Distribution of subgraphs of random regular graphs

Size: px
Start display at page:

Download "Distribution of subgraphs of random regular graphs"

Transcription

1 Dstrbuton of subgraphs of random regular graphs Zhcheng Gao Faculty of Busness Admnstraton Unversty of Macau Macau Chna N. C. Wormald Department of Combnatorcs and Optmzaton Unversty of Waterloo Waterloo ON Canada N2L 3G1 1 Introducton The asymptotc dstrbuton of small subgraphs of a random graph has been bascally worked out (see Rucńsk [5] for example). But for random regular graphs, the man technques for provng, for nstance, asymptotc normalty, do not seem to be usable. One very recent result n ths drecton s to be found n [3], where swtchngs were appled to cycle counts. The am of the present note s to show that another very recent method of provng asymptotc normalty, gven by the authors n [1], can easly be appled to ths problem. In partcular, t requres consderably less work than usng swtchngs. The applcaton s, however, not drect, n the sense that the result obtaned s very weak f the random varable countng copes of a subgraph s examned drectly. We obtan a much stronger result by consderng solated copes of a subgraph. To be specfc, we nvestgate the probablty space G n,d of unformly dstrbuted random d-regular graphs on n vertces (whch we assume to be {1, 2,..., n}). Asymptotcs are for n, and here d s not fxed but may vary wth n (though for all our results there s an upper bound on the growth of d, at least mplctly). As usual, we mpose the restrcton that for the asymptotcs, the odd values of n are omtted n the case of odd d. Research supported by NSERC and Unversty of Macau Research supported by the Canada Research Chars program and NSERC. 1

2 We use µ(g) and ν(g) for the numbers of edges and vertces of a graph G respectvely. A graph G s strctly balanced f µ(g) ν(g) > µ(g 1) ν(g 1 ) (1.1) for all nontrval proper subgraphs G 1 of G. A standard example: every connected regular graph s strctly balanced. Throughout ths paper, [x] m denotng the fallng factoral: x(x 1) (x m + 1). We wll use the followng from [1] to deduce asymptotc normalty. Theorem 1 Let s n > µ 1 n and σ n = µ n + µ 2 ns n, (1.2) where 0 < µ n. Suppose that µ n = o(σ 3 n), (1.3) and a sequence {X n } of nonnegatve random varables satsfes ( k E[X n ] k µ k 2 ) s n n exp 2 (1.4) unformly for all ntegers k n the range cµ n /σ n k c µ n /σ n for some constants c > c > 0. Then (X n µ n )/σ n tends n dstrbuton to the standard normal as n. We also use McKay [4, Theorem 2.10], n the form of the followng smpler specal case stated n [3]. Here, G denotes a random element of G n,d, E denotes the edge set, and K n s the complete graph on n vertces (the same vertex set as G). Theorem 2 For any d and n such that G n,d 0, let J E(K n ). Then, wth j the number of edges n J ncdent wth vertex, (a) f J + 2d 2 nd/2 then P(J E(G)) (b) f 2 J + 4d(d + 1) nd/2 then nk=1 [d] jk 2 J [nd/2 2d 2 ] J ; P(J E(G)) nk=1 [d] jk 2 J [nd/2 1] J ( ) J n 2d 2. n + 2d Corollary 1 Provded d J = o(n), the hypotheses of Theorem 2 mply that P(J E(G)) = nk=1 [d] jk (nd) J ( 1 + O ( (d J /n) 2 )). 2

3 2 Dstrbuton of number of copes of a graph Throughout ths secton, G denotes a random graph n G n,d. Let H be a fxed strctly balanced graph wth maxmum vertex degree d. Let p and q be the number of vertces and edges of H. A copy of H n G s a subgraph of G whch s somorphc to H. The use of Theorem 1 calls for computng hgh moments of a random varable. It turns out that the random varable countng copes of H has badly behaved moments and consequently does not produce a very useful result. Instead we consder a related random varable whose behavour s more easly analysed. We say that a subgraph of a graph G somorphc to H s an solated copy of H f t shares no edges wth any other subgraph of G somorphc to H. Let X H be the random varable whch s the number of solated copes of H n a random d-regular graph. Let a denote the order of the automorphsm group of H. Set µ = P(H 1 G)[n] p /a (2.1) where H 1 s a fxed copy of H on the vertex set {1, 2,..., V (H)}. The probablty that any gven copy of H n K n occurs n G s equal to P(H 1 G), and there are [n] p /a such copes. Hence, µ s the expected number of copes of H n G, solated or not. By Corollary 1, for d = o(n) (notng that q s fxed), where f = Θ(g) f f = O(g) and g = O(f). Also, let µ = Θ(n p q d q ) (2.2) r = r(n, d, H) = P(H 1 s not solated H 1 G). (2.3) Fx a proper subgraph F of H 1 contanng at least one edge, and consder the probablty that G contans not only H 1 but also the edges of a subgraph H 2 = H wth H1 H 2 = F. Agan usng Corollary 1, ths (uncondtonal) probablty s Θ(n p p(f ) (d/n) 2q q(f ) ) for d = o(n). Snce there s a bounded number of such subgraphs F, we have for d = o(n), r = Θ(r H (n, d)) where r H (n, d) = n p p(f ) ( d n) q q(f ), (2.4) p(f ) = V (F ), q(f ) = E(F ), and F s a subgraph of H whch maxmses n q(f ) p(f ) d q(f ) subject to 1 q(f ) < q. (See [2, Secton 3.2] for a related dscusson n the settng of random graphs wthout the regularty condton.) Theorem 3 Defne µ and r as n (2.1) and (2.3). Suppose that µ, µ = o(n), µ = o(n 2 /d 2 ) and r = O(1/ µ). Then (X H µe r )/σ tends n dstrbuton to the standard normal as n, where σ 2 = µe r. Note 1 If r = o(1/ µ) then the mean and varance of the asymptotc dstrbuton can both be taken as µ. Moreover, the proof of the theorem then smplfes consderably. However, by ncludng the case r 1/ µ we hghlght why the method does not easly extend. 3

4 Note 2 The dstrbuton result n [3], whch s only for cycles, does not extend to the full range of d covered by Theorem 3. (It does however apply to non-fxed subgraphs, a modfcaton whch could also be done easly usng the technques of the present paper.) One could presumably extend the methods used n [3] to obtan dstrbuton results for all strctly balanced subgraphs, but ths s not as economcal as the method n the present paper, and we beleve that the range of d obtaned would not be any greater than that n Theorem 3. Note 3 Dstrbuton results for subgraph counts n the other common models of random graphs apply for wder ranges of densty of the parent graph than expressed n Theorem 3. Gven the much greater accessablty of those models due to edge ndependence, ths s not very surprsng. Proof of Theorem 3 We compute the k th factoral moment E[X H ] k, for k = O( µ), k. Note that ( ) E[X H ] k = P A J (2.5) J 1,...,J k E(K n) where A J denotes the event that J E(G) and forms an solated copy of H. (For k = 1, ths dffers from (2.1) because the copes here are solated.) To fnd the number of nonzero summands contrbutng n (2.5), for whch a prerequste s that the J are parwse dsjont, consder placng k ordered copes of H on the vertces of the complete graph. Snce k = O( µ) = o( n), the number of ways of dong ths, where each copy s placed ndependently (gnorng possble overlaps) s asymptotc to n kp a k, (2.6) and we get the same expresson f we nsst that the copes have dsjont vertex sets (so after j copes have been placed there are n pj vertces to choose from). Thus, by sandwchng, ths s also asymptotcally the number of ways of choosng edge-dsjont copes, as requred for solated copes, and almost all these placements are parwse vertex-dsjont. Clearly ( ) P A J P(J 1 J k E(G)) (P(J 1 G)) k (1 + o(1)) usng Corollary 1 and notng that the assumpton µ = o(n 2 /d 2 )) mples the requred bound on d J. So we have from (2.5) that ( ) n kp E[X H ] k = o (P(J a k 1 G)) k + = o ( ) n kp a k ( ) P A J ( ) A J J 1,...,J k E(Kn) J vertex-dsjont (P(J 1 G)) k + nkp a k P (2.7) for any partcular choce of J 1,..., J k E(K n ) whch nduce vertex-dsjont copes of H n K n. Lettng B denote the condtonal probablty that these sets nduce solated 4

5 copes n G, gven that they are subsets of the edge set of G, we have ( ) P A J = B P(J 1,..., J k E(G)) B(P(J 1 G)) k (2.8) usng Corollary 1 agan. For one of the copes to be nonsolated, t must share an edge wth some other copy of H, and we may use the same machnery to compute the factoral moments of the number Y of for whch J nduces a nonsolated copy n G, condtonal upon J 1,..., J k E(G). We have kr = O(1) (2.9) snce r µ = O(1), and hence also, snce µ, r = o(1). (2.10) Thus r = O(r 2 ) + H 2 P(H 1 H 2 G) P(H 1 G) where the sum s over copes H 2 of H n K n whch share at least one edge wth H 1, and the r 2 term bounds the overcountng n ncluson-excluson. Wth ths observaton t s easy to compute the jth factoral moment E[Y ] j of Y. There are [k] j ways to choose a j-subset of J 1,..., J k each of whch nduce a copy of H to be nonsolated, and the probablty that all the requred edges are present n G s, agan usng Corollary 1, asymptotc to r j P(J 1,..., J k E(G)) r j (P(J 1 G)) k. The probablty that all these edges are n G, condtonal upon the event that J 1,..., J k E(G), s thus r j, and so E[Y ] j (kr) j. Thus by (2.9) and the method of moments (the usual one, that s), P(Y = 0) e kr. Thus B e kr, and we have from (2.7) and (2.8) that E[X H ] k nkp a k e kr (P(J 1 G)) k. By (2.1) and the fact that k = o( n), ths mples E[X H ] k (µe r ) k and thus by Theorem 1 wth s n = 0 the dstrbuton of X H s asymptotcally normal wth mean and varance µe r by (2.10). Example: Cycles Consder the graph H = C t, the cycle of length t 3. Here by (2.2) µ = Θ(d t ), so we requre d. Also t s easy to check that r H (n, d) = Θ(µ/(nd)), the maxmum n (2.4) occurrng for F = K 2. Thus the range of µ s bounded at the maxmum end by µ 3/2 = O(nd), µ = o(n) and µ = o(n 2 /d 2 ). By consderng the mpled upper bounds on d, we see that the frst s strctest, and thus the number of solated copes of H s 5

6 asymptotcally normally dstrbuted provded d and d = O(n 2/(3t 2) ). Ths can be compared wth the result n [3], for whch the bound s d = o(n 1/(2t 1) ). Example: Complete graphs Consder the graph H = K t, where t 3. Here by (2.2) µ = Θ(d t(t 1)/2 n t(t 3)/2 ). (2.11) Also r H (n, d) = max 2 s<t d t(t 1)/2 s(s 1)/2 n t(t 3)/2+s(s 3)/2, and consderng d = n α, the maxmum occurs (as wth cycles) at s = 2, and so r = Θ(µ/(nd)). Thus (as wth cycles), the range of µ s bounded at the maxmum end by µ 3/2 = O(nd), µ = o(n) and µ = o(n 2 /d 2 ). By consderng the mpled upper bounds on d, t s straghtforward to verfy that the frst gves the strctest bound for t = 3, and the last does for t 4. These mply the upper bounds d = O(n 2/7 ) n the case t = 3, and d = o(n (t(t 3)/2+2)/(t(t 1)/2+2) ),.e. d = o(n 1 2t/(t2 t+4) ), for t 4. Therefore, the number of solated copes of H s asymptotcally normally dstrbuted provded ths upper bound on d holds and the expresson n (2.11) tends to. Fnally, we may conclude somethng about the dstrbuton of the total number of copes of H, solated or not. Denote ths number by ˆX H. Corollary 2 Suppose that µ, µ = o(n), µ = o(n 2 /d 2 ) and r = o(1/ µ). Then ( ˆX H µ)/ µ tends n dstrbuton to the standard normal as n. Proof: The expected number of nonsolated copes s O(µr). So we may conclude that the total number of copes of H s asymptotcally normal provded µr = o( µ),.e. r µ = o(1). Ths s an assumpton of the corollary whch s stronger than the correspondng one n the theorem. 3 Concludng remarks For the dstrbuton results obtaned n Theorem 3, the mean and varance are asymptotcally equal. Ths means that t could equvalently be stated as gvng asymptotcally Posson dstrbuton. It would be nterestng to know the range of the degree d for whch the subgraph count remans asymptotcally Posson. Theorem 1 can potentally be used to deduce asymptotc normalty outsde the Posson range (as for nstance the prevous applcatons n [1]); one challenge s to fnd a way to apply t for such d n the present context. Another challenge s to fnd a way to apply any of the other methods of deducng asymptotc normalty to sgnfcantly hgher values of d than we do here. One possblty s to use swtchngs rather than standard ncluson-excluson to extend the range of d for whch the nonsolated copes may be treated n the proof of Theorem 3. However, the extra effort may not pay very bg dvdends. 6

7 References [1] Z. Gao and N.C. Wormald, Asymptotc normalty determned by hgh moments, and submap counts of random maps, Probablty Theory and Related Felds (to appear). [2] S. Janson, T. Luczak and A. Rucńsk, Random graphs, Wley, New York, [3] B.D. McKay, N.C. Wormald and B. Wysocka, Short cycles n random regular graphs, Electronc Journal of Combnatorcs (submtted). [4] B. D. McKay, Subgraphs of random graphs wth specfed degrees, Congressus Numerantum 33 (1981) [5] A. Rucńsk, When are small subgraphs of a random graph normally dstrbuted? Probablty Theory and Related Felds 78 (1988),

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

The L(2, 1)-Labeling on -Product of Graphs

The L(2, 1)-Labeling on -Product of Graphs Annals of Pure and Appled Mathematcs Vol 0, No, 05, 9-39 ISSN: 79-087X (P, 79-0888(onlne Publshed on 7 Aprl 05 wwwresearchmathscorg Annals of The L(, -Labelng on -Product of Graphs P Pradhan and Kamesh

More information

n ). This is tight for all admissible values of t, k and n. k t + + n t

n ). This is tight for all admissible values of t, k and n. k t + + n t MAXIMIZING THE NUMBER OF NONNEGATIVE SUBSETS NOGA ALON, HAROUT AYDINIAN, AND HAO HUANG Abstract. Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Credit Card Pricing and Impact of Adverse Selection

Credit Card Pricing and Impact of Adverse Selection Credt Card Prcng and Impact of Adverse Selecton Bo Huang and Lyn C. Thomas Unversty of Southampton Contents Background Aucton model of credt card solctaton - Errors n probablty of beng Good - Errors n

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

An Introduction to Morita Theory

An Introduction to Morita Theory An Introducton to Morta Theory Matt Booth October 2015 Nov. 2017: made a few revsons. Thanks to Nng Shan for catchng a typo. My man reference for these notes was Chapter II of Bass s book Algebrac K-Theory

More information

DONALD M. DAVIS. 1. Main result

DONALD M. DAVIS. 1. Main result v 1 -PERIODIC 2-EXPONENTS OF SU(2 e ) AND SU(2 e + 1) DONALD M. DAVIS Abstract. We determne precsely the largest v 1 -perodc homotopy groups of SU(2 e ) and SU(2 e +1). Ths gves new results about the largest

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2]. Bulletn of Mathematcal Scences and Applcatons Submtted: 016-04-07 ISSN: 78-9634, Vol. 18, pp 1-10 Revsed: 016-09-08 do:10.1805/www.scpress.com/bmsa.18.1 Accepted: 016-10-13 017 ScPress Ltd., Swtzerland

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Caps and Colouring Steiner Triple Systems

Caps and Colouring Steiner Triple Systems Desgns, Codes and Cryptography, 13, 51 55 (1998) c 1998 Kluwer Academc Publshers, Boston. Manufactured n The Netherlands. Caps and Colourng Stener Trple Systems AIDEN BRUEN* Department of Mathematcs, Unversty

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Every planar graph is 4-colourable a proof without computer

Every planar graph is 4-colourable a proof without computer Peter Dörre Department of Informatcs and Natural Scences Fachhochschule Südwestfalen (Unversty of Appled Scences) Frauenstuhlweg 31, D-58644 Iserlohn, Germany Emal: doerre(at)fh-swf.de Mathematcs Subject

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Self-complementing permutations of k-uniform hypergraphs

Self-complementing permutations of k-uniform hypergraphs Dscrete Mathematcs Theoretcal Computer Scence DMTCS vol. 11:1, 2009, 117 124 Self-complementng permutatons of k-unform hypergraphs Artur Szymańsk A. Paweł Wojda Faculty of Appled Mathematcs, AGH Unversty

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 6 Luca Trevsan September, 07 Scrbed by Theo McKenze Lecture 6 In whch we study the spectrum of random graphs. Overvew When attemptng to fnd n polynomal

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

k(k 1)(k 2)(p 2) 6(p d.

k(k 1)(k 2)(p 2) 6(p d. BLOCK-TRANSITIVE 3-DESIGNS WITH AFFINE AUTOMORPHISM GROUP Greg Gamble Let X = (Z p d where p s an odd prme and d N, and let B X, B = k. Then t was shown by Praeger that the set B = {B g g AGL d (p} s the

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

arxiv: v3 [cs.dm] 7 Jul 2012

arxiv: v3 [cs.dm] 7 Jul 2012 Perfect matchng n -unform hypergraphs wth large vertex degree arxv:1101.580v [cs.dm] 7 Jul 01 Imdadullah Khan Department of Computer Scence College of Computng and Informaton Systems Umm Al-Qura Unversty

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Joint Statistical Meetings - Biopharmaceutical Section

Joint Statistical Meetings - Biopharmaceutical Section Iteratve Ch-Square Test for Equvalence of Multple Treatment Groups Te-Hua Ng*, U.S. Food and Drug Admnstraton 1401 Rockvlle Pke, #200S, HFM-217, Rockvlle, MD 20852-1448 Key Words: Equvalence Testng; Actve

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Character Degrees of Extensions of PSL 2 (q) and SL 2 (q)

Character Degrees of Extensions of PSL 2 (q) and SL 2 (q) Character Degrees of Extensons of PSL (q) and SL (q) Donald L. Whte Department of Mathematcal Scences Kent State Unversty, Kent, Oho 444 E-mal: whte@math.kent.edu July 7, 01 Abstract Denote by S the projectve

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013 Stanford Unversty Graph Parttonng and Expanders Handout 3 Luca Trevsan May 8, 03 Lecture 3 In whch we analyze the power method to approxmate egenvalues and egenvectors, and we descrbe some more algorthmc

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction REGULAR POSITIVE TERNARY QUADRATIC FORMS BYEONG-KWEON OH Abstract. A postve defnte quadratc form f s sad to be regular f t globally represents all ntegers that are represented by the genus of f. In 997

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information

Partitions and compositions over finite fields

Partitions and compositions over finite fields Parttons and compostons over fnte felds Muratovć-Rbć Department of Mathematcs Unversty of Saraevo Zmaa od Bosne 33-35, 71000 Saraevo, Bosna and Herzegovna amela@pmf.unsa.ba Qang Wang School of Mathematcs

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation Dscrete Mathematcs 31 (01) 1591 1595 Contents lsts avalable at ScVerse ScenceDrect Dscrete Mathematcs journal homepage: www.elsever.com/locate/dsc Laplacan spectral characterzaton of some graphs obtaned

More information

A Simple Research of Divisor Graphs

A Simple Research of Divisor Graphs The 29th Workshop on Combnatoral Mathematcs and Computaton Theory A Smple Research o Dvsor Graphs Yu-png Tsao General Educaton Center Chna Unversty o Technology Tape Tawan yp-tsao@cuteedutw Tape Tawan

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Supplement to Clustering with Statistical Error Control

Supplement to Clustering with Statistical Error Control Supplement to Clusterng wth Statstcal Error Control Mchael Vogt Unversty of Bonn Matthas Schmd Unversty of Bonn In ths supplement, we provde the proofs that are omtted n the paper. In partcular, we derve

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information