f(x)=f x/:x~,j~(xy)f(y) dy, R(v) > (1-1) O

Size: px
Start display at page:

Download "f(x)=f x/:x~,j~(xy)f(y) dy, R(v) > (1-1) O"

Transcription

1 SME NEW KERNELS FR THE DERIVATIN F SELF-RECIPRCAL FUNCTINS BY H. C. GUPTA, PH.D. (Christ Church College, Cawnpore) Received March 14, 1945 (Communicatcd by Prof. K. C. Pandya, F.A.SC.) w 1. INTRDUCTIN FLLWING Hardy and Titchmarsh we shall calla function R~ if it is self-reciprocal in the Hankel transform of order v, that is, if it satisfies the integral equation f(x)=f x/:x~,j~(xy)f(y) dy, R(v) > (1-1) A number of rules for the derivation, from a known R~, function, of another self-reciprocal function of a different order, v, say, has been gÿ from time to time by several authors.* ne such rule is that iff(x) is R~,, then the function is R, provided that c,~co g (x) = f P (xy)f(y) dy (1-2) P(x) = ~-~ 1 f 2 s 1" ( " ( F (s) x -~ ds, (1.3),J r --to~ where F (s) -- F (1 -- s). The symmetry in q and v of the integrand of (1.3) shows that if f(x) is R~ then g (x) is R~. The function P (x) is ealled a kernel for transforming an R~, into ah R~ and rice versa. We shall indieate this by saying tlaat the kernet is C (/z, v). In the present papera few kernels have been investigated by this rule and employed to derive some new R~ ftmctions. * E. C. Titchmarsh, Theory of Fourier Integrals (xford, 1937), ~ Besides the references given there on p. 267, see W. N. Bailey, Jour. London Afath. Soc., 1931, 6, a.ad B. Mohan, Proc. Physico-lWath. Soc. dapan, 1936, 18 (3), ; Quart. Jour. of Ma;h., 1939, 10, (40), , lndian Jour. of Physics, 1941,

2 Some New Kernels fiar Derivation l c Self-Reciprocal Funclions THREE KERNELS F THE TYPE X a In (89 K,,, (89 The limiting case of MacRobert's integral~ may be put in the form f _ x~-lx x I,, (89 K., (89 dx = F {89(1 -- A-- s)} /' ( r'z {89(n A 4- m s)} 3/rr 2 =-x~/'~ {89(n -- )t-- s 4- m) 1} where R (-- n 4- m) < R (;~ s) < 1. Since the integral is absolutely convergent, it follows by Mellin's Inversion Theoremw that e t ~ x x I,~ (89 Kn, (89 = 2-~. (89 F(89 v F( F(s) ds, (2.1) where c -- i _r' {89(1 -- a-- s)} _r' { (89(a n 4- m s)} 2 x-2 F (s) - r~ {89(n - a m - a) 1 ) V {89(,,, 89 V {89(~, 89 ~/,~ n comparing with (1.3) we find that the function on the left of (2.1) is a kernel if F (s) - F (1- s), which requires that the parameters --89 )~, 89 ~, v, l~=n 4- m 4-(89 ) 0 3n n-- 89 severally but in any order, This admits of three valid solutions : (i) m = n = - ;~; /, = 89 3n, v n-- 89 yielding a kemel of the class Cts. ~ ~ namely, x-" In (89 K,, (89 (ii)), = 0, m = n, tz = 2n 89 v = (iii) m = 89 namely, I,, (89 K~ (89 89 > R (n) > ; 2n yielding a C (2n 4-89 namely, R (n) > n=~~v,?,=~-~v, ~=vl, yielding a C(v, vl), -~ 0 ~) --89 x e I~~, (89 R (i,) > -- lo T. M. MacRobert, Quart. Jour. of NIath., 1940, 11, 98. For brevity/"~ (,x a- v) is written for ff (,X v) F' (a -- v). G. H. Hardy, 5r of M'ath., 1918, 47, t The conditions necessary for the validity of the kernels ate obtained from the considera. tion that R~ functions are defined cnly for R (y) > --1.

3 230 H. C. Gupta 3. APPLICATIN F TttESE KERNBLS T THE R~ FUNCTIN* x't e-t x' T, 2t~ (x2),p= o R A VE INTEGER For this purpose we first evaluate the general integral andt I= f I. (89 Kra (89 (xy) x y~'89 e- ~'2 T~, 2p (y2) dy. )~(-x)~ Since T,," (x) = ~=o~ (n9 - r l-~r. I. F (v 1 r) ' K, (z)= 89 F (1,) F(1 -- 1,) {I_. (z)- I~ (z)} Ix (2z) I~, (2z) = F (~ 1) zx~' F (tz therefore 1)2F3 (1~ (1 ~, 1 )~/~), ~, 1 1 ~ 89 (~ tz; tz); 4z 2) xx ~" ( --)" I-- 2-F(n 1),=o r!(2p--r)! P(I f vr) yx, 8, ~ e" 89 X 0 a similar function I { F(m) ( (88 2F3 k 1 n, 1 - m, 1 n - m ; with dy. - m written for m (3.1) Now by using the equivalent infinite series for the hypergeometric function 2Fs and integrating term-by-term by means of the formula f y2,,,1 e--~y ~ dy = 2 m F (1 m), R (m) > - 1, o we have i= ~ [(-)".~X/r[ (2p- r)! F(I v r) l-(1 n).2 ~n~'89 " t~---0 F(k r)f(m) (89 -m 1), 1 89 k r ;~ a similar term with] (~~2-~-2)-~- zf3 kl n, 1 - m, 1 n - m; 89 2 ] - m written for mi = (x), say, where 2k = )~ v n - m ~,3 R (k) > 0, and R (m k) > 0. The term-by-term integration effected in (3.1) is justi since the 2F3 is an integral frunction of y and its equivalent inflnite series is therefore uniformly convergent in any arbitrary interval (0, ct) and the remaining part of the integrand is positive, bounded and integrable in (0, a) and the complete integral I converges under the conditions stated. * B. M. Wilson, llr of Math., , 53, t (3. N. Watson Theory ofb~ssel Functions (Camb., 1922), pp. 78, 147. henceforth be referred to as B.F. This treatise will

4 Some New Ker~~els fox" Do'ivation o1" SellZRedpyoca! Functions 231 We may now carry out the application of the various kernels by mere substitution in the final vatue r (x) of I; but before we do so we have to ascertain the asymptotic behaviour of I in order to test the validity of the R, functions f(x) by the convergence of the integral (1.1). For this we have recourse to the Mellin-Barnes type of contour integral for r (x). It is ~" &r xnx-,~ ; I'(n-- m 14-2s) F(r k s) -r'(-- s) I'(m-- s) (~ 2)" da",=o /'(n4-1-t-s) _r'(n--m ls) r where A r is a constant independent of x~ We next alter the contour of integration so as to gÿ us the asymptotic behaviour of ~ (x). Carrying out the usual analysis we find that the leading terms in the asymptotic expansion are ax 4- bx, a, b being numerical constants. Evidently there ate two ways of applying each kernel. Thus in the case of the first kernel we may put in ~91 (x), m--n=- ;~ and either v=3n4-89 or v=-n--=89 obtaining an R_,,_ t and an Ran89 function respectively. For instance, the former is z~' {( -- 2)'/r! (2p -- r)! _r' (r.~ n ~)} [P (n) /" (n r 1) (2v'2/x) '~ r= ::=F= (89 nr l; 1 n; 89 I'(14-2nr) (x/2~/2) '~ x2f2(n89 ln,l2n; (3-2) The R, functions investigated in this way are all in the form of finite series of hypergeometric functions of the type ~F~ (892) obtained by the first two kernels and of the type Fa obtained by the third. These reduce to a single pair of hypergeometric functions when p= 0 and these pairs in some cases are expressible in terms of the more common functions. Thus for instance (3.2) reduces when p = 0 to x "-1 W_~,~, -in (89 x2) ei":", 89 > R (n) > -- 1, which is a special case of an R, function given by Bailey.* 4. Two I~RNV.LS 1~ THE T'91 x x J, (x/x/2) K~ (x/~/2) We shall first derive by the aid of Mellin's inversion theorem from the rule of w 1 a functional equation satisfied by infinite integrals of the kemels multiplied by x ~-1. Since P(~ i~t)--e-~,~,~~ t t"-~ as t ~,,~ and s= c it * W. N. Bailey, Jour. London Math. Soc., 1930, 5, A3

5 232 H.C. Gupta tt follows that as I ti -->, (s)= r( r ( ~ ~-,', t~c~,,-l>~. Consequently supposing F (s) to be analytic and o {e(~"~)q ' :, 0}, c to be real, and > 0 we see that ~ (s) F (s) --0 uniformly as I t [ ~ co and the integral f ~ c o I~(cit) F(cit)ldt eonverges. Hence by Mellin's inversion theorem we have from (1.3) co f(s) -- f x r-~ P (x) dx= 2" P ( P ( F (s) ds and the relation F (s)---f (l--s) assumes the forro of the functional equation 2t~F( f (s) - 2s/'( f (1 -- s) (4) showing that either side isan even function of s--89 The functional equation (4) is at times more convenient and serviceable to use for the investigation of kernets os illustrated below. The special case /~= v and a= b of the formula (1), B.F., p. 410, can be put aftera slight change of the variable in the form o /" (lp-- L A- 88 1) (2 V'2) ~a-'' R (s ~ p) > I R (,o) I. In order that this might give us a kemel, the functional equation to be satisfied is 4 (s) $ (1 -- s) = $ (s) $ (1 -- s) where ~(s) ~ v( V(89 89 v( ~) and (s) ~ v( v( The foilowing solutions ara possible :-- (i) ~= 89, p = 89 yielding a C (0, 2v), namely, X (ii))~--- {, ~ = 2, P = 89 yielding a C (2, 20, namely, ~. (~) ~,..~.(~~, ~.~ > -~.

6 Some New Kernels for Deriva~ion of Sel/:Reciproca91 FuncEons APPLICATIN F THE KERNEL$ F w 4 T THE R~ FUNCTIN x~ J~ (89 2) Taking the corresponding R function for the apptication of the first kernel and making use of the integral* r f 2y Jr (yx/2) K~ (yv/2) Jo (Y~[ 2~) dy = ~ I89 (~) K.~~ (~) (5,1) we are led to the R r function a result due to Erdelyi. ~/x I~r (88 x2) K88 (88 R (v) > - 1, Applying the seeond kernel to the corresponding R~ function we obtain the R~ r funetion g (x)= f (xy) ~ Jr (~22) Kr (~2) y~ Jx,89 41 To evaluate this integral we differentiateÿ both the sides of (5.1) with respeet to ~ and use the recurrence formul~e (B.F., w 3-71) and the formula and obtain finally the R r function Ir (z) Krx (z) Irt (z) K~ (z) = l lz g (x)= (1-89 x ~ I~r (88 K~r (88 x 89 ~ I,r-1 (88 K,r (88 *) If we use the asymptotic expansions (B.F., w 7-23) and 4~x [ 4v~'--l (4v~--- 1) (4v~--- 9) ] Kr (x) ~ e ~ 1 --8~---- 2! (8x)2 "" ex [ 4v~--1 (4v~---1)(4v2--9)_ ] Ir(x)-~ 1-- 8x 2!(8x) 2 "'" we find after some ealeulation that the leading term in the asymptotie expansion of g (x) is x "~sz. Consequently g (x) is R r if R (v) > We eonelude by giving two other kemels investigated by this method. They are of the elass C (v, u 1) valid for R (v) > - 1. (i) x '~ et* Wa,,,-,~4.,~ (x), (ii) x~89 e-* T~~, (2x). Two special eases of (i), viz., for m = are x "i e ~x D_~_ra (a/2-x) and x ~ ev D-4r-2 (a/ux). * S. C. Mitra, Bulletin Catcutta Math. Soc., , 25, 89. ~: A. Erdelyi, Jour Lona. Math. Soc., 1938, 13, 153. "~ A pror easily justifir by the uniform and absolute convergence of the integrals involved.

QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS. 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA

QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS. 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS Mathur 1, P.K & Singh 2, Anjana 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA 2.Dept. of Mathematics,Rajeev Gandhi Engineering

More information

(Received March 30, 1953)

(Received March 30, 1953) MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A V ol. XXVIII, Mathematics No. 1, 1953. On the Evaluation of the Derivatives of Solutions of y"=-f (x, y, y'). By Taro YOSHIZAWA (Received

More information

On the Equation of the Parabolic Cylinder Functions.

On the Equation of the Parabolic Cylinder Functions. On the Equation of the Parabolic Cylinder Functions. By AKCH. MILNE, Research Student, Edinburgh University Mathematical Laboratory. (Bead 9th January 1914- Beceived 29th January 191 Jj). 1. Introductory.

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

On some Summation Formulae for the I-Function of Two Variables

On some Summation Formulae for the I-Function of Two Variables Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 932-9466 Vol. 9, Issue (June 204), pp. 362-370 Applications and Applied Mathematics: An International Journal (AAM) On some Summation Formulae

More information

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES Zhizheng Zhang and Jingyu Jin Department of mathematics, Luoyang Teachers College, Luoyang, Henan, 471022,

More information

THE POISSON TRANSFORM^)

THE POISSON TRANSFORM^) THE POISSON TRANSFORM^) BY HARRY POLLARD The Poisson transform is defined by the equation (1) /(*)=- /" / MO- T J _M 1 + (X t)2 It is assumed that a is of bounded variation in each finite interval, and

More information

and kampe de Feriet function

and kampe de Feriet function Certain integrals for multivariable Aleph-function involving Jacobi polynomial and kampe de Feriet function 1 Teacher in High School, France E-mail : fredericayant@gmail.com ABSTRACT In this document,

More information

Analogues for Bessel Functions of the Christoffel-Darboux Identity

Analogues for Bessel Functions of the Christoffel-Darboux Identity Analogues for Bessel Functions of the Christoffel-Darboux Identity Mark Tygert Research Report YALEU/DCS/RR-1351 March 30, 2006 Abstract We derive analogues for Bessel functions of what is known as the

More information

A Note on the Differential Equations with Distributional Coefficients

A Note on the Differential Equations with Distributional Coefficients MATEMATIKA, 24, Jilid 2, Bil. 2, hlm. 115 124 c Jabatan Matematik, UTM. A Note on the Differential Equations with Distributional Coefficients Adem Kilicman Department of Mathematics, Institute for Mathematical

More information

Some inequalities involving the Fox's H-function

Some inequalities involving the Fox's H-function Proc. Indian Acad. Sci., Vol. 83 A, No. 1, 1976, pp. 33-40 Some inequalities involving the Fox's H-function R: K. RAINA Department of Mathematics, University of Udaipur, S.K.N. Agriculture College, Jobner

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

4 Partial Differentiation

4 Partial Differentiation 4 Partial Differentiation Many equations in engineering, physics and mathematics tie together more than two variables. For example Ohm s Law (V = IR) and the equation for an ideal gas, PV = nrt, which

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

Asymptotics of generating the symmetric and alternating groups

Asymptotics of generating the symmetric and alternating groups Asymptotics of generating the symmetric and alternating groups John D. Dixon School of Mathematics and Statistics Carleton University, Ottawa, Ontario K2G 0E2 Canada jdixon@math.carleton.ca October 20,

More information

12d. Regular Singular Points

12d. Regular Singular Points October 22, 2012 12d-1 12d. Regular Singular Points We have studied solutions to the linear second order differential equations of the form P (x)y + Q(x)y + R(x)y = 0 (1) in the cases with P, Q, R real

More information

Yv Kv of. dx- k 1,2,3,... Note that if f(x) is a solution of this differential equation then u(x) f(ax) satisfies

Yv Kv of. dx- k 1,2,3,... Note that if f(x) is a solution of this differential equation then u(x) f(ax) satisfies Internat. J. Math. & Math. Sci. VOL. 13 NO 2 (1990) 397-404 397 SOLUTIONS OF AN ORDINARY DIFFERENTIAL EQUATION AS A CLASS OF FOURIER KERNELS B. AGGARWALA and C. NASIM Department of Mathematics and Stattics

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

Calculation of the Ramanujan t-dirichlet. By Robert Spira

Calculation of the Ramanujan t-dirichlet. By Robert Spira MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 122, APRIL, 1973 Calculation of the Ramanujan t-dirichlet Series By Robert Spira Abstract. A method is found for calculating the Ramanujan T-Dirichlet series

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

2 Series Solutions near a Regular Singular Point

2 Series Solutions near a Regular Singular Point McGill University Math 325A: Differential Equations LECTURE 17: SERIES SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS II 1 Introduction Text: Chap. 8 In this lecture we investigate series solutions for the

More information

S. Lie has thrown much new light on this operation. The assumption

S. Lie has thrown much new light on this operation. The assumption 600 MATHEMATICS: A. E. ROSS PRoc. N. A. S. The operation of finding the limit of an infinite series has been one of the most fruitful operations of all mathematics. While this is not a group operation

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

7: FOURIER SERIES STEVEN HEILMAN

7: FOURIER SERIES STEVEN HEILMAN 7: FOURIER SERIES STEVE HEILMA Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier

More information

A NOTE ON A BASIS PROBLEM

A NOTE ON A BASIS PROBLEM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 51, Number 2, September 1975 A NOTE ON A BASIS PROBLEM J. M. ANDERSON ABSTRACT. It is shown that the functions {exp xvx\v_. form a basis for the

More information

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2... Math 3298 Exam 1 NAME: SCORE: l. Given three points A(I, l, 1), B(l,;2, 3), C(2, - l, 2). (a) Find vectors AD, AC, nc. (b) Find AB+ DC, AB - AC, and 2AD. -->,,. /:rf!:,-t- f1c =-

More information

FINAL EXAM, MATH 353 SUMMER I 2015

FINAL EXAM, MATH 353 SUMMER I 2015 FINAL EXAM, MATH 353 SUMMER I 25 9:am-2:pm, Thursday, June 25 I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

More information

The solution of linear differential equations in Chebyshev series

The solution of linear differential equations in Chebyshev series The solution of linear differential equations in Chebyshev series By R. E. Scraton* The numerical solution of the linear differential equation Any linear differential equation can be transformed into an

More information

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES PAUL F. BYRD San Jose State College, San Jose, California 1. INTRODUCTION In a previous article [_ 1J, certain

More information

By C. W. Nelson. 1. Introduction. In an earlier paper by C. B. Ling and the present author [1], values of the four integrals, h I f _wk dw 2k Ç' xkdx

By C. W. Nelson. 1. Introduction. In an earlier paper by C. B. Ling and the present author [1], values of the four integrals, h I f _wk dw 2k Ç' xkdx New Tables of Howland's and Related Integrals By C. W. Nelson 1. Introduction. In an earlier paper by C. B. Ling and the present author [1], values of the four integrals, (1) () h I f _wk dw k Ç' xkdx

More information

18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS. By M. Goldstein and R. M. Thaler

18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS. By M. Goldstein and R. M. Thaler 18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS Bessel Functions for Large Arguments By M. Goldstein R. M. Thaler Calculations of Bessel Functions of real order argument for large values of the argument can be

More information

w = X ^ = ^ ^, (i*i < ix

w = X ^ = ^ ^, (i*i < ix A SUMMATION FORMULA FOR POWER SERIES USING EULERIAN FRACTIONS* Xinghua Wang Math. Department, Zhejiang University, Hangzhou 310028, China Leetsch C. Hsu Math. Institute, Dalian University of Technology,

More information

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA JOSEPH ERCOLANO Baruch College, CUNY, New York, New York 10010 1. INTRODUCTION As is well known, the problem of finding a sequence of

More information

ON DIVISION ALGEBRAS*

ON DIVISION ALGEBRAS* ON DIVISION ALGEBRAS* BY J. H. M. WEDDERBURN 1. The object of this paper is to develop some of the simpler properties of division algebras, that is to say, linear associative algebras in which division

More information

DISTRIBUTIONS FUNCTIONS OF PROBABILITY SOME THEOREMS ON CHARACTERISTIC. (1.3) +(t) = eitx df(x),

DISTRIBUTIONS FUNCTIONS OF PROBABILITY SOME THEOREMS ON CHARACTERISTIC. (1.3) +(t) = eitx df(x), SOME THEOREMS ON CHARACTERISTIC FUNCTIONS OF PROBABILITY DISTRIBUTIONS 1. Introduction E. J. G. PITMAN UNIVERSITY OF TASMANIA Let X be a real valued random variable with probability measure P and distribution

More information

J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *»

J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *» THE NORMAL APPROXIMATION TO THE POISSON DISTRIBUTION AND A PROOF OF A CONJECTURE OF RAMANUJAN 1 TSENG TUNG CHENG 1. Summary. The Poisson distribution with parameter X is given by (1.1) F(x) = 23 p r where

More information

THE G-FUNCTIONS AS UNSYMMETRICAL FOURIER KERNELS. II

THE G-FUNCTIONS AS UNSYMMETRICAL FOURIER KERNELS. II 18 ROOP NARAIN [February applying Theorem 1, that 0i(i)-"0»(O =x(0 for t^r where x(0 is the maximal solution of z'=co(i, z)+e through (r, 8). Further the first few examples of page 37 of [4] can all be

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION M. KAC 1. Introduction. Consider the algebraic equation (1) Xo + X x x + X 2 x 2 + + In-i^" 1 = 0, where the X's are independent random

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

A GENERALIZATION OF STIRLING NUMBERS

A GENERALIZATION OF STIRLING NUMBERS Hongquan Yu Institute of Mathematical Sciences, Dalian University of Technology, Dalian 6024, China (Submitted September 996-Final Revision December 996). INTRODUCTION Let W(x), fix), g(x) be formal power

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

ON GENERATING FUNCTIONS OF THE JACOBI POLYNOMIALS

ON GENERATING FUNCTIONS OF THE JACOBI POLYNOMIALS ON GENERATING FUNCTIONS OF THE JACOBI POLYNOMIALS PETER HENRICI 1. Introduction. The series of Jacobi polynomials w = 0 (a n independent of p and τ) has in the case a n =l already been evaluated by Jacobi

More information

GENERALIZED WATSON TRANSFORMS I: GENERAL THEORY

GENERALIZED WATSON TRANSFORMS I: GENERAL THEORY PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 9, Pages 2777 2787 S 0002-9939(00)05399-5 Article electronically published on February 29, 2000 GENERALIZED WATSON TRANSFORMS I: GENERAL

More information

1 The Existence and Uniqueness Theorem for First-Order Differential Equations

1 The Existence and Uniqueness Theorem for First-Order Differential Equations 1 The Existence and Uniqueness Theorem for First-Order Differential Equations Let I R be an open interval and G R n, n 1, be a domain. Definition 1.1 Let us consider a function f : I G R n. The general

More information

ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS. Abstract

ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS. Abstract ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS R.K. Yadav 1, S.D. Purohit, S.L. Kalla 3 Abstract Fractional q-integral operators of generalized

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

Math 116 Final Exam April 21, 2016

Math 116 Final Exam April 21, 2016 Math 6 Final Exam April 2, 206 UMID: Instructor: Initials: Section:. Do not open this exam until you are told to do so. 2. Do not write your name anywhere on this exam. 3. This exam has 4 pages including

More information

Calculations of Integrals of Products of Bessel Functions

Calculations of Integrals of Products of Bessel Functions Calculations of Integrals of Products of Bessel Functions By J. E. Kilpatrick,1 Shigetoshi Katsura2 and Yuji Inoue3 I. Introduction. Integrals of products of Bessel functions are of general interest. Define

More information

A Study of Unified Integrals Involving the Generalized Legendre's Associated Function, the generalized Polynomial Set and H-Function with Applications

A Study of Unified Integrals Involving the Generalized Legendre's Associated Function, the generalized Polynomial Set and H-Function with Applications A Study of Unified Integrals Involving the Generalized Legendre's Associated Function, the generalized Polynomial Set and H-Function with Applications 1 2 Shalini Shekhawat, Sanjay Bhatter Department of

More information

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0 ODE Homework 6 5.2. Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation y + k 2 x 2 y = 0, k a constant about the the point x 0 = 0. Find the recurrence relation;

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Diffraction by a Half-Plane LL. G. CHAMBERS. {Received 29th March Read 5th May 1950.)

Diffraction by a Half-Plane LL. G. CHAMBERS. {Received 29th March Read 5th May 1950.) Diffraction by a Half-Plane By LL. G. CHAMBERS {Received 29th March 1950. Read 5th May 1950.) 1. Introduction. The diffraction of a simple harmonic wave train by a straightedged semi-infinite screen was

More information

A THEOREM ON ACTION FUNCTIONS IN

A THEOREM ON ACTION FUNCTIONS IN ~T A THEOREM ON ACTION UNCTIONS IN BORN'S I~'IELD THEORY. BY t3. S. MADHAVA RAO. (University o~ Mysore) (rom the Department of hysics, Indian Institute of Science, Bangalore.) Received August 19, 1936.

More information

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved that iz;.(»)=^io 8 "0(i).

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved that iz;.(»)=^io 8 0(i). Curtis Cooper f Robert E* Kennedy, and Milo Renberg Dept. of Mathematics, Central Missouri State University, Warrensburg, MO 64093-5045 (Submitted January 1997-Final Revision June 1997) 0. INTRODUCTION

More information

The Infinity Norm of a Certain Type of Symmetric Circulant Matrix

The Infinity Norm of a Certain Type of Symmetric Circulant Matrix MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139 JULY 1977, PAGES 733-737 The Infinity Norm of a Certain Type of Symmetric Circulant Matrix By W. D. Hoskins and D. S. Meek Abstract. An attainable bound

More information

Series Solutions Near a Regular Singular Point

Series Solutions Near a Regular Singular Point Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:

More information

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA 1. Suppose that the function f(u, v) is integrable in the sense of Lebesgue, over the square ( ir, ir; it, it) and is periodic with period

More information

A CONVERGENCE CRITERION FOR FOURIER SERIES

A CONVERGENCE CRITERION FOR FOURIER SERIES A CONVERGENCE CRITERION FOR FOURIER SERIES M. TOMIC 1.1. It is known that the condition (1) ta(xo,h) sf(xo + h) -f(x0) = oi-r--- -V A-*0, \ log  / for a special x0 does not imply convergence of the Fourier

More information

Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials

Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials A. Kuznetsov Dept. of Mathematical Sciences University of New Brunswick

More information

Chapter 4. Series Solutions. 4.1 Introduction to Power Series

Chapter 4. Series Solutions. 4.1 Introduction to Power Series Series Solutions Chapter 4 In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation adds a new story to the old

More information

Solution: f( 1) = 3 1)

Solution: f( 1) = 3 1) Gateway Questions How to Evaluate Functions at a Value Using the Rules Identify the independent variable in the rule of function. Replace the independent variable with big parenthesis. Plug in the input

More information

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note Math 001 - Term 171 Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note x A x belongs to A,x is in A Between an element and a set. A B A is a subset of B Between two sets. φ

More information

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES P. ERDÖS AND M. KAC 1 1. Introduction. In a recent paper 2 the authors have introduced a method for proving certain limit theorems of the

More information

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1. (308 ) EXAMPLES. N 1. FIND the quotient and remainder when is divided by x 4. I. x 5 + 7x* + 3a; 3 + 17a 2 + 10* - 14 2. Expand (a + bx) n in powers of x, and then obtain the first derived function of

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

On the stability of solutions of a system of differential equations

On the stability of solutions of a system of differential equations MEMOIRS O F TH E COLLEGE O F SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 1, 1955. On the stability of solutions of a system of differential equations By T aro YOSIIIZAWA (Received

More information

Integrals Involving H-function of Several Complex Variables

Integrals Involving H-function of Several Complex Variables International Journal of Scientific and Research Publications, Volume 7, Issue 2, February 2017 95 Integrals Involving H-function of Several Complex Variables AshiqHussain Khan, Neelam Pandey Department

More information

Almost Asymptotically Statistical Equivalent of Double Difference Sequences of Fuzzy Numbers

Almost Asymptotically Statistical Equivalent of Double Difference Sequences of Fuzzy Numbers Mathematica Aeterna, Vol. 2, 202, no. 3, 247-255 Almost Asymptotically Statistical Equivalent of Double Difference Sequences of Fuzzy Numbers Kuldip Raj School of Mathematics Shri Mata Vaishno Devi University

More information

A Technique for the Numerical Solution of Certain Integral Equations of the First Kind*

A Technique for the Numerical Solution of Certain Integral Equations of the First Kind* A Technique for the Numerical Solution of Certain Integral Equations of the First Kind* DAVID L. PHH~LIPSt Argonne National Laboratory, Argonne, Illinois Introduction The general linear equation may be

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples.

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples. . Two externally tangent unit circles are constructed inside square ABCD, one tangent to AB and AD, the other to BC and CD. Compute the length of AB. Answer: + Solution: Observe that the diagonal of the

More information

Recall that the Fourier transform (also known as characteristic function) of a random variable always exists, given by. e itx f(x)dx.

Recall that the Fourier transform (also known as characteristic function) of a random variable always exists, given by. e itx f(x)dx. I am going to talk about algebraic calculations of random variables: i.e. how to add, subtract, multiply, divide random variables. A main disadvantage is that complex analysis is used often, but I will

More information

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES KAI LAI CHUNG The limiting distribution of the maximum cumulative sum 1 of a sequence of independent random variables

More information

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function Generating and characteristic functions Generating and Characteristic Functions September 3, 03 Probability generating function Moment generating function Power series expansion Characteristic function

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

GRONWALL'S INEQUALITY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES

GRONWALL'S INEQUALITY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number I, May 1972 GRONWALL'S INEQUALITY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES DONALD R. SNOW Abstract.

More information

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA COMPOSITIO MATHEMATICA W. L. FERRAR Summation formulae and their relation to Dirichlet s series Compositio Mathematica, tome 1 (1935), p. 344-360 Foundation

More information

EXISTENCE THEOREMS FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS OF NON-INTEGRAL ORDER*

EXISTENCE THEOREMS FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS OF NON-INTEGRAL ORDER* 100 EVERETT PITCHER AND W. E. SEWELL [February EXISTENCE THEOREMS FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS OF NON-INTEGRAL ORDER* EVERETT PITCHER AND W. E. SEWELL 1. Introduction. In this paper we prove

More information

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n. Scientiae Mathematicae Japonicae Online, e-014, 145 15 145 A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS Masaru Nagisa Received May 19, 014 ; revised April 10, 014 Abstract. Let f be oeprator monotone

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Math 240 Calculus III

Math 240 Calculus III Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney,

More information

Simultaneous operational calculus involving a product of a general class of polynomials, Fox's H-function and the muitivariable H-function

Simultaneous operational calculus involving a product of a general class of polynomials, Fox's H-function and the muitivariable H-function Proc. Indian Acad. Sci. (Math. Sci.), Vol. 103, No. 1, April 1993, pp. 91-96. 9 Printed in India. Simultaneous operational calculus involving a product of a general class of polynomials, Fox's H-function

More information

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS GEORGE E ANDREWS 1 AND S OLE WARNAAR 2 Abstract An empirical exploration of five of Ramanujan s intriguing false theta function identities leads to unexpected

More information