Sol: Hr s is drivtivs of tn hn w n put tn t nd givn problm. Lt tn t s.d dt t I tns d tdt tn Intgrnd is Funtion of th Form f(+b) Hr w put +b t nd onvrt it into stndrd intgrl. Now if, f()d φ(), thn f( + b)d φ ( + b) s.d dt thrftr w n solv th Illustrtion 7: Evlut: os3os5d Sol: By multiplying nd dividing by in th givn intgrtion nd using th formul osa.osb os( A + B) + os( A B) w n solv it. I os3os5d os8 + os d sin8 + sin + 8

6 Mthmtis.5 Illustrtion 8: Evlut: I d (JEE ADVANCED) Sol: Hr by putting 3 putting t + tnθ, w n solv it. Lt t dt d w will gt th trm dt dt t dt d I t t + + t + (/) + 3/ f + d t + tn f tn + f' + tn dt dt t + t+ t + I tn nd thn by ( t + (/)) + ( 3/) Now put 3 t + tnθ 3 dt s θdθ ( 3 / )s θdθ t + d tn tn + θ θ+ + + (3 / 4) tn θ Stndrd intgrtion rsults () (b) () ' f () d log f() + f() n+ n ' f() f() f ()d + (providd n -) n+ ' f () d f() + f() s Illustrtion 9: Evlut: d tn Sol: Hr simply substituting ttn dt s d w n solv it. Lt ttn dt s d I dt t tn t Intgrl of th Form d b b thn substitut r os θ nd br sin θ, tnθ θ tn,w gt sin + bos I d +θ os( +θ )d logtn + r sin( +θ) r r ( + ) logtn ( / ) ( / )tn (b / ) + b +

7 . 6 Indfinit Intgrtion MASTERJEE CONCEPTS m n sin os d, whr m, n ϵ N If m is odd put os t If n is odd put sin t If both m nd n r odd, put sin t if m n nd os t othrwis. If both m nd n r vn, us powr rduing formul os + os sin or os If m+n is ngtiv vn intgr, put tn t Shriknt Ngori (JEE 009, AIR 30) Illustrtion 0: Evlut: d (JEE ADVANCED) sin + os d Sol: As w know, if intgrtion is in th form of sin + bos thn w n put r os θ nd br sin θ hn th intgrtion will b log tn + θ +. r Hr & b π So d logtn + tn + logtn + + sin + os Stndrd Substitutions Th following stndrd substitutions will b usful Intgrnd form or Substitutions sin θ or os θ + or + tn θ or ot θ or sinh θ or s θ or os θ + or + or ( + ) or ( + ) tn θ or or ( ) or ( ) sin θ or os θ

8 Mthmtis. 7 or or ( ) or ( ) s θ or os θ + or + os θ α β or ( α)( β ) ( β > α) αos θ + βsin θ Som Stndrd Intgrls () tnd logs + logos + (b) ot d logsin + logos + () s d log(s + tn) + (d) osd log(os + ot ) + () s tnd s + (f) os ot d os + (g) (h) s d tn + os d ot + logd log + log + + (i) π log(s tn) + logtn log(os ot) + log tn + MASTERJEE CONCEPTS p q If th intgrl is of th form R,, r... d, whr R is rtionl funtion thn, Lt lm of (p,q,r,.) nd put t Nitish Jhwr (JEE 009, AIR 7) Illustrtion : Prov tht: d logn( + ) + C (JEE ADVANCED) Sol: By putting s θ d sθtnθdθ, w n solv th problm givn bov. Lt s θ d sθtnθdθ d + log ( + ) + C log ( + + ) + C' s θ tn θ d θ s θ d θ tnθ log (s θ + tn θ ) + C

9 .8 Indfinit Intgrtion Illustrtion : Evlut: os.os 4.os6d Sol: By multiplying nd dividing by in th givn intgrtion nd thn by using osa.osb os( A + B) + os( A B) w n solv it. Lt I os.os 4.os6d (os.os 4)os6d (os6 + os)os6d os Aos B os ( A + B) + os( A B) ( os 6 + os 6 os) d ( os 6 + os 6 os) d ( os ) ( os8 os 4) d sin f os f d + C f' sin sin8 sin4 I C d osd os8d os 4d Illustrtion 3: Evlut: os osα d (JEE ADVANCED) os osα Sol: Hr in this problm by using th formul C+ D C D osc osd sin.sin, sin A sin A os A nd os C os D os (C+D)+os (C-D) W n solv th problm bov stp by stp. W hv, os os α sinsin d +α α d os osα sin ( +α) / sin ( α) / ( +α ) ( +α ) ( α ) ( α ) sin (( +α) / ) sin (( α) / ) sin( +α)sin( α) d sin / sin / ( +α ) ( α ) sin / os /.sin / os / d (sin A sin A os A) +α α 4 os os d [ os C os D os (C+D)+os (C-D)] (os + os α )d osd + osα d sin + osα+ C Illustrtion 4: Evlut: 8 8 sin os d (JEE ADVANCED) sin.os Sol: Hr by using th formul b ( b)( b) + nd putting (sin + os ) in pl of in th dnomintor, w n rdu th bov intgrtion nd thn using os os sin w n solv it. W hv, 8 8 sin os d sin.os (sin + os )(sin os ) d (sin + os ) sin.os

10 Mthmtis (sin + os )(sin + os )(sin os ) d 4 4 (sin + os ).(sin os )d osd os os sin sin + C 4. Intgrtion by Prts If u nd v r two funtions of, thn du (u.v)d u v d v d d d This is lso known s uv rul of intgrtion. This mthod of intgrting is lld intgrtion by prts. MASTERJEE CONCEPTS From th first lttr of th words invrs irulr, logrithmi, Algbri, Trigonomtri, Eponntil funtions, w gt word ILATE. Thrfor th prfrn of slting th u funtion will b ording to th ordr ILATE. In som problms w hv to giv prfrn to logrithmi funtion ovr invrs trigonomtri funtions. Hn somtims th word LIATE is usd for rfrn. For th intgrtion of Logrithmi or Invrs trigonomtri funtions lon, tk unity () s th v funtion. Shivm Agrwl (JEE 009, AIR 7) Illustrtion 5: Evlut: ( + )logd Sol: Hr w n intgrt th givn problm by using Intgrtion by prts i.. du (u.v)d u v d v d d d Hr u log nd v ( + ). Lt I ( + )logd Intgrting by prts, tking log s st funtion, (by LIATE rul) w gt d d I log ( + ) d (log). ( + )d d log +. + d + log + d + log + + C 4 Illustrtion 6: Evlut: 3 s d (JEE ADVANCED) Sol: Hr w n solv by intgrting by prts, tking s s th first funtion. I 3 s d s. s d Lt I s tn ( s tn ).tn d u s & v s s tn s tn d s tn s (s )d

11 .0 Indfinit Intgrtion 3 I s tn I s d I s tn s d + s d I s.tn + log ( s + tn ) + C Illustrtion 7: Evlut : + + I s tn log(s tn) C + + (sin ) d (JEE ADVANCED) nd thn tking Sol: W n writ th givn intgrtion s (sin ).d u sin & v solving by intgrtion by prts. d I (sin ). (sin ). d d ( ) (sin ). sin.. d Now, putting sin t sin t so tht d dt I (sin ) t. sintdt (sin ) tost + ostdt (gin Intgrting by prts) { } { } (sin ) tost + sint + C (sin ) + tost sint + C (sin ) + sin. + C Illustrtion 8: Evlut: sin os d (JEE ADVANCED) sin + os π Sol: By using th formul sin + os, w n solv th bov problm. Lt I sin os d sin + os sin ( π/ ) sin d ( π / ) π sin + os π 4 sin d sin d d π π 4 sin d π (i) Putting sin θ sin θ so tht d sin θ. os θ d θ sin θ d θ. sin d θ. sinθdθlt u & V sin θ θ, thn intging by prts w gt θ sin θ + sin θ.os θ 4 osθ θ θ. + osθdθ osθ + sinθ θ( sin θ+ ) sinθ sin θ 4 (sin )( ) +. + C (ii) From (i) nd (ii), w gt 4 I ( )sin + + C π { } π ( )sin + C 4.. Intgrtion by Cnlltion Illustrtion 9: Evlut : 3 tn s d

12 Mthmtis. Sol: Lt 3 tn s d 3 tn d s d du i.. (u.v)d u v d v d d d nd thn by using th intgrtion by prts formul w n solv th problm bov. 3 tn s d 4.. Intgrtion of th Form: 3 tn d s d If th intgrl is of th form f() + f ' () d, thn us th formul; f() + f'() d f() tn s d s d 3 tn + Illustrtion 0: Evlut: (log + / )d Sol: Solution of this problm is bsd on th mthod mntiond bov, hr f() log nd f () /. log + d I log + d log + Hr, f() log ' &f () / If th intgrl is of th form ' f () f() + d thn us th formul; ' f () + f() d f() + Illustrtion : Evlut : (s + tn)d Sol: Similr to th problm bov. Hr I (s + tn)d f'() + f() d 4..3 Spil Intgrls sinbd (sinb bosb) + + b osbd (bsinb + osb) + + b osbd + b Illustrtion : Evlut : [whr f() tn ].tn + (b sin b+ os b)+ sin d Sol: By putting sin t sin t d os t dt nd thn intgrting by prts w n solv th givn problm. I Lt sin I sin d t sin t d os t dt t sin t ostdt (sint + ost) + ( + ) +

13 . Indfinit Intgrtion 4.3 Intgrtion of Rtionl Funtions 4.3. Whn th Dnomintor n b Ftorizd (Using Prtil Frtion) Lt th intgrnd b of th form f(), whr both f() nd g() r polynomils. If dgr of f() is grtr thn g() dgr of g(), thn first divid f() by g() till th dgr of th rmindr boms lss thn th dgr of g(). Lt Q() b th quotint nd R(), th rmindr thn f() R() Q() + g() g() Now in R()/g(), ftoriz g() nd thn writ prtil frtions in th following mnnr: () For vry non-rptd linr ftor in th dnomintor. Writ A B + ( )( b) b (b) For vry rptd linr ftor in th dnomintor. Writ A B C D ( ) ( b) ( ) ( ) ( b) () For vry non-rptd qudrti ftor in th dnomintor. Writ A + B C + ( + b + )( d) + b + d (d) For vry rptd qudrti ftor in th dnomintor. Writ A + B C + D E + + ( + b + ) ( d) ( + b + ) + b + d MASTERJEE CONCEPTS Considr f() s th funtion w nd to ftoriz. For non- rptd linr ftor in th dnomintor. A B Lt f() + ( )( b) ( ) ( b) To obtin th vlu of A rmov ( ) from f() nd find f(). Similrly, to obtin vlu of B, rmov (-b) from f() nd find f(b).. For rptd linr ftor in th dnomintor. Lt f() A B C D ( ) ( b) ( ) ( ) ( b) To obtin vlu of D rmov ( b) from f() nd find f(b). To obtin vlu of rmov ( ) 3 from f() nd find f(). Now tht w hv rdud th numbr of unknowns from 4 to, w n find A nd B sily by quting.

14 Mthmtis.3 Now lt s try this mthod for Prtil frtion will b of th form ( + )( + ) A B+ C D+ E F+ G H+ I ( + )( + ) ( + ) ( + ) ( + ) ( + ) 3 3 Now rmov nd put 0, w gt A Now rmov 3 ( + ) nd put W gt Hi+I 3i. Hn H 3 nd I. - i.. i (you n lso substitut i ). Now rmov ( + ) nd put i. W gt B ( i ) +C i +3. Hn B nd C 3 Now th numbr of unknowns hv rdud from 9 to 4 nd th rmining unknowns n b solvd sily. This mthod vry usful instd of solving for ll th unknowns t th sm tim. Also rmmbr tht substituting n imginry numbr for is not disussd nywhr in NCERT. So, us this mthod only for omptitiv ms. Rvi Vood (JEE 009, AIR 7) Illustrtion 3: Evlut : d Sol: Hr th givn intgrtion is in th form of, hn by using prtil frtions w n split it s ( )( b) A B + nd thn by solving w will gt th rquird rsult. ( ) ( b) Hr I d d ( )( + ) log log log Illustrtion 4: Evlut : d (JEE ADVANCED) Sol: Hr simply by putting t dt d nd thn by using prtil frtions w n solv th givn problm. I d d dt 3t 8t + (Put t dt d) dt dt dt 6 t 6t ( / 3) 6 (t 3) (6 / 3) 6 + (t 3) 4 / 3 (t 3) (4 / 3) 3 3t log + C log + C 6 (4 / 3) (t 3) + (4 / 3) 48 3t log + C

15 . 4 Indfinit Intgrtion 4.3. Whn th Dnomintor nnot b Ftorizd In this s th intgrl my b in th form (i) d (ii) (p q) + b + Mthod: (i) Hr tking th offiint of + d + b + ommon from th dnomintor, writ b 4 + (b / )+ / (+ b/ ) 4 Now th intgrnd obtind n b vlutd sily by using stndrd formul. (ii) Hr suppos tht p + q d A ( + b + ) + B d A(+b)+B..(i) Now ompring offiint of nd onstnt trms. W gt Ap/, Bq-(pb/) p + b pb d I d q + b + + b + Now w n intgrt it sily Intgrnd Contining Only Evn Powrs of To find intgrl of suh funtions, first w divid numrtor nd dnomintor by, thn prss th numrtor s d(±/) nd th dnomintor s funtion of (±/). Th following mpls illustrt it. MASTERJEE CONCEPTS R(sin,os )d whr R is rtionl funtion (univrsl substitution tn(/)t) Spil ss: () If R ( sin, os ) R(sin, os ) Put os t (b) If R (sin, os ) R(sin, os ) Put sin t () If R ( sin, os ) R(sin, os ) Put tn t Aksht Khry (JEE 009,AIR 35) Illustrtion 5: Evlut: + d 4 (JEE ADVANCED) + Sol: Hr dividing th numrtor nd dnomintor by thn by putting -/t [+/ ]d dt, w n solv it., w gt + ( / ) + ( / ) d d nd + ( / ) { ( / ) } +

16 Mthmtis.5 I + ( / ) ( / ) d d ( / ) + + { ( /) } + Now tking -/t [+/ ]d dt, w gt I dt t tn + t + tn Intgrtion of Irrtionl Funtions If ny on trm in numrtor or dnomintor is irrtionl thn it is md rtionl by suitbl substitution. Also if th intgrl is of th form d or + b + + b + Thn w intgrt it by prssing Also for intgrls of th form d + b + ( +α ) +β p + q d or + b + (p + q) b + d First w prss p+q in th form d p+q A [ ( b + ) ]+B nd thn prod s usul with stndrd form. d Illustrtion 6: Evlut : Sol: Simply by putting Put t, thn d 5 4 d dt d 5 4 t, thn dt 5 4t t d dt, w n solv th givn problm. dt 5 (t + 4t) dt t+ sin + C sin + + C (3) (t + ) 3 3 Illustrtion 7: Evlut : dt 5 (t + 4t + 4) + 4 dt 9 t+ d ( )( b) (JEE ADVANCED) + b Sol: Hr first pnd ( )( b) nd thn dding nd subtrting by, w n rdu th bov + b intgrtion. Aftr tht by putting u, w n solv th givn problm. Lt, I d d d ( )( b) ( + b)+ b ( + b) + ( + b) / ( + b) / + b d d ( (( b) / )) + (( + b + b) / 4) b ( ( + b) / ) ( b ) / 4 d (i) ( + b) / ( b) / ( )

17 .6 Indfinit Intgrtion + b On putting u so tht d du in (i), w gt du I d log + b log u + u + u ( b) / Putting u + b, w gt + b + b b I log b + + log ( )( b) 5. STANDARD INTEGRALS () (b) d tn + + d log () d log + (d) () (f) d sin + os + d sinh log d osh log (g) d + sin + (Substitut osθ or sinθ nd prod) (h) + d + + log (Substitut tnθ or otθ nd prod) (i) d logn + + (Substitut sθ or osθ nd prod) (j) d s + (Vlid for > > 0) (k) sinbd (sinb bosb) + + b + b b sin b tn +

18 Mthmtis.7 (l) osbd (osb + bsinb) + + b + b b os b tn + Intgrtion of irrtionl lgbri funtions: Typ : () d (Put : ( α) ( α)( β ) os q + bsin q ) (b) d (Put : ( α) ( β) s q b tn q ) Typ : d (Put: p + q t ) ( + b) p+ q Typ 3: d (Put: ( + b) p + q+ r + b ) t Typ 4: Typ 5: d ( b + ) p + q (Put:. p + q t ) d ( + b + ) p + q + r Cs I: Whn I Put ( b + ) brks up into two linr ftors,.g. d d thn + + Put t Cs II: If + t + b + is prft squr sy Cs III: If b, q 0 A B + d A (l m) +, thn put l + m t.g. d thn, put or trigonomtri substitutions r lso hlpful. ( + b) p + r t d Intgrl of th form, whr P, Q r linr or qudrti funtions of. P Q d d + B ( ) + + ( + ) + + Intgrl d + b + d d + b + p + q d p + q + b + d + b + d Substitutions + d z p + q z p + q z z

19 .8 Indfinit Intgrtion d + b + b + + b / t m Illustrtion 8: Evlut : d ( + ) Sol: Simply by putting d ( + ) t, d t dt w n solv th givn problm by using th pproprit formul. Put t d t dt I t dt (t + 3)t dt t + ( 3) t tn tn ( t ( ) ) Illustrtion 9: Evlut : d ( 4) Sol: Hr first put t thrfor d t dt nd thn using prtil frtions w rdu th givn intgrtion in stndrd form. Aftr tht by solving w will gt th rsult. d Lt I ( 4) t dt Put t d t dt thn I dt 4 (t 4)t (t + )(t ) Put t z (t )(t ) A B + + (z+ )(z ) z+ z A nd B (t + )(t ) 4(t + ) 4(t ) I dt dt (t + )(t ) t + t + t t tn + log + 4 t+ tn + log ( t ) 6. SPECIAL TRIGONOMETRIC FUNCTIONS Hr w shll study th mthods for vlution of th following typs of intgrls. Typ (i) d (ii) + bsin d + bos (iii) d (iv) os + bsinos + sin d (sin + bos) Mthod: Divid th numrtor nd dnomintor by os in ll suh typs of intgrls nd thn put tn t

20 Mthmtis.9 Illustrtion 30: Evlut : d + 3sin Sol: Hr dividing th numrtor nd dnomintor by os w n solv it. I s d s + 3tn s d tn (tn) tn Typ (i) d (ii) + bos d + bsin (iii) d (iv) os + bsin d sin + bos + Mthod: In suh typs of intgrls w us th following substitutions tn / t sin + tn / + t tn / t dt, os ; d + tn / + t + t nd intgrt nothr mthod for th vlution of th intgrl. d Illustrtion 3: Evlut: d 5 + 4os tn ( / ) Sol: Hr by putting os tn ( / ) d I ( tn ( / )) / ( + tn ( / )) + nd thn by tking tn (/) t w n solv th givn problm s ( / ) d 9 + tn ( / ) dt 3 + t whr tn (/) t t tn + C 3 3 tn / tn + C 3 3 Typ 3 (i) psin + qos d (ii) sin + bos psin d sin + bos (iii) qos d sin + bos For thir intgrtion, w first prss numrtor s follows- Numrtor A (dnomintor) + B (drivtiv of dnomintor) Thn intgrl A + B log (dnomintor) + C Illustrtion 3: Evlut : 6 + 3sin + 4os d (JEE ADVANCED) 3 + 4sin+ 5os Sol: By using prtil frtions, w n rdu th givn intgrtion to th stndrd form sin + 4os d 3 + 4sin+ 5os 6 + 3sin + 4os A ( 3 + 4sin+ 5os ) + B ( 4os 5sin ) + Solving R.H.S. & ompring both sids, w gt 4A 5B 3 5A + 4B 4 Also, 3A+C6 A(3 + 4sin + 5os) + B(4os 5sin) sin+ 5os

21 .0 Indfinit Intgrtion C d A + logn(3 + 4sin + 5os) sin+ 5os this is of typ sinφ osφ Illustrtion 33: Evlut : dφ (JEE ADVANCED) 6 os φ 4sinφ Sol: Hr w n writ th givn intgrtion s th drivtiv of 6 os φ 4sinφ hn by putting (sinφ 4os φ ) + 7osφ dφ 6 os φ 4sinφ nd s w know (sinφ 4os ) 6 os φ 4sinφ t, w n solv th givn problm. φ is I sinφ osφ dφ 6 os φ 4sinφ d (6 os φ 4sin φ ) dφ osφsinφ 4osφ sinφ 4osφ sinφ osφ (sinφ 4os φ ) + 7osφ (sinφ 4os φ ) + 7osφ I dφ 6 os φ 4sinφ (sinφ 4os φ)dφ 7osφdφ os φ 4sinφ 6 os φ 4sinφ t 6 ( sin ) 4sin dt 7osφdφ φ φ logt + C + 7osφdφ 5 + sin φ 4sinφ 7d log(6 os φ 4sin φ ) + C + ( sinφ ) d log(6 os φ 4sin φ ) + C + log(6 os φ 4sin φ ) + C + 7tn + C ( ) + log(6 os φ 4sin φ ) + 7tn (sinφ ) + C 7. SPECIAL EXPONENTIAL FUNCTIONS () (b) d [put b + t] d [Multiply nd divid by + nd t] () (d) d [Multiply nd divid by d [Multiply nd divid by ] nd t] () (f) (g) (h) + d ' f () form f() + d [Multiply nd divid by d [Multiply nd divid by ( + )( ) / ] nd put d [Multiply nd divid by / ] t]

22 Mthmtis. (i) (j) d [Multiply nd divid by / + ] d [Multiply nd divid by / ] (k) d [Multiply nd divid by / ] (l) d [Intgrnd ( )/ ] (m) + d [Intgrnd (+ )/ + ] (n) d [Intgrnd ( )/ ] (o) + d [Intgrnd ( + ) / ] Illustrtion 34: Evlut : d Sol: Hr by multiplying nd dividing by vlut th givn intgrtion. Hr I Lt d t, thn d d t dt in th givn intgrtion nd thn by putting t w n d d I dt dt t + t tn (t) + tn + Illustrtion 35: Evlut : d 5 4 Sol: W hv, 5 4 d Put t, thn d dt d 5 4 dt 5 4t t d dt 5 (t + 4t) dt 5 (t + 4t + 4) + 4 dt 9 (t + ) dt (3) (t + ) t+ sin + C 3 sin C

23 . Indfinit Intgrtion PROBLEM-SOLVING TACTICS Intgrtion by Prts () Intgrtion by prts is usful for dling with intgrls of th produts of th following funtions << (log) k u tn, sin,os Priority for hoosing u nd dv: ILATE sin, os >> dv (b) Intgrtion by prts is somtims usful for finding intgrls of funtions involving invrs funtions suh s n nd sin. () Somtims whn dling with intgrls, th intgrnd involvs invrs funtions (lik sin ), it is usful to substitut th invrs of tht invrs funtion (lik sin u), thn do intgrtion by prts. 3 (d) Somtims you will hv to do intgrtion by prts mor thn on (for mpl, d nd sind. Somtims you nd to do it twi by prts, thn mnipult th qution (for mpl, sind ). () Try u substitution first bfor intgrtion by prts. Trigonomtri Intgrl () Intgrl Typ : m n sin os d Cs : On of m or n r vn, nd th othr odd Us u substitution by stting u sin or os tht with n vn powr. Us th idntity Cs : Both m nd n r odd Us u substitution by stting u sin or os tht with highr powr. Us th idntity Cs 3: Both m nd n r vn (hrd s) sin + os. sin + os. Do not us u substitution. Us th hlf doubl ngl formul to rdu th intgrnd into s o r: sinos sin ; sin ( os) ; os ( os) 3 3 o (Not: 0 is lso n vn numbr. For mpl, sin sin os, so it is in s ) Just rmmbr tht whn both r vn, you n t us u-substitution, but you n us th hlf doubl ngl formul. Whn it is not tht s, lt u sin or os, nd on will work (t th nd thr is no squr root trm ftr substitution). (b) Intgrl typ : () m n tn s d Cs : s is odd powr, tn is vn powr. Hrd to do, w omit (most likly won t pop out in th m). Cs : Els St u s or tn, nd us + tn s. On will work t th nd (thr is no squr root trm ftr substitution). Intgrl typ : sin(a)os(b)d, os(a)os(b)d, sin(a)sin(b)d Us th produt to sum formul: osθos φ (os θ φ ) + (os θ+φ )) ; sinθos φ (os θ φ) (os θ+φ)) sinθos φ (sin θ φ ) + (sin θ+φ )) Rdu produt into sum nd thn intgrt.

24 Mthmtis.3 Trigonomtri Substitution () Trigonomtri substitution is usful for qudrti form with squr root: : Lt sinθ + : Lt tnθ : Lt sθ (b) Gnrl produr for doing trig sub: Stp : Drw th right tringl, nd did wht trigonomtri funtion to substitut for. Stp : Find d, thn substitut th intgrnd using tringl, onvrt intgrl into trigonomtri intgrl. Stp 3: Solv th trigonomtri intgrl. Stp 4: Substitut bk using tringl. (i) If th qudrti form is not in th Pythgors form (for mpl, th squr mthod to trnsform it into Pythgors form). (ii) Try u substitution bfor trigonomtri substitution. + +, thn us th prfting (iii) Intgrls involving ( ) nd ( ) without squr roots n b solvd sily with prtil frtions. So don t us trigonomtri substitution. Rtionl Intgrl nd Prtil Frtion () Gnrl stp for solving rtionl intgrl: Stp : Do long division for th rtionl funtion if th dgr of th numrtor is highr thn th dnomintor. Stp : Do prtil frtion domposition. Stp 3: Evlut th intgrl of h simpl frtion. (b) Gnrl stp for prtil frtion: Stp : Ftoriz th dnomintor. Stp : St th prtil frtion ording to rul. Stp 3: Solv th unknown of th numrtor of th prtil frtion. Impropr Intgrl () Gnrl stps for vluting impropr intgrl: Stp : Chng th impropr intgrl into th pproprit limit. [Chng ± or singulr point (whr) to pproprit limit.] Stp : Evlut th intgrl. Stp 3: Find th limit. (b) Th vry first stp to tst impropr intgrl involving is to hk its limit. If its limit is not zro, thn th intgrl divrgs. () Whnvr you s impropr intgrls involving th quotint of rtionl or irrtionl funtion, suh s (8 + 7) d Us limit omprison tst. Th pproprit ompring funtion n b found by looking t th Intgrnd (quotint of rtionl irrtionl). Disrd th lowr dgr trms.

25 .4 Indfinit Intgrtion (d) Somtims, using u substitution bfor using ny tst will b sir. () Somtims, to dtrmin if n impropr intgrl onvrgs or divrgs, dirtly vluting th impropr intgrl is sir. (f) Whn doing omprison tst, bwr of th ompring funtion tht you hoos. It might not giv n pproprit onlusion if th ompring funtion is not orrt. (g) Try th limit omprison tst bfor th omprison tst. (h) Usful ompring funtion, whih is good to know thir onvrgn or divrgn k β d < For k 0, β> 0 d p d p < if p > ; if p ; < if p < ; if p ; FORMULAE SHEET Bsi thorms of Intgrtion:. f() ± g() d f()d ± g()d. k f()d k f()d d 3. ( f()d) f() d 4. d f() d f() d Elmntry Intgrtion:. 0.d..d + 3. k.d k + (k R) 4. n+ n d + (n ) n+ 5. d log + 6. d + 7. d + log + log 8. sind os + 9. osd sin + 0. n+ n ( + b) ( + b) d + (n + ). d log + b +. + b f ' () f() d f() + 3. logd log + 4. log d log + log

26 Mthmtis.5 Stndrd substitution:. or sin θ or os θ. + or + tn θ or ot θ 3. or s θ or os θ 4. +, +, ( + ) nd ( + ) tn θ 5. or ( ) nd ( ) sin θ or os 6. or or ( ) or ( ) s θ or os θ 7. + nd + os θ 8. α β or ( α)( β ) ( β>α) αos θ+βsin θ Som stndrd Intgrls:. tnd logs + logos +. ot d logsin + 3. s d log(s + tn) + π log(s tn) + logtn osd log(os + ot ) + log(os ot) + log tn + 5. s tnd s + 6. os ot d os + 7. s d tn + 8. os d ot + logd log + log sin sin d + C ( sinos) + C

27 .6 Indfinit Intgrtion. sin os d + + C ( + sinos) + C. 3 s d s tn + log s + tn + 3. n sin n d n n sin os sin d + n n 4. n os n d n n os sin os d + n n Intgrtion by Prts: du.. (u.v)d u v d v d d d f() + f'() d f() + Stndrd Intgrls:.. 3. d tn + + d log d log d sin + os + d sinh log d osh log d + sin d + + log n d log + +

28 Mthmtis.7 0. d s + (Vlid for > > 0). sinb d (sinb bosb) + + b + b b sin b tn +. osb d (osb + bsinb) + + b + b b os b tn + Solvd Empls JEE Min/Bords Empl : Evlut : + sin d + os Sol: Hr by using th formul sin sin os nd + os os w n solv th givn problm. + sin d + os + sin/ os/ d os / s / + tn d tn / + Empl : Evlut : + d Sol: By pplying intgrtion by prts nd tking + s th first funtion w n solv th givn problm. + d ( + ) + d + d Put tn θ + d + d s θ d θ + log ( sθ+ tnθ ) logn + + I + + log Empl 3: Evlut : sin tn d + sin Sol: Hr first writ os (( π/ ) ) t th pl of sin thn by using th formul os sin And + os os w n solv it. sin os ( π/ ) I tn d tn + sin + os ( π/ ) tn ( π ) ( π ) sin ( / 4) ( / ) d os ( / 4) ( / ) π tn tn d 4 Empl 4: Evlut : π d 4 log( + )d d π + C 4 4 Sol: Hr intgrting by prts by tking log( + ) s th first funtion w n solv th givn problm.

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand Volum Issu July 0 ISSN: X Intrntionl Journl of Advnd Rsrh in Computr Sin nd Softwr Enginring Rsrh Ppr Avill onlin t: www.ijrss.om Dominting Funtion Thory from Nwton to Linitz s Approh of Indfinit Intgrtion

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

CBSE 2015 FOREIGN EXAMINATION

CBSE 2015 FOREIGN EXAMINATION CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

INDEFINITE INTEGR ATION

INDEFINITE INTEGR ATION J-Mthemtics INDFINIT INTGR ATION If f & F re function of such tht F' () f() then the function F is clled PRIMITIV OR ANTIDRIVATIV OR INTGRAL of f() w.r.t. nd is written symboliclly s d f() F() c {F() c}

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

ntegration (p3) Integration by Inspection When differentiating using function of a function or the chain rule: If y = f(u), where in turn u = f(x)

ntegration (p3) Integration by Inspection When differentiating using function of a function or the chain rule: If y = f(u), where in turn u = f(x) ntegrtion (p) Integrtion by Inspection When differentiting using function of function or the chin rule: If y f(u), where in turn u f( y y So, to differentite u where u +, we write ( + ) nd get ( + ) (.

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Integral Calculus What is integral calculus?

Integral Calculus What is integral calculus? Intgral Calulus What is intgral alulus? In diffrntial alulus w diffrntiat a funtion to obtain anothr funtion alld drivativ. Intgral alulus is onrnd with th opposit pross. Rvrsing th pross of diffrntiation

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets Hrdy Sps, Hyprfuntions, Psudo-Diffrntil Oprtors nd Wvlts Colltions from lrtur Th Hrdy Sp nd Hilbrt Sls Lt : s /, t thn th Rimnn Hypothsis is th sttmnt tht / ( s is nlyti on th hlf-pln Th ppropr Hilbrt

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information