. ^e Traveler in taesnok. i the IHilty.-^ifStiiart. BbUaaoa aad WalL.""ras 'crossing a mountain»h ch w e are A«ply inteiwted. Add
|
|
- Antony Rice
- 3 years ago
- Views:
Transcription
1 x 8[ x [qqq xq F x & R FX G NR F XN R X ( F R Y <Z24! 5 < 5 F( 3 58 x x F 9( (x F R RY G R 4 N ; X _ G XX & G & x x ( GN x x ; 3 N R x 5 :; X 347: ] 4!! : ( _ X:29; :2 ; & ; <4 X: QR / 4 Q / % Y N ; 8 zq z 46 z 8 X <!&4 ; % 49 N : # : x N ; ] : / q G / ;5 < 8 ] F6 8 : 7; : 2; ; : 5; : Z 4 x < : 33 / } q x [!6#! [ : ) /! )< z 9 F! ) : 4 [ ] z ; )! );8 _ 8 / ( % x ) < Q q q x %{ ; : Z 4! 6! & q Q / ; ) x x < )& ; : ; q : \3 4 Q : X < q8 & z x& ; / # Q < < q ; < ; <% G # <; <$ G x : <:9 & 4z <3 & : z : ) { ; << _ : ( [! ; R G x G 4< xx z < ; _ / 58 < ; 6 & z < < ; 4 x 9 : ; 6R (Z x! Q ( \ X Z ) G q ; 4_ ;; : ] ; Q /! G X ; N F : = q ; $ ;; 8 4 : x < G 6 / z 3 ~ : : G q : %! x : 38 G q<; x x <Q8< q [ : 6 x / % ( & 5 4 z 9 x ) x R R F } 42 :7 / %! ( / R X ; x _ : & ( x ; G } G X Nx (R 5 x x z & 6 9Q < : : : Z ; q ( ; N < & x8 < R ( / 8 _
2 ] N 87 < ( & x & ] ~ F 6 4 < 3 ( F { : % & N! X 7 : & : X 8 X [ % Y6!X F <! x & % ) : q 4 ( 3) & & R q ( xx x & q X q x Q ] Q q x 8 5 ;! / x x 58 R N % ; ( < & R ; q & q _ 2 : 6! & ( x ) R & x G F ; 2 : 6 Y R x x 3 x x G x F x q x {8 5 / [ & GY : F / ; 7 q R ; N # 6 X [ X 2 { N z < z! 87 _ [ x F x N 8 F 827 x ; X z x & N ) ; ;: q XN N 2 q ; Y R 8 G R NNY ; F x] x G Q z G x ( x ; 6 : Q 7 N (R) < ; G R x z : (R x 2 2 ) ; (G x x x x 2 xxx 3335) F ; z F xn RX q F Y G ( x x x x 6 ; N xx 9 ; x x 2 7 ; N xx 6 ) N ;!! 88 3 x : x ; R G ) ; N ) x X N G 3 G ( G G G < ~! x G G x 4 G : G 3 % G x F F F 3 F ]; а 5 x x R : / q R x Y б z( 8 z G G q & Y x Y 5 ; R Y x R ; ; 8 R ; F R R : ] ; ; Q! ;!!: ; ( X X ; z :! ] (_ { ; \ zz 3}; : ; ( : 2 ) ;! z:; z: ( : 54 (2 : 2): : 6 q q & : 4); : 4); ; ( _ G ; ( x: 2! z 6 _ G 2 G ; 2 : 4 Y / x: _ ; Q _
3 8! /< 8 < 8 x X X XXGX G ( q 7 2 4! Q! < zz 3 & / / & z ~ [ [ F G x] 7 ; x : /x G \ F F F x G q x R R : 4 [ ; N x : 2 & ( : 3 q F ()! 4 ; } 2 4 Q : G! [ 8: x: 48 8 ; : G X 7G < F < ( {! ; G R <! X z ; N & N 4 ( { & Z ; Y q G Z < z 7 ; x x 2! ) Q F Q x R : F G F x x F 4 ; [ Y [ ( _ 8) G x : < q (3 : 3: N 8 6 G ; G q ; $ 7 ; [ & ; ; G q! q 4 G! : q ( G ) : ) ; z /) \ ( ; ; q % 27 R ; ( X : 8 ) ; : F < X F N Y (/ / x G ; R F XX F : x ( ; x ] ; : / ; G F ; x! q N : / } 87 Z 3 N X x : Z ; ; F G : ( xx 4 ) _ 2 :! Y x x N! G / 2 G ; 3 Z G ] q / G 3 { z x z ; x; G (; ); (; x: ; z: ; G ( 7 4 ) & ( ; N x& 7: : < & ; [ ] Q G F 2 2 ( ) x 3 X 4 : [ < q ) z 7 R Q xrx q ( x : R : x ( & F z F <
4 ) % 4! N 6 x ] x & 4 ;! 9 F 6 q x N ; / F! % 8! 6 ; 6 &; : <<: : 6:3 ; 3!! & N 98<RR7QR4F & 4 : ] < 3( < 7/ #! ] ] < Q < ; N < :: x Q 2! < 5< < / : x R q N 3! ; 88 / X : & & ) 6 Y :4q! < :8 Q (! 4:4q z ; Q x 8 x / / Q Q / ; : x : G: x z ; : 6 qq : 844 : : N X < <44 [ 3 x x ; q & & 6 ; ; q : 9 q < q Q : ; [ ; R ] ; G 8) F : ; : Q F N R z G ; 6 z X! ; q F x q ]<: < G; x q X Q x z ; G 8 X Q x : < ; x G <5 <! F ; ) N F G x { ; & Q ] q x F G )( q! q q x 8 R X R z < Q 5 : N x 4 N G! &x 84 FR & x 2 q X F G ; q!x ( z! X z ( G q : ; G F R : F ; #& R F R ( G / R 6 R q! x q N N / ; N ; / <! 6 R z N : N G ; 4! q G QQ \ ( / 87 R z G R G F x N 8 } q x : G x : x 6 ( N Y z 68&8! Y Y / ] &!_ G R N 4 _ [ : 9 F ] G! G G q ] G ) x Y
5 Z X : / G Y < : 4 < R X N Y Y q : 8 x Y q / 4 : ~ } Q4 & ; 8; R 4 Yx& \ Q F x x q & x ; x 9! < % Q : q! _ x & z G ( 4 4 F 6 348: q G x N ; G X! NY ; 89! < ) 8 8 x : 4; ; ; q N 6 x = N ; <88 % X:Qx ; 6 / _ X N!! ) ; G G : & x Y 83 : < X 2 3 : X R; / q R < ;!!) G << ( ~ R Gx & x x } $ <28\; ] N /R # ( x Q X 4 N ) q)# / N : /! G ( [ : 4&3 z G ( 3! ( ( / & ; ~ < xx6 x 3 & / N R 8 < 8 ) ~ x / x G G X : 6 : G < & 3 3 9! x ; R F _ F : $ 3 G! G 538 ] z 6 z x q R G q x )! { <! G x ; q x ] x q N R G R G z 9! < F F FG XY x : R ; N R : x F G xf :!Q G z / : < x < : : q z G x R G q : G & z q Y ; x z q ; x $275 R G F x q 5 z F ; ; x F ; G < : ] ) G 8 Q q! R R : x 88 9; < X z 8< 2 q z F z q &! R N G x ; F/ 3 x X 4
6 FNN X 6 9 N 87 X 9 8N ; : ] N:7 X % 99 6 q <[F! ( x ]~ [ ) ; Y Y [! { N 2 5 ; { ; 9 < ( : ; 4 X q!! x q; ; { F G [ ; XGX 6 Z: [: ; XN ; { ; ; ; ; { ; Z ; ;< : : F [ ; : ; ; X x X ; </< < ( [ R X 6 X R : G \ R ; % Y XNG 7 G 282 _ F 8 N < & x! Q N F R ; G 4! ( N q < x ] ( z : G X X & ]! ; z F 3 R 7 R QR ) z ; ~ x F ; G q X /: 9% q ; : ; <: F Y {F & ; F& ; G ] ;! } ( 7 3; ; Y ; ; ;; : NG282 R G F Y Y ; x G q R F ; q X X z x8x 9 4 R Q [ X F N F F (! z x R :! F R< F & ; & G & G G Q 8 F 877 G N 6 Z F 8 F R N N R G F F Y Q \ F G _ G Y GX N R X G $ & 5 q F 56 X F F 4 G Y F & 4 F :! Z ); q ; ;; 26 F } _ R F 5 X! RN Z ; $2 F ; & G FR ~ G 5 : 3 5 [Q 8 5 N & 8 x Y 2 _ Y 767 x ($56) F 5 G 5 R N ($) N Z Z 5 F x F ; 5 /_ ~ N G x ) 5 G F ; G! G x x X F x $ Y 3 Q x G G $4; 5 _ X 4_2{ G 93 X $ 5 & R 64 / F 8 F R N R / ; 82 R F F _! _ 4 26 ; F R N $( x 26 4X ( ) x q X F 4! & 7 ; 87 / G R N Y & & Z ZX F; : ]! / / ) ] ) )!! ( F \ ) q q ] q x q x ] x ] x \ ; )
7 5 : RN R (7 N Y F } # N q q : 3 ; F R : \ x ( Y G R X ; ; < Q 8< G X : \ N q { ; 2 3 < 4 G q 4 ) F 3 GR x 2 5 x RN F RN : Z < F ( x x x q q R F R! & G [ 8 < ) q ;! q F XR <! q RNG Y RXX G G & :! q ) R N F X x ; Y 8 F G < : N R N 8 ; R ; xx : 8 ]! ; R RN F NRN q 6 ~] 8! RN8 N 42 ; RN Q R _ x F x 4 ; ) = F 7 () & X 2 4 FFN } x ( 6 22 G zx /! ) 4 N & x : ; 5 z N F F 4! F RNG Y 4! 2 4! ; 7 G G! 3 X X G YN & R x q 22 <48 G R G ~ q F x R N q 52 ; F ZZ : $ 5 Fx q x GN q 7 X& x x _ 4 ) R x : q XZ ; : 7 Y x 6 6 : _ z F Y 3 [4 _ : X RNG Y R Y G X RX F ( N G! N X ; 2 FR ) x NG F R 3 / & ; N & RY x X ; 22 F N Y x X G X! xx x! 3 {q 9 ; x < R R R = Y: R \ Z 7 25 F :49 F ; X Z 5 ~ :! 6 :< ~ = ) G R R 34 F 87 3 [R R && F x N N R G zz x G F F X <9 z R & F )! ;< F xx q G G Q N RN } Y 5 X NG
8 : Yx N N 87 X < ; z : 7 7; : ; F! z (! NN; X 3 / ( : :; 87 ]! 8<4 ; ( ) 4 87 N F 8 44 F 4 2 [ R G G & & X < Q 8 R R 37 Z X N < x 8N 7/ N $35 [2!] R R! ; : &!2 :Z _ : F 33 < : 8N < R R G R q R q x q 6 # x R Q x ; _ < R FF % F ( N R _!) x F R GN N FR G ~ X ; F N & % & R : { 2 ; G N N G 4 5 : $ 7 5 $ ; 5 X! N X _ z x N 85 <5 Y } ; / R Yxx : / 3748 F 7 } R Y F G G 4 Y \ ) F x \ R Y F X6Z8 N x # GRFF 4 G : N G G 96 /: R : /; R z 2 x } 4 q }!! F R N X ] NR RY G X F Y & R R ; R z ; < 8 F X R G Y GX XX N R & N N Y G F R { G 2 X GR 4 : 38 z 2 (! & q { N F /! ; R& ) G RNQN N ; 5 R = 2 F & N 3 F ] RY N < / 44 G $ F 5 / X F } N [ \ ;! R q;! x / <: 3X F 27 ; N F Y N N F & \ N % ; < & 69 N F & x9 < x4 N R F 48 ; x F 4 q 34 G X ; F & 886 RN R R N 8 $ X 92! ( G R qn < \ \ / Z%9 4 $ & Q ( : GR QN! 87 xx! ;!;:! R ;! 4 R G N R R 9 Z R F X F < [F X X F \ 4! G R! & ] NG NR NG FF N N F ; G ] ] G 2 : 6 : 22: ; :! ] G! ( ( z 3 : 6 :
A. H. Hall, 33, 35 &37, Lendoi
7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9
Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
Q SON,' (ESTABLISHED 1879L
( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0
LOWELL WEEKI.Y JOURINAL
/ $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»
Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.
- - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-
LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES
? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5
an;'. Union One aud lnsopftrabls.'' LOWELL. MICflTGAN, WKDM SDAV, MAY I I is: LOW.NATIONAL 1>AXK ullv tn , ,800.
Y v N Y Y \\ «\ v R v R F RN «x vv 2 R F RN N # Z qr $ $ $2 2 2 X R 2 2
a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?
? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (
I ' l A MEMPHIS, TENN., SATURDAY, AUGUST 23,1873.
- P G& P P G» -» - P D - RP P R G GFFX G - 3 D G» R» G - G > D X >»» P -3 8 7 3-379 ( -» - F X P X X z» FR 0- P x X >»» P»( > ( 3 - - --5 - X- - x 25Z3 - - z - 37 - x -» x V5?» - > 3 x & 2» x z > - -»»
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >
5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X
MANY BILLS OF CONCERN TO PUBLIC
- 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -
' Liberty and Umou Ono and Inseparablo "
3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <
LOWELL WEEKLY JOURNAL
G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G
HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,
#4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0
E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk
K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]
LOWELL WEEKLY JOURNAL.
Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F
Kent Co. Received Red Cross Service Abundantly in ' 4 9 E
G N GN Y 95 89 N - q» B < ) < - 9 - - - - q ( B 6 - q - Q» x x 8 {) N - 9» -
OWELL WEEKLY JOURNAL
Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --
MIS S BALLS, L.L.A.]
& N k k QY GN ( x - N N & N & k QY GN x 00 - XX N X ± - - - - ---------------- N N G G N N N Y NG 5 880N GN N X GN x ( G ) 8N ---- N 8 Y 8 - N N ( G () G ( ) (N) N? k [ x-k NNG G G k k N NY Y /( Q G (-)
LOWKLL. MICHIGAN. WKDNKSDAV. JUNK is, IS7I. M ' M r. F. n. v j. 1,(1 W . NATIONAL BANK I I P ' O F L O W E L L.
G B L? -- LLL GN N N L \ L BY- B RB & N (» R BRN - 2 R RNG N» _ 8» B - < - B -»q $ 28q \ 2 2 2 8 2 R 2 2 B - B 2 B N q B Y N B (» -» - L ( \ ( \ N N - Q B - - B - / - B - - R B B & LR8 } ( B B G B NR q
i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER
N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X
LOWELL WEEKLY JOURNAL
Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q
Brucker Landslide, Wins by 130,000
>- -- G R NR B V G N 8 NRY ( x " " " " - z " " x RNY " " " " N " " V - " "? BRV R NG N - R 5 2-- NR RN N QNN 25 Q " " N " " NN V G N R Y B R 5932 V X X X X RY B RY NG B N B R ) N GN G BNG - N R N N G j
LOWHLL #WEEKLY JOURNAL.
# F 7 F --) 2 9 Q - Q - - F - x $ 2 F? F \ F q - x q - - - - )< - -? - F - - Q z 2 Q - x -- - - - 3 - % 3 3 - - ) F x - \ - - - - - q - q - - - - -z- < F 7-7- - Q F 2 F - F \x -? - - - - - z - x z F -
oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our
x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2
SSSf. 2 Were Killed' RepresentnUvesrl
5 5 5 $ FORONWO R F W F R R R x & $ % F 5) = 96 W D D F W 2 W R x W R W W Nx z W 50 YNO OF N O ) ORD OF FRODR 000 [ N Y R F D N 2 9 W & O N Y R R 50 O 0 R D 5& x8 R [ W R D 49 9 q O D R Q F R 500000 &
LOWELL WEEKLY JOURNAL
W WY R G «( 5 R 5 Y q YG R ««W G WY Y 7 W \(\ 5 R ( W R R W ) W «W W W W< W ) W 53 R R Y 4 RR \ \ ( q ) W W X R R RY \ 73 «\ 2 «W R RG ( «q ) )[ 5 7 G ««R q ] 6 ) X 5 5 x / ( 2 3 4 W «(«\Y W Q RY G G )
ards tifferkuiitat ED C BOWE House and Sign Painter Paper Hancr etc Silr Xo 1W King Slrset Ilonolnln S VJI JOIBS Morolaant Tailor
RR R FD5 D b70 z x 25 27 b p b b pp g p p p b p b b p b p b 3 p p N b x p p b p 6 F R 2g g b p ppg g p b gg p 270 Z p 0 p g p p p b R 60 g pb 25 p bg p pp p g g g g xpg p 6 b b pp g g g p g p p g p p b
Governor Green Triumphs Over Mudslinging
; XXX 6 928 - x 22 5 Q 0 x 2- Q- & & x 30 - x 93000000 95000000 50 000 x 0:30 7 7 2 x q 9 0 0:30 2;00 7:30 9 ( 9 & ( ( - ( - 225000 x ( ( 800 ) - 70000 200000 - x ; 200-0: 3333 0850; 778: 5-38 090; 002;
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
Equations with regular-singular points (Sect. 5.5).
Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The
d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation
) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q
1 Series Solutions Near Regular Singular Points
1 Series Solutions Near Regular Singular Points All of the work here will be directed toward finding series solutions of a second order linear homogeneous ordinary differential equation: P xy + Qxy + Rxy
1871. twadaa t, 30 cta. pat Haa;fe,ttaw Spiritism. From Uis luport of tie vision, and in U e n i e h t i a d i W A C h r f i
V < > X Q x X > >! 5> V3 23 3 - - - : -- { - -- (!! - - - -! :- 4 -- : -- -5--4 X -
SCOUT DIRECTOR. %$*r' III uiun yunuinui TONIGHT FOR WORK. Newuk Ctititetut- Admission SO Centg. ef Mlit UHt. Oae Asmsar Riy Pretest Three Ranbtn
? % 9 CRC R C 2 8 [ C C FRNP CRC C C C P F P 6 & x P R R O 8> 8> F 30 C C NGC RN ZON C R P C C O ON RN OOOX P C R C P GR COC R6 C G F R R N P P 5 9 G () 930 8 0 08 FRPRN CRC R C C (G Y P 3 $3 R C C O C
.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,
J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:
. L( )WE WEEKLY JOURNAL.
) Y R G V V VV ) V R R F RP : x 2 F VV V Ṅ : V \ \ : P R : G V Y F P 35 RP 8 G V : % \ V X Q V < \ V P R V \ V< R VRG : Y ) P [ < _ & V V 6 :: V } V x V V & x 2 ) 3 RR & 8 \ R < Y q GR : XR < R V R % 7
2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.
Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order
LOWELL WEEKLY JOURNAL.
Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >
L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank
G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y
LOWELL JOURNAL CRESP0 REIGNS. MICE DESTROY #10,000 CASH. T O W E L L S T A T E B A N K,
N V 2 2 7 2 9 2 K K «KN < K KY KK K KN ( *
Series Solutions Near a Regular Singular Point
Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:
AanumntBAasciAs. l e t e s auas trasuarbe, amtima*. pay Bna. aaeh t!iacttign. Xat as eling te Trndi'aBd^glit!
- [ - --- --- ~ - 5 4 G 4? G 8 0 0 0 7 0 - Q - - - 6 8 7 2 75 00 - [ 7-6 - - Q - ] z - 9 - G - 0 - - z / - ] G / - - 4-6 7 - z - 6 - - z - - - - - - G z / - - - G 0 Zz 4 z4 5? - - Z z 2 - - {- 9 9? Z G
100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX
100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX.1 Norms If we have an approximate solution at a given point and we want to calculate the absolute error, then we simply take the magnitude
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
W I T H M A L I C E T O W A R D N O N E A N D C H A R I T Y F O R A L L. " A LOWELL MM. Sent to Jackson for 30 Years for Attempt
D N N N D Y F 6 KN NY G 2 89 N NG NK!? B! ( Y FB Y N @ N6 F NDD / B F N 8DBK GN B B ) F K Y Y N? x N B D B NNG = ZK N F D BBB ZN F NF? K8 D BND ND ND F ND N DNG FXBN NDNG DD BX N NG ND B K DN G8 > B K
A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding
- G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8
'g$-y- )4r0---aooaOC- r. o. A9.Heo'i.OMaoa)a.9. w?s. R ; : ; 09a:.aaa'. L31ia. a.j-rf-boam- WaTaB Z. rf5. ,at. f2 OOMS09r.)tafi.aaatrnvrtt.f.ai. l"s!
P K PD K D 0 D X P P Z $ X P R YR D z x R x P K 0 K x K K 0 x 0 0 0 0 0 Z x 0 0 0 0 0 x x 0 00 0 P 0 K K 0 0 0 K K 0 0 0 K K X G Z 0 0 0 K 0 0 P x x q P x R 0 0 K0 x q x P 0 0 P G 00 R 0 K x 0 0 0 Z 0
T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO
q q P XXX F Y > F P Y ~ Y P Y P F q > ##- F F - 5 F F?? 5 7? F P P?? - - F - F F - P 7 - F P - F F % P - % % > P F 9 P 86 F F F F F > X7 F?? F P Y? F F F P F F
CALCULUS JIA-MING (FRANK) LIOU
CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion
Power Series Solutions to the Legendre Equation
Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial
and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in
5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\
' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru
V X X Y Y 7 VY Y Y F # < F V 6 7»< V q q $ $» q & V 7» Q F Y Q 6 Q Y F & Q &» & V V» Y V Y [ & Y V» & VV & F > V } & F Q \ Q \» Y / 7 F F V 7 7 x» > QX < #» > X >» < F & V F» > > # < q V 6 & Y Y q < &
14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit
EE 0 Engineering Mathematics III Solutions to Tutorial. For n =0; ; ; ; ; verify that P n (x) is a solution of Legendre's equation with ff = n. Solution: Recall the Legendre's equation from your text or
1 Fundamental Concepts From Algebra & Precalculus
Fundamental Concepts From Algebra & Precalculus. Review Exercises.. Simplify eac expression.. 5 7) [ 5)) ]. ) 5) 7) 9 + 8 5. 8 [ 5) 8 6)] [9 + 8 5 ]. 9 + 8 5 ) 8) + 5. 5 + [ )6)] 7) 7 + 6 5 6. 8 5 ) 6
M E M P H I S, T E N N., S A T U E D A Y, OCTOBER 8, 1870.
5 L V 8 5 x - L : L Q ) L - \ \ Q Q - V 84 z < L L 4 Y z ( (
fiff w 4h WEDNESDAY JULY 23 1SS3 COMKCTIOXKHVI 4 4Ty X 41x1441 as x n rcnsut4 Hotti su KEEPS ALWAYS ON HAND A4 HMlwll l4 Vlt I W
z RR GR NN N 5 P R d P N N F N Q d R F d d Z D d Q d 5 d g R P 9 g F d g N 9 Q R R F F d z z 5 P 9 d RNY N DRD F R G R 5 R 5 R 5 D N N d N RN N Z R P P P 8 D 5 5 z Z g 5 YY d R F G R R N 5 d D D F P Y
L O W Z L L, M Z C B., W S D I T X S D J L T, JT7ITZ 2 6, O n # D o l l a r a T m t. L Cuiiveuiluu. BASEBALL.
# Z Z B X 7Z 6 8 9 0 # F Y BB F x B- B B BV 5 G - V 84 B F x - G 6 x - F - 500000 Bx > -- z : V Y B / «- Q - 4«7 6 890 6 578 0 00 8: B! 0 677 F 574 BB 4 - V 0 B 8 5 5 0 5 Z G F Q 4 50 G B - 5 5-7 B z 7
Moreover this binary operation satisfies the following properties
Contents 1 Algebraic structures 1 1.1 Group........................................... 1 1.1.1 Definitions and examples............................. 1 1.1.2 Subgroup.....................................
Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
Binary Operations Applied to Functions
FORMALIZED MATHEMATICS Vol.1, No.2, March April 1990 Université Catholique de Louvain Binary Operations Applied to Functions Andrzej Trybulec 1 Warsaw University Bia lystok Summary. In the article we introduce
Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA
U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5
Series Solution of Linear Ordinary Differential Equations
Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.
Computations/Applications
Computations/Applications 1. Find the inverse of x + 1 in the ring F 5 [x]/(x 3 1). Solution: We use the Euclidean Algorithm: x 3 1 (x + 1)(x + 4x + 1) + 3 (x + 1) 3(x + ) + 0. Thus 3 (x 3 1) + (x + 1)(4x
MATH 312 Section 6.2: Series Solutions about Singular Points
MATH 312 Section 6.2: Series Solutions about Singular Points Prof. Jonathan Duncan Walla Walla University Spring Quarter, 2008 Outline 1 Classifying Singular Points 2 The Method of Frobenius 3 Conclusions
Generating Functions and the Fibonacci Sequence
Department of Mathematics Nebraska Wesleyan University June 14, 01 Fibonacci Sequence Fun Fact: November 3rd is Fibonacci Day! (1, 1,, 3) Definition The Fibonacci sequence is defined by the recurrence
'Xomincrcial (LciiuiuTciai. It II. J XV' tct if. II. II ei siaaspa. card, a ill VOL. 313niral... Cooper and Ganger, at the Old Stand, KINO AND
ux DY DK D K u NG K D R RK Q GN b u b b D K u u u x xu b b b b x RRD KRN RK R u K K u u x RN K b u RN ND GN N N G KN u Kx G G u b u bb u u b N bb x u x Qu Kq 9 D R RN Rb N bu u NYR G u N QN NRR Ku 9 R
Adver-isemen- suliber, 8 nries) PLAIN AND FANCT. forrip Sailora. starts, gtorlling5,'tv.to 'gtl. Waikiihalulu Water Lots! LARGE AND COMMODI- -,
E E ERER RER p p p p x p $ p 0 p xp p p p p p p E p q 0 $ p 8 p $ 0 $ E EEER Y R ER 8 E 8 8 p EERE p p p REEREE q 8 Y p p p REEREE x E p Eq R p RE ER ER p x q EE p E E GR G p p 0 0 0 0 p x x p x p q EER
JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 15.3 ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) by A.J.Hobson 15.3.1 Linear equations 15.3.2 Bernouilli s equation 15.3.3 Exercises 15.3.4 Answers to exercises
Engg. Math. I. Unit-I. Differential Calculus
Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle
1. A polynomial p(x) in one variable x is an algebraic expression in x of the form
POLYNOMIALS Important Points 1. A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = a nx n +a n-1x n-1 + a 2x 2 +a 1x 1 +a 0x 0 where a 0, a 1, a 2 a n are constants
LOWELL WEEKLY JOURN A I.
Y UR G U U V Y U Uq V U U -R $ q - U U Y 9 U - G Y G $ \ U G Q x X U R G - < UU V V - V - - - X - V - { - - - U X -- V URU - 48 UV- \- R & - R - U 8 ])? U - x V - ) U R x - [ - U XU R UR UUY U V \ RX -
Chapter 5.8: Bessel s equation
Chapter 5.8: Bessel s equation Bessel s equation of order ν is: x 2 y + xy + (x 2 ν 2 )y = 0. It has a regular singular point at x = 0. When ν = 0,, 2,..., this equation comes up when separating variables
LOWELL WEEKLY JOURNAL.
> LLL KLY L L x L L L L G K Y F 7 2 K LKL Y K «F «««««q 5 $ ) / «2 K) ««) 74 «G > x «LY K «! «KL K K K K K! ««x > x K! K ) 2 K «X! «K LK >> < >«««) «< >>«K«KLK < «4! «««#> ««!
MATH 423 Linear Algebra II Lecture 28: Inner product spaces.
MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function
Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System
NASA Technical Memorandum 112868 Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System Nelson J. Groom Langley Research Center, Hampton, Virginia June 1997 National
3 Applications of partial differentiation
Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives
Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht
G G QQ K K Z z U K z q Z 22 x z - z 97 Z x z j K K 33 G - 72 92 33 3% 98 K 924 4 G G K 2 G x G K 2 z K j x x 2 G Z 22 j K K x q j - K 72 G 43-2 2 G G z G - -G G U q - z q - G x) z q 3 26 7 x Zz - G U-
UP TUB G. R. & I. Wo took tho train at EALERS ID Uragi.PatentKtdloinei.Psrlumtry
LLL NL G B- L - 60 VL V LLL GN NY Y 3 NB NY BL VY LLL Y- NNG -- K G B F BN: F x «5 $00 F VN L q L B K B B- - 3 6 L» q $00 $300 $00 $00 00 F q 600 00-00 900 L 500 00 500 000 5 0 BK Nx 00 500 50 3000 000
Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).
MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and
MATH 19520/51 Class 5
MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential
County Council Named for Kent
\ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V
Topic DPL: Answers. Exercise 1.1a Explain why the rule &E for MPL is a sound rule.
Topic DPL: Answers Exercise 1.1a Explain why the rule &E for MPL is a sound rule. In MPL, if (φ&ψ) is true under some interpretation then φ and ψ are true under that interpretation too. Thus, if (φ&ψ)
SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS
SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS J MC LAUGHLIN Abstract Let fx Z[x] Set f 0x = x and for n 1 define f nx = ff n 1x We describe several infinite
1 Arithmetic calculations (calculator is not allowed)
1 ARITHMETIC CALCULATIONS (CALCULATOR IS NOT ALLOWED) 1 Arithmetic calculations (calculator is not allowed) 1.1 Check the result Problem 1.1. Problem 1.2. Problem 1.3. Problem 1.4. 78 5 6 + 24 3 4 99 1
Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)
Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Srikanth K S 1 Syllabus Taylor s and Maclaurin s theorems for function of one variable(statement only)- problems.
r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.
$ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -
W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.
> 7? 8 «> ««0? [ -! ««! > - ««>« ------------ - 7 7 7 = - Q9 8 7 ) [ } Q ««
Final Exam Practice Problems Math 428, Spring 2017
Final xam Practice Problems Math 428, Spring 2017 Name: Directions: Throughout, (X,M,µ) is a measure space, unless stated otherwise. Since this is not to be turned in, I highly recommend that you work
12d. Regular Singular Points
October 22, 2012 12d-1 12d. Regular Singular Points We have studied solutions to the linear second order differential equations of the form P (x)y + Q(x)y + R(x)y = 0 (1) in the cases with P, Q, R real
19. Principal Stresses
19. Principal Stresses I Main Topics A Cauchy s formula B Principal stresses (eigenvectors and eigenvalues) C Example 10/24/18 GG303 1 19. Principal Stresses hkp://hvo.wr.usgs.gov/kilauea/update/images.html
ALGEBRAIC GEOMETRY HOMEWORK 3
ALGEBRAIC GEOMETRY HOMEWORK 3 (1) Consider the curve Y 2 = X 2 (X + 1). (a) Sketch the curve. (b) Determine the singular point P on C. (c) For all lines through P, determine the intersection multiplicity