λ(t)f c (t s, s) ds, 0 t < c,

Size: px
Start display at page:

Download "λ(t)f c (t s, s) ds, 0 t < c,"

Transcription

1 L = λw d

2 L k = λ k j Fk j,j, c k = 0, 1,..., d 1, d L k k λ k k Fk,j c j 0 k j k + md m 0 λ k Fk, c L k k L(t) = c 0 λ(t)f c (t s, s) ds, 0 t < c, c d d d

3 25 number of patients Estimated mean from data Estimated mean from simulation Sun Mon Tue Wed Thu Fri Sat time of a week L = λw

4 M t /GI/1 1

5 i i 0 j j 0 X {X i,j : i 0; j 0} X i,j i j 0 X Y i,j A i s=j X i,s i j j 0 Y i,0 = s=0 X i,s i Q i i Y i j,j = i A Y i j,j i j i A i j i 0 0/0 0 0

6 n λ k (n) 1 n Q k (n) 1 n Ȳ k,j (n) 1 n d A k+(m 1)d, m=1 Q k+(m 1)d = 1 n m=1 m=1 Y k+(m 1)d,j, j 0, m=1 ( k+(m 1)d Y k+(m 1)d j,j ), F k,j(n) c Ȳk,j(n) n λ k (n) = Y m=1 k+(m 1)d,j n A, j 0, m=1 k+(m 1)d W k (n) F k,j(n), c 0 k d 1, λ k (n) k 0 k d 1 n Qk (n) k Ȳk,j(n) k j F c k,j(n) k Wk (n) k n (A1) λk (n) λ k, n, 0 k d 1, (A2) (A3) c F k,j(n) Fk,j, c n, 0 k d 1, j 0, Wk (n) W k F c k,j n, 0 k d 1, d = 1 (A2)

7 k 0 ( ) k 0 d ( ) (A1) (A2) (A3) Q k (n) n L k L k = λ k j F c k j,j <, 0 k d 1, λ k Fk,j c (A1) (A2) ( ) d = 1 k = 0 L 0 lim Q0 (n) lim λ0 (n) = λ 0 λ k j F c k j,j = λ 0 F c 0,j = λ 0 W 0. L 0 = λ 0 W 0,

8 L λ W λ W L L = λw λ k (n) A1 λ k (n) k 0 k d 1 W k (n) A3 W k (n) k 0 k d 1 k 0 k d 1 A2 ( ) F c k,j(n) F c k,j d = λ k W k λ 0 = 2 λ 1 = 0 W 0 = 2 W 1 = 0 lim Q0 (n) = 3 lim Q0 (n) = 2 L k L k L k

9 0 λ k j F c k j,j = k i=0 λ i l=0 F c i,k i+ld + i=k+1 L k L k (n) k λ i (n) i=0 l=0 F c i,k i+ld(n) + i=k+1 λ i λ i (n) l=1 l=1 F c i,k i+ld, 0 k d 1. F c i,k i+ld(n), 0 k d 1, λ i (n) F c i,j(n) n L k (n) Q k (n) ( ) lim L k (n) = L k 0 k d 1, L k (n) L k m > 1 X i,j = 0 j md (A3) (A2) L k Ē k (n) L k (n) Q k (n), Q k (n) L k (n) ( ) (A1) (A2) m u > 0 X i,j = 0 i 0 j dm u (A3) λ u > 0 A i λ u i 0 R n max 0 k d 1 {Ēk(n)} λ ud(m u + 2) 2, n m u, 2n Ēk(n)

10 (A3) (A2) X i,j = 0 i 0 j > dm u F k,j (n) = 0 0 k d 1 j dm u dm u W k (n) = j=1 F c k,j(n), 0 k d 1, F c k,j = 0 0 k d 1 j > dm u lim (A3) dm u W k (n) = lim dm u F k,j(n) c = lim dm u F k,j(n) c = F c k,j = W k, ( (A2) (A3)) (A2) (A3) (A3) (A2) D i i X i j,j i 0 i D i = Q i Q i+1 + A i+1, i 0. δ k (n) 1 D k+(m 1)d, n 0 k d 1. m=1

11 ( ) δ k (n) n δ k δ k = λ k j f k j,j λ k j (F c k j,j Fk j,j+1) c 0 k d 1 λ k F c k,j f k,j F c k,j F c k,j+1 δ k (n) = 1 n D k+(m 1)d = 1 n m=1 (Q k+(m 1)d Q k+1+(m 1)d + A k+1+(m 1)d ) m=1 Q k (n) Q k+1 (n) + λ k+1 (n), 0 k < d 1, = Q d 1 (n) Q 0 (n + 1) + λ 0 (n + 1) + 1 n Q 0 1 n A 0, k = d 1. 1 lim n Q 1 0 = 0 lim n A 0 = 0 (A1) lim δ k (n) = L k L k+1 + λ k+1 = λ k j F c k j,j λ k+1 j F c k+1 j,j + λ k+1 = λ k j (F c k j,j fk j,j+1) c λ k+1 + λ k+1 = λ k j f k j,j. C Q (n) C L (n) nd 1 Q k+(m 1)d = Q i, m=1 k=0 m=1 k=0 i=0 (j + 1)X k+(m 1)d,j = m=1 k=0 nd 1 Y k+(m 1)d,j = i=0 Y i,j. C Q (n) n C L (n) n

12 35 1 C Q (n) C L (n) d = 5 n = 4 nd = 20 C Q(4) C L(4) Area(A) = C Q (n) = n k=0 k=0 Q k (n), Area(A B) = C L (n) = n λ k (n) W k (n) = n L k (n). k=0

13 C Q (n) C L (n) C L (n) = Y k+(m 1)d,j = n m=1 k=0 = n λ k (n) W k (n). k=0 k=0 Ȳ k,j (n) = n k=0 λ k (n) F k,j(n) c 0 k d 1 k=0 L k (n) = λ k (n) F k,j(n) c = λ k (n) W k (n). k=0 k=0 Ē(n) Ē k (n) = (B)/n 0 n, k=0 Ēk(n) 0 0

14 Q L i i Q L k (n) 1 n m=1 X i,j Y i,j Q L k+(m 1)d. ( ) Q L k (n) n L L k L L k = L k δ k 2λ k + λ k f k,0 L k 0 k d 1, L k λ k (A1) δ k f k,0 i i i i i i Q L i = Y i j,j+1 Y i,0 = Y i j,j X i j,j Y i,0 = Y i j,j X i j,j 2A i + X i,0 j=1 j=1 j=1 = Q i D i 2A i + X i,0, 0 Q L k (n) = 1 Q L k+(m 1)d = 1 (Q k+(m 1)d D k+(m 1)d 2A k+(m 1)d + X k+(m 1)d,0 ) n n m=1 m=1 = Q k (n) δ k (n) 2 λ k (n) + (Ȳk,0(n) Ȳk,1(n)). (A1) (A2) lim Ȳ k,j (n) = λ k F c k,j lim Q L k (n) = L k δ k 2λ k + λ k (F c k,0 Fk,1) c = L k δ k 2λ k + λ k f k,0.

15 A(t) t 1 A(t) Λ(t) t, Λ(t) = t 0 λ(u) du 0 < λ U λ(u) λ U <, u t λ c D(t) δ(t) ( ) c d d 0 d 0 L k L L k = δ k + 2λ k λ k f k,0 d λ d,k 0 δ d,k 0 d ( ) ( ) d d ( )

16 G t /GI t / L k λ k F c k,j k {Y n : n Z} Y n {Y nd+k,j : 0 k d 1; j 0} n n Y n (Z d ) Z d Z d

17 Z k k (n 1,..., n k ) Z (Y n1,..., Y nk ) d = (Y n1 +m,..., Y nk +m) m Z, = d {Y n : n Z} {(A nd+k, Q nd+k ) : n Z} A nd+k nd + k Q nd+k nd + k A nd+k Y nd+k,0 Q nd+k Y nd+k j,j. ({Y k,j : j 0}, A k, Q k ) λ k E[A k ] = E[Y k,0 ] L k E[Q k ] = E[Y k j,j ]. Fk,j c P (W k > j) W k k Fk,j c F k,j(n) c 0 < E[Y k,0 ] < k ( ) {Y n : n Z} 0 < λ k E[Y k,0 ] < 0 k d 1 k 0 k d 1 j 0 F c k,j(n) F c k,j E[Y k,j] E[Y k,0 ] n

18 L k E[Q k ] = λ k j Fk j,j. c Ȳ k,j (n) E[Y k,j ] = λ k F c k,j n k j F c k,j λ k E[Q k ] E[Y k j,j ] E[Q k ] = E[Y k j,j ] = λ k = λ k λ k Fk j,j. c F k,j G t /GI t / G t /GI t / Fk,j c P (W k j) k k ( G t /GI t / ) G t /GI t / Y {Y n : n Z} E[Y k,j ] = F c k,je[y k,0 ],

19 {W k,i : i 1} k m E[Y k,j ] = P (W k,i > j)p (A k = m) = m=1 i=1 mfk,jp c (A k = m) = Fk,jE[A c k ] = Fk,jE[Y c k,0 ]. m=1 GI t k k A (m) k k m 1 k 7 24 = 168 m 1 25 W (i) k k m k A (i) k W (m) k A (m) k > 0 r k 168 A (m) k r k = > 0 m m=1 (A(m) k m=1 (A(m) k Āk (1/25) 25 i=1 A(m) k W k (1/25) 25 (m) Āk)(W k W k ) Āk) 25 2 (m) m=1 (W W (m) i=1 k k W k ) 2, m A (m) k = (A (m) 36, W (m) 36 ) W (m) 36

20 i A (m) k = 0 k = 1, 2,, 7 24 = 168

21 corrrelation of num. of arrivals vs LoS Sun Mon Tue Wed Thu Fri Sat time of a week (hour) Normal Q Q Plot Sample Quantiles LoS (hour) Theoretical Quantiles number of arrivals in the hour number of hours with 0 arrival Sun Mon Tue Wed Thu Fri Sat time of a week Q Q

22 λ(t) t N(t) N(s) [s, t] E[N(t)] E[N(s)] = t s λ(s) ds, λ(t) c W (t) t {W (t) : t R} Q {Q(t) : t R} c Q c {N s : s R} N c F c t,x P t (W (t) > x) P t c M t /GI/1 ( ) F c t s,s E[Q(t)] = 0 F c t s,sλ(t s) ds

23 2 A1 A2 A3 lim F k+ld,j(n) c lim Wk+ld (n) 0 k d 1 l 0 j 0 lim λk+ld (n) lim λ k+ld (n) λ k+ld = λ k, c lim F k+ld,j(n) F c k+ld,j = Fk,j, c lim Wk+ld (n) W k+ld = W k, λ k F c k,j W k λ k 1 λ k = lim λk (n) = lim n m=1 m=1 A k+(m 1)d 1 = lim n (A n 1 n 1 1 n 1 k + A (k+d)+(m 1)d ) = lim n n 1 m=1 A (k+d)+(m 1)d = λ k+d. Ȳk,j(n) = λ k (n) F c k,j(n) A1 A2 A3 lim Ȳ k,j (n) = λ k F c k,j 0 k d 1 j 0 λ k lim Ȳ k+d,j (n) = lim Ȳ k,j (n) 0 k d 1 j 0 F c c k+d,j = lim F k+d,j(n) = W k+d lim Ȳ k+d,j (n) lim λ k+d (n) = λ kf c k,j λ k = F c k,j, 0 k d 1, j 0. W k+d = F c k+d,j = F c k,j = W k 0 k d 1.

24 lim Lk (n) = λ k jf c k j,j k = 0, 1,, d 1 L lim Qk (n) = lim Lk (n) ϵ > 0 A1 N 1 n > N 1 sup 0 k d 1 λ k (n) λ k < ϵ A2 A3 lim F k,j(n) c Fk,j c = 0. N 2 n > N 2 max{n 1, N 2 } n > N 3 = = L k (n) i=0 λ k j Fk j,j c k λ i (n) k i=0 λ i l=0 l=0 F c i,k i+ld(n) + F c i,k i+ld i=k+1 k λ k j (n) F k j,j(n) c + k λ k j F c k j,j k λ k j F c k j,j(n) + m=1 j=1 k λ k j F c k j,j i=k+1 λ i m=1 j=1 l=1 λ i (n) l=1 F c i,k i+ld sup F k,j(n) c F k,j c < ϵ N 3 = 0 k d 1 F c i,k i+ld(n) λ d j (n) F d j,(m 1)d+j+k(n) c λ d j Fd j,(m 1)d+j+k c m=1 j=1 m=1 j=1 +ϵ ( k F k j,j(n) c + m=1 j=1 λ d j F c d j,(m 1)d+j+k(n) λ d j Fd j,(m 1)d+j+k c F d j,(m 1)d+j+k(n) ) c ( max λ k) ( k F k j,j(n) c F k j,j c + 0 k d 1 +ϵ ( k F k j,j(n) c + m=1 j=1 m=1 j=1 F d j,(m 1)d+j+k(n) ) c ( max λ k)dϵ + ϵd ( max W k + ϵ ). 0 k d 1 0 k d 1 F d j,(m 1)d+j+k(n) c Fd j,(m 1)d+j+k ) c

25 lim L k (n) λ k jf c k j,j = 0 0 k d 1 L k lim Qk (n) = lim Lk (n) Ē(n) Ē k (n) L k (n) Q k (n) 0 n. k=0 k=0 Ē(n) 0 n Q k (n) 1 n = 1 n = 1 n = 1 n = 1 n Q k+(m 1)d = 1 n m=1 m=1 m=1 m=1 m=1 m=1 k Y k j+(m 1)d,j + 1 n ( k+(m 1)d m=2 k Y k j+(m 1)d,j + 1 n 1 md n k Y k j+(m 1)d,j + 1 n m=1 j=1 n 1 m=1 j=1 k Y k j+(m 1)d,j + 1 n 1 n s n Y k+(m 1)d j,j ) k+(m 1)d j=k+1 Y k j+(m 1)d,j Y d j+(m 1)d,j+k Y d j+(m 1)d,j+k + 1 n 2 md n s=1 m=1 j=1 m=1 j=1 Y d j+(m 1)d,j+k+(s 1)d, Y d j+(m 1)d,j+k+d k L k (n) = Ȳ k j,j (n) + Ȳ d j,j+k+(s 1)d (n) = 1 n m=1 s=1 j=1 k Y k j+(m 1)d,j + 1 n Y d j+(m 1)d,j+k+(s 1)d. s=1 m=1 j=1 L k (n) Q k (n) Ē k (n) L k (n) Q k (n) = 1 n 1 Y d j+(m 1)d,j+k+(s 1)d + 1 n n = 1 n s=1 m=n s+1 j=1 m=1 j=1 s=n m+1 Y d j+(m 1)d,j+k+(s 1)d, s=n m=1 j=1 Y d j+(m 1)d,j+k+(s 1)d

26 k = 0, 1,, d 1 1 Ē(n) Ē k (n) = n = 1 n k=0 k=0 m=1 j=1 s=(n m)d m=1 j=1 s=n m+1 Y d j+(m 1)d,j+s. Y d j+(m 1)d,j+k+(s 1)d Ē(n) 0 n N 1, N 2 N 3 ϵ n > N 3 Ȳ k,j (n) λ k Fk,j c = λ k (n) F k,j(n) c λ k Fk,j c λ k λ k F c k,j(n) λ k Fk,j c + ϵ F k,j(n) c F c k,j(n) F c k,j + ϵ (W k + ϵ) λ k ϵ + ϵ (W k + ϵ). A1 A2 lim Ȳ k,j (n) = λ k F c k,j lim Ȳk,j(n) λ k Fk,j c = 0. ϵ > 0 λ kf c k,j k = 0, 1,, d 1 J k=0 j=j λ k F c k,j < ϵ. N 4 J/d x x n N 4 nd > J N 5 n > N 5 k=0 N 6 max{n 4, N 5 } n N 6 Ȳk,j(n) λ k Fk,j c < ϵ. k=0 j=n 6 d Ȳ k,j (n) 2ϵ.

27 N 7 N 6 /ϵ n > N 7 (n N 6 )/n > 1 ϵ n > max{n 7, 2N 6 } Ē(n) = 1 n = = m=1 j=1 s=(n m)d j=1 j=1 j=1 n N 1 6 n m=1 s=(n m)d n N 1 6 n 1 n m=1 s=n 6 d m=1 s=n 6 d j=1 s=n 6 d 2ϵ + 2ϵ + ϵ( Y d j+(m 1)d,j+s Y d j+(m 1)d,j+s + Y d j+(m 1)d,j+s + Y d j+(m 1)d,j+s + Ȳ d j,j+s (n) + k=0 j=1 s=0 λ k F c k,j + ϵ). j=1 j=1 j=1 1 n 1 n 1 n m=n N 6 +1 s=(n m)d m=n N 6 +1 s=0 m=n N 6 +1 s=0 (Ȳd j,s(n) n N 6 n Y d j+(m 1)d,s Y d j+(m 1)d,s Ȳ d j,s (n N 6 )) Y d j+(m 1)d,j+s s m N 6 N 7 2ϵ = j=1 s=0 j=1 s=0 j=1 s=0 2ϵ + ϵ( (Ȳd j,s(n) n N 6 n Ȳ d j,s (n N 6 )) (Ȳd j,s(n) (1 ϵ)ȳd j,s(n N 6 )) (Ȳd j,s(n) Ȳd j,s(n N 6 )) + ϵȳd j,s(n N 6 ) k=0 λ k F c k,j + ϵ). L k lim Qk (n) = lim Lk (n)

28 Ē k (n) = 1 n m=1 j=1 s=n m+1 Y d j+(m 1)d,j+k+(s 1)d. Y i,j = 0 i 0 j dm u n m u Ē k (n) = 1 n 1 n m u+1 j=1 m=n m u s=n m+1 m u+1 j=1 m=n m u s=n m+1 = 1 n λ ud (m u + 1)(m u + 2) 2 Y d j+(m 1)d,j+k+(s 1)d A d j+(m 1)d 1 n m u+1 j=1 m=n m u s=n m+1 λ ud(m u + 2) 2. 2n H = λg λ u

29 L = λw L = λw L = λw L = λw

30 L = λw H = λg L = λw L = λw 50 th L = λw L = λw L = λw L = λw

31

32 60% 23, Mt T /GI t /

33 ˆσ 2 ˆm 1 T (d w ) = A + C d w + ϵ, T (d w ) A C d w ϵ N(0, σ 2 ) 25 7 = 175 ˆσ 2 = 202 ˆσ 2 / ˆm = 202/ p(t) t t p(t)

34 Mt T /GI/

35 ˆp(t) p(t) ˆp(t) = (x 13.5) x = ((t 1.5) mod 24) t [0, 24] 5 N N t ˆp(t)

36 1 25 L. (25) Q. (25)

37 arrival rate Sun Mon Tue Wed Thu Fri Sat time of a week 10 a.m. 4 p.m. Fn(x) Fn(x) LoS (hour) LoS (hour) 10 a.m. 4 p.m. average LoS (hour) average LoS (hour) sample size (weeks) sample size (weeks)

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k L = λw L = λw L λ W 25 l 1 R l 1 l 1 k j j 0 X {X k,j : k 0; j 0} X k,j k j 0 Y k,j i=j X k,i k j j 0 A k Y k,0 = X k,j k Q k k Y k j,j = k, j 0 A k j Y k j,j A k j k 0 0/0 1 0 n λ k (n) 1 n Q k (n) 1

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Stochastic Numerical Analysis

Stochastic Numerical Analysis Stochastic Numerical Analysis Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Stoch. NA, Lecture 3 p. 1 Multi-dimensional SDEs So far we have considered scalar SDEs

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

PRISON POLICY INITIATIVE ANNUAL REPORT

PRISON POLICY INITIATIVE ANNUAL REPORT PRISON POLICY INITIATIVE 2015-2016 2016-2017 ANNUAL REPORT N 2016 2017 PO Bx 127 N MA 01061 :// (413) 527-0845 1 T Ex D 1 W 3 P k 4 C R - 7 S j 8 B j 10 P x 12 P j 14 P 16 Wk 18 C x 19 Y P Nk S R 15 B

More information

Tyler Hofmeister. University of Calgary Mathematical and Computational Finance Laboratory

Tyler Hofmeister. University of Calgary Mathematical and Computational Finance Laboratory JUMP PROCESSES GENERALIZING STOCHASTIC INTEGRALS WITH JUMPS Tyler Hofmeister University of Calgary Mathematical and Computational Finance Laboratory Overview 1. General Method 2. Poisson Processes 3. Diffusion

More information

Gwinnett has an amazing story to share, spanning 200 years from 1818 until today.

Gwinnett has an amazing story to share, spanning 200 years from 1818 until today. I B, Lm, W - D I C Dm 15, 1818, W C, m D I. T m m m Ck Ck m Jk C. B m, 30, A 20. T mk, B, v v m C. m, m 1776, C C. O A 2, 1776, D I,. C v 437 q m xm 280,000. D 1980, C k, m v. A, 2010, j v 800,000 j m

More information

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model. Poisson Processes Particles arriving over time at a particle detector. Several ways to describe most common model. Approach 1: a) numbers of particles arriving in an interval has Poisson distribution,

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

DISCRETE GRONWALL LEMMA AND APPLICATIONS

DISCRETE GRONWALL LEMMA AND APPLICATIONS DISCRETE GRONWALL LEMMA AND APPLICATIONS JOHN M. HOLTE Variations of Gronwall s Lemma Gronwall s lemma, which solves a certain kind of inequality for a function, is useful in the theory of differential

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Stochastic Networks and Parameter Uncertainty

Stochastic Networks and Parameter Uncertainty Stochastic Networks and Parameter Uncertainty Assaf Zeevi Graduate School of Business Columbia University Stochastic Processing Networks Conference, August 2009 based on joint work with Mike Harrison Achal

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

Computational Intelligence Seminar (8 November, 2005, Waseda University, Tokyo, Japan) Statistical Physics Approaches to Genetic Algorithms Joe Suzuki

Computational Intelligence Seminar (8 November, 2005, Waseda University, Tokyo, Japan) Statistical Physics Approaches to Genetic Algorithms Joe Suzuki Computational Intelligence Seminar (8 November, 2005, Waseda University, Tokyo, Japan) Statistical Physics Approaches to Genetic Algorithms Joe Suzuki 1 560-0043 1-1 Abstract We address genetic algorithms

More information

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have Lectures 16-17: Poisson Approximation 1. The Law of Rare Events Theorem 2.6.1: For each n 1, let X n,m, 1 m n be a collection of independent random variables with PX n,m = 1 = p n,m and PX n,m = = 1 p

More information

Tornado, Squalls Strike Kinston Area

Tornado, Squalls Strike Kinston Area q k K A V N 28 #/K N /WANE CO A AON-CHEY ON A N F W N H W D M D H U x 30 M k k M D 945 E M A A k - A k k k A C M D C 030 D H C C 0645 000 200 W j A D M D k F E- HAUNNG CALL - A A x U M D M j A A 9000 k

More information

Math 180C, Spring Supplement on the Renewal Equation

Math 180C, Spring Supplement on the Renewal Equation Math 18C Spring 218 Supplement on the Renewal Equation. These remarks supplement our text and set down some of the material discussed in my lectures. Unexplained notation is as in the text or in lecture.

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 295 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 16 Queueing Systems with Two Types of Customers In this section, we discuss queueing systems with two types of customers.

More information

Lecture 5 Rational functions and partial fraction expansion

Lecture 5 Rational functions and partial fraction expansion EE 102 spring 2001-2002 Handout #10 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper

More information

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical CDA5530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic ti process X = {X(t), t T} is a collection of random variables (rvs); one

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

TMA 4265 Stochastic Processes

TMA 4265 Stochastic Processes TMA 4265 Stochastic Processes Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Solution - Exercise 9 Exercises from the text book 5.29 Kidney transplant T A exp( A ) T B exp(

More information

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS October 4, 207 EIGENVALUES AND EIGENVECTORS. APPLICATIONS RODICA D. COSTIN Contents 4. Eigenvalues and Eigenvectors 3 4.. Motivation 3 4.2. Diagonal matrices 3 4.3. Example: solving linear differential

More information

SYSTEM BRIEF DAILY SUMMARY

SYSTEM BRIEF DAILY SUMMARY SYSTEM BRIEF DAILY SUMMARY * ANNUAL MaxTemp NEL (MWH) Hr Ending Hr Ending LOAD (PEAK HOURS 7:00 AM TO 10:00 PM MON-SAT) ENERGY (MWH) INCREMENTAL COST DAY DATE Civic TOTAL MAXIMUM @Max MINIMUM @Min FACTOR

More information

EDRP lecture 7. Poisson process. Pawe J. Szab owski

EDRP lecture 7. Poisson process. Pawe J. Szab owski EDRP lecture 7. Poisson process. Pawe J. Szab owski 2007 Counting process Random process fn t ; t 0g is called a counting process, if N t is equal total number of events that have happened up to moment

More information

U a C o & I & I b t - - -, _...

U a C o & I & I b t - - -, _... U C & I &,.. - -, -, 4 - -,-. -... -., -. -- -.. - - -. - -. - -.- - - - - - -.- - -. - - - -, - - - - I b j - - -, _....... . B N y y M N K y q S N I y d U d.. C y - T W A I C Iy d I d CWW W ~ d ( b y

More information

Convex Geometry. Carsten Schütt

Convex Geometry. Carsten Schütt Convex Geometry Carsten Schütt November 25, 2006 2 Contents 0.1 Convex sets... 4 0.2 Separation.... 9 0.3 Extreme points..... 15 0.4 Blaschke selection principle... 18 0.5 Polytopes and polyhedra.... 23

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

Markov Chains (Part 4)

Markov Chains (Part 4) Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 =.286.286 %.286 For an irreducible

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Department of Mathematics & Statistics Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS4303 SEMESTER: Spring 2018 MODULE TITLE:

More information

LOWELL STORES SERVE THRONGS OF LOV PEOPLE ON FRIDAY NIGHT

LOWELL STORES SERVE THRONGS OF LOV PEOPLE ON FRIDAY NIGHT J p M 879 61 p 260 M G W j p : b p pp M M K p b J M G * p P p b p p D W P p b G 14 b p qp j b p p p J p z M- K W W G Gbb Wb M J W W K G J D D b b P P M p p b p p b b p J W ; p jb b p x b p p b b W Pp pp

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

Musical Instruments. Answers

Musical Instruments. Answers m w Wkh 1 m my Wdwd my g my my m m V m 3. W h m f h m h Y V,, D 4. W h m f h m h Y. h h, 5. W h m f h m h U Y Dm, g, 6. W h m f h m h WDWD Y,, 7. whh fmy d h XY g? Wkh 2 g my h fwg m g m. m m hk Whh g

More information

SYSTEM BRIEF DAILY SUMMARY

SYSTEM BRIEF DAILY SUMMARY SYSTEM BRIEF DAILY SUMMARY * ANNUAL MaxTemp NEL (MWH) Hr Ending Hr Ending LOAD (PEAK HOURS 7:00 AM TO 10:00 PM MON-SAT) ENERGY (MWH) INCREMENTAL COST DAY DATE Civic TOTAL MAXIMUM @Max MINIMUM @Min FACTOR

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

1 Delayed Renewal Processes: Exploiting Laplace Transforms

1 Delayed Renewal Processes: Exploiting Laplace Transforms IEOR 6711: Stochastic Models I Professor Whitt, Tuesday, October 22, 213 Renewal Theory: Proof of Blackwell s theorem 1 Delayed Renewal Processes: Exploiting Laplace Transforms The proof of Blackwell s

More information

I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials I.G Approach to Equilibrium and Thermodynamic Potentials Evolution of non-equilibrium systems towards equilibrium is governed by the second law of thermodynamics. For eample, in the previous section we

More information

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin Queuing Networks Florence Perronnin Polytech Grenoble - UGA March 23, 27 F. Perronnin (UGA) Queuing Networks March 23, 27 / 46 Outline Introduction to Queuing Networks 2 Refresher: M/M/ queue 3 Reversibility

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday 1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»

More information

Synthesis of passband filters with asymmetric transmission zeros

Synthesis of passband filters with asymmetric transmission zeros Synthesis of passband filters with asymmetric transmission zeros Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Passband filters with asymmetric zeros Placing asymmetric

More information

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k 2007 10 (545) 517.929..,.. 1. g t M, d dt g t = ;2 Ric(g t ) (1) Ric(g) g.,, -, - (., [1], [2]).,,.,, f t - (M G), g t = ft G,, (1)., -, -, (, ), - (,, [3]). t - E 3, g t, t E 3, (1). t -., -. (M g) Ric

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Introduction to Queuing Networks Solutions to Problem Sheet 3

Introduction to Queuing Networks Solutions to Problem Sheet 3 Introduction to Queuing Networks Solutions to Problem Sheet 3 1. (a) The state space is the whole numbers {, 1, 2,...}. The transition rates are q i,i+1 λ for all i and q i, for all i 1 since, when a bus

More information

= p(t)(1 λδt + o(δt)) (from axioms) Now p(0) = 1, so c = 0 giving p(t) = e λt as required. 5 For a non-homogeneous process we have

= p(t)(1 λδt + o(δt)) (from axioms) Now p(0) = 1, so c = 0 giving p(t) = e λt as required. 5 For a non-homogeneous process we have . (a (i I: P(exactly event occurs in [t, t + δt = λδt + o(δt, [o(δt/δt 0 as δt 0]. II: P( or more events occur in [t, t + δt = o(δt. III: Occurrence of events after time t is indeendent of occurrence of

More information

3.1 Markov Renewal Chains and Semi-Markov Chains

3.1 Markov Renewal Chains and Semi-Markov Chains 3 Semi-Markov Chains In this chapter we define the discrete-time semi-markov processes and we obtain their basic probabilistic properties. We present elements of Markov renewal theory in the discrete case

More information

CONSTANT SLOPE MAPS AND THE VERE-JONES CLASSIFICATION.

CONSTANT SLOPE MAPS AND THE VERE-JONES CLASSIFICATION. CONSTANT SLOPE MAPS AND THE VERE-JONES CLASSIFICATION. JOZEF BOBOK AND HENK BRUIN Abstract. We study continuous countably piecewise monotone interval maps, and formulate conditions under which these are

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Motion to Review the Academic Calendar Passed by Admissions and Standards, September 24, 2009

Motion to Review the Academic Calendar Passed by Admissions and Standards, September 24, 2009 Effective Fall 2010 Motion to Review the Academic Calendar Passed by Admissions and Standards, September 24, 2009 Each final exam will be two hours and thirty minutes. A day has been added to finals period.

More information

1. Determine the Zero-Force Members in the plane truss.

1. Determine the Zero-Force Members in the plane truss. 1. Determine the Zero-orce Members in the plane truss. 1 . Determine the forces in members G, CG, BC, and E for the loaded crane truss. Use the Method of Joints. 3. Determine the forces in members CG and

More information

MULTIPLIERS OF THE TERMS IN THE LOWER CENTRAL SERIES OF THE LIE ALGEBRA OF STRICTLY UPPER TRIANGULAR MATRICES. Louis A. Levy

MULTIPLIERS OF THE TERMS IN THE LOWER CENTRAL SERIES OF THE LIE ALGEBRA OF STRICTLY UPPER TRIANGULAR MATRICES. Louis A. Levy International Electronic Journal of Algebra Volume 1 (01 75-88 MULTIPLIERS OF THE TERMS IN THE LOWER CENTRAL SERIES OF THE LIE ALGEBRA OF STRICTLY UPPER TRIANGULAR MATRICES Louis A. Levy Received: 1 November

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

Econ Lecture 14. Outline

Econ Lecture 14. Outline Econ 204 2010 Lecture 14 Outline 1. Differential Equations and Solutions 2. Existence and Uniqueness of Solutions 3. Autonomous Differential Equations 4. Complex Exponentials 5. Linear Differential Equations

More information

Constant Slope Maps and the Vere-Jones Classification

Constant Slope Maps and the Vere-Jones Classification entropy Article Constant Slope Maps and the Vere-Jones Classification Jozef Bobok 1 and Henk Bruin 2, * 1 Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Praha 6,

More information

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS September 26, 207 EIGENVALUES AND EIGENVECTORS. APPLICATIONS RODICA D. COSTIN Contents 4. Eigenvalues and Eigenvectors 3 4.. Motivation 3 4.2. Diagonal matrices 3 4.3. Example: solving linear differential

More information

ISyE 6761 (Fall 2016) Stochastic Processes I

ISyE 6761 (Fall 2016) Stochastic Processes I Fall 216 TABLE OF CONTENTS ISyE 6761 (Fall 216) Stochastic Processes I Prof. H. Ayhan Georgia Institute of Technology L A TEXer: W. KONG http://wwong.github.io Last Revision: May 25, 217 Table of Contents

More information

Peak Load Forecasting

Peak Load Forecasting Peak Load Forecasting Eugene Feinberg Stony Brook University Advanced Energy 2009 Hauppauge, New York, November 18 Importance of Peak Load Forecasting Annual peak load forecasts are important for planning

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Poisson processes and their properties

Poisson processes and their properties Poisson processes and their properties Poisson processes. collection {N(t) : t [, )} of rando variable indexed by tie t is called a continuous-tie stochastic process, Furtherore, we call N(t) a Poisson

More information

THE VITA TEETH STOCK YOU WANT WHEN YOU NEED IT OR IT S ON US!

THE VITA TEETH STOCK YOU WANT WHEN YOU NEED IT OR IT S ON US! VMR T VIT TT TCK YU T YU D IT R IT U! MFT V V P P UY T F VIT TT f V k k. T %! If f V k f* *C : ff MFT R P V V P f f C f x x R f f V f 1 f P ff f 01/11/ /11/ x T f (&). P C. T 0800 MIL 8 5. ffx 08 808 555

More information

STAT 380 Markov Chains

STAT 380 Markov Chains STAT 380 Markov Chains Richard Lockhart Simon Fraser University Spring 2016 Richard Lockhart (Simon Fraser University) STAT 380 Markov Chains Spring 2016 1 / 38 1/41 PoissonProcesses.pdf (#2) Poisson Processes

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN Dedicated to the memory of Mikhail Gordin Abstract. We prove a central limit theorem for a square-integrable ergodic

More information

Stochastic Processes

Stochastic Processes MTHE/STAT455, STAT855 Fall 202 Stochastic Processes Final Exam, Solutions (5 marks) (a) (0 marks) Condition on the first pair to bond; each of the n adjacent pairs is equally likely to bond Given that

More information

Statistical test for some multistable processes

Statistical test for some multistable processes Statistical test for some multistable processes Ronan Le Guével Joint work in progress with A. Philippe Journées MAS 2014 1 Multistable processes First definition : Ferguson-Klass-LePage series Properties

More information

arxiv: v1 [math.oc] 22 Sep 2016

arxiv: v1 [math.oc] 22 Sep 2016 EUIVALENCE BETWEEN MINIMAL TIME AND MINIMAL NORM CONTROL PROBLEMS FOR THE HEAT EUATION SHULIN IN AND GENGSHENG WANG arxiv:1609.06860v1 [math.oc] 22 Sep 2016 Abstract. This paper presents the equivalence

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes The story of the film so far... Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 19 28 March 2012 We have been studying stochastic processes; i.e., systems whose time evolution has an element

More information

WILLPOWER! yalerep.org. WILL POWER! is supported by YALE REPERTORY THEATRE STUDY GUIDE WRITERS EDITORS SPECIAL THANKS

WILLPOWER! yalerep.org. WILL POWER! is supported by YALE REPERTORY THEATRE STUDY GUIDE WRITERS EDITORS SPECIAL THANKS 2016 G YALE REPERTORY THEATRE J B A D V N M D TUDY GUIDE WRITER WILL POWER! 2015 16 E U A P I Nw A F J M F T B Y D, MFA 16 P D L AH P Y D, MFA 17 P D EDITOR A Bk L M R C L A P M PECIAL THANK N H, J K,

More information

Efficient Monitoring Algorithm for Fast News Alert

Efficient Monitoring Algorithm for Fast News Alert Efficient Monitoring Algorithm for Fast News Alert Ka Cheung Richard Sia kcsia@cs.ucla.edu UCLA Backgroud Goal Monitor and collect information from the Web Answer most of users queries Challenges Billions

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Second-Order Analysis of Spatial Point Processes

Second-Order Analysis of Spatial Point Processes Title Second-Order Analysis of Spatial Point Process Tonglin Zhang Outline Outline Spatial Point Processes Intensity Functions Mean and Variance Pair Correlation Functions Stationarity K-functions Some

More information

Exam Session 2 (13:00 EDX IAL) PM: EDX - IAL. ****Revision**** Yr 11. Maths 10:45 to 11:45

Exam Session 2 (13:00 EDX IAL) PM: EDX - IAL. ****Revision**** Yr 11. Maths 10:45 to 11:45 Date Day External Examination timetable 2015 for A Level. CIE Key times: AM 12 noon, PM 4pm Date Day Exam Session 1 (09:30 EDX IAL, 11:00 EDX others) AM: EDX - GCE, GCSE, IGCSE AM: CIE Some Exams 1st May

More information

ceducate. SCIENCE

ceducate. SCIENCE d f K K K v G v G W f f d v K G G G W f G W f d K v d K k b d d K v G G G f W b d dw f v d K d K v G v G G W G f b W d w d f d d v f d M M d k b d G f - 2016 2015 v bb w.. f d. www.kwb. d f Pd, M 1 Pd,

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

Convex Geometry. Otto-von-Guericke Universität Magdeburg. Applications of the Brascamp-Lieb and Barthe inequalities. Exercise 12.

Convex Geometry. Otto-von-Guericke Universität Magdeburg. Applications of the Brascamp-Lieb and Barthe inequalities. Exercise 12. Applications of the Brascamp-Lieb and Barthe inequalities Exercise 12.1 Show that if m Ker M i {0} then both BL-I) and B-I) hold trivially. Exercise 12.2 Let λ 0, 1) and let f, g, h : R 0 R 0 be measurable

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

< 10 5,... m νe /m e. y ν. m ν y ν φ. φφ M. m ν y 2 ν. m ν y ν φ ν. φ ν 0.1 ev

< 10 5,... m νe /m e. y ν. m ν y ν φ. φφ M. m ν y 2 ν. m ν y ν φ ν. φ ν 0.1 ev m νe /m e < 10 5,... m ν y ν φ y ν m ν y 2 ν φφ M M m ν y ν φ ν φ ν 0.1 ev φ ν V =!m 2 " " 2 2 +m "# " # 2 +m 3 2 (" " # + " # ") + $ 1 2 " 4 + $ 2 2 " # 4 +$ 3 " 2 " # 2 +$ 4 (" " # )(" # ") + $ 5 2 [("

More information

c 2002 Society for Industrial and Applied Mathematics

c 2002 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 4 No. pp. 507 5 c 00 Society for Industrial and Applied Mathematics WEAK SECOND ORDER CONDITIONS FOR STOCHASTIC RUNGE KUTTA METHODS A. TOCINO AND J. VIGO-AGUIAR Abstract. A general

More information

Nature of Lesson (Lecture/Tutorial) H3 WK No. Day/ Date. Remarks. Duration. 4.00pm 6.30pm ALL. 2.5 hours. Introduction to Semiconductors Lecture 01

Nature of Lesson (Lecture/Tutorial) H3 WK No. Day/ Date. Remarks. Duration. 4.00pm 6.30pm ALL. 2.5 hours. Introduction to Semiconductors Lecture 01 JANUARY 2018 INTAKE Subject : Semiconductor Physics & Devices Venue : HCI Schedule : Mondays for Tutorial (3pm 5pm / 5pm 7pm) or Tuesdays for Tutorial (3pm 5pm / 5pm 7pm) and Thursdays for Lecture (4pm-6.30

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Lecture 4a: Continuous-Time Markov Chain Models

Lecture 4a: Continuous-Time Markov Chain Models Lecture 4a: Continuous-Time Markov Chain Models Continuous-time Markov chains are stochastic processes whose time is continuous, t [0, ), but the random variables are discrete. Prominent examples of continuous-time

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

P(X 0 = j 0,... X nk = j k )

P(X 0 = j 0,... X nk = j k ) Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that

More information

Machine Learning - MT Linear Regression

Machine Learning - MT Linear Regression Machine Learning - MT 2016 2. Linear Regression Varun Kanade University of Oxford October 12, 2016 Announcements All students eligible to take the course for credit can sign-up for classes and practicals

More information

CHAPTER 5. Basic Iterative Methods

CHAPTER 5. Basic Iterative Methods Basic Iterative Methods CHAPTER 5 Solve Ax = f where A is large and sparse (and nonsingular. Let A be split as A = M N in which M is nonsingular, and solving systems of the form Mz = r is much easier than

More information

Application of Edge Coloring of a Fuzzy Graph

Application of Edge Coloring of a Fuzzy Graph Application of Edge Coloring of a Fuzzy Graph Poornima B. Research Scholar B.I.E.T., Davangere. Karnataka, India. Dr. V. Ramaswamy Professor and Head I.S. & E Department, B.I.E.T. Davangere. Karnataka,

More information

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling Norwegian University of Science and Technology Department of Mathematical Sciences Page of 7 English Contact during examination: Øyvind Bakke Telephone: 73 9 8 26, 99 4 673 TMA426 Stochastic processes

More information

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU LU Factorization To further improve the efficiency of solving linear systems Factorizations of matrix A : LU and QR LU Factorization Methods: Using basic Gaussian Elimination (GE) Factorization of Tridiagonal

More information

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model STAT331 Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model Because of Theorem 2.5.1 in Fleming and Harrington, see Unit 11: For counting process martingales with

More information

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 *

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information