Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits


 Elfreda McGee
 2 years ago
 Views:
Transcription
1 Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits
2 Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter. It is used to generate a particular voltage for a large fixed V in. 2 Current (R 1 & R 2 ) Output voltage: I = V in R 1 + R 2 V out = IR 2 = R 2 R 1 + R 2 V in V out V in Voltage drop is proportional to the resistances V out can be used to drive a circuit that needs a voltage lower than V in.
3 Voltage Divider (cont.) 3 Add load resistor R L in parallel to R 2. You can model R 2 and R L as one resistor (parallel combination), then calculate V out for this new voltage divider If R L >> R 2, then the output voltage is still: V L = R 2 R 1 + R 2 V in However, if R L is comparable to R 2, V L is reduced. We say that the circuit is loaded.
4 Ideal voltage and current sources 4 Voltage source: provides fixed V out regardless of current/load resistance. Has zero internal resistance (perfect battery). Real voltage source supplies only finite max I. Current source: provides fixed I out regardless of voltage/load resistance. Has infinite resistance. Real current source have limit on voltage they can provide. Voltage source More common In almost every circuit Battery or Power Supply (PS)
5 Thevenin s theorem 5 Thevenin s theorem states that any two terminals network of R & V sources has an equivalent circuit consisting of a single voltage source V TH and a single resistor R TH. To find the Thevenin s equivalent V TH & R TH : For an open circuit (R L à ), then Voltage drops across device when disconnected from circuit no external load attached. For a short circuit (R L à0), then V Th = V open circuit R Th = V open circuit I short circuit I short circuit = current when the output is shorted directly to the ground.
6 Thevenin s theorem (cont) 6 Thevenin equivalent Open circuit voltage: Short circuit current: V TH = V out = V in R 2 R 1 + R 2 I short circuit = V in R 1 Lower leg of divider Total R Thevenin equivalent: Voltage source: V TH = V in R 2 R 1 + R 2 V opencircuit no external load in series with: R TH = R 1R 2 R 1 + R 2 like R 1 in parallel with R 2 R Th is called the output impedance (Z out ) of the voltage divider
7 Thevenin s theorem (cont) Very useful concept, especially when different circuits are connected with each other. Closely related to the concepts of input and output impedance (or resistance). 7 Circuit A, consisting of V TH and R TH, is fed to the second circuit element B, which consists of a simple load resistance R L.
8 Avoiding circuit loading The combined equivalent circuit (A+B) forms a voltage divider: V out = V TH R L R TH + R L = V TH ( ) 1+ R TH RL 8 R TH determines to what extent the output of the 1 st circuit behave as an ideal voltage source. To approximate ideal behavior and avoid loading the circuit, the ratio R TH /R L should be kept small. 10X rule of thumb: R TH /R L = 1/10 The output impedance of circuit A is the Thevenin equivalent resistance R TH (also called source impedance). The input impedance of circuit B is its resistance to ground from the circuit input. In this case, it is simply R L.
9 Example: voltage divider V in =30V, R 1 =R 2 =R load =10k 9 a) Output voltage w/ no load [Answ 15V] b) Output voltage w/ 10k load [Answ 10V]
10 Example (cont.) 10 c) Thevenin equivalent circuit [V TH =15V, R TH =5k] d) Same as b) but using the Thevenin equivalent circuit [Answ 10V] e) Power dissipated in each of the resistor [Answ P R1 =0.04W, P R2 =P RL =0.01W]
11 Example: impedance of a Voltmeter We want to measure the internal impedance of a voltmeter. Suppose that we are measuring V out of the voltage divider: 11 R TH : 2 100k in parallel, 100k/2 = 50k V TH = k 2 100k = 10V Measure voltage across R in (V out )= 8V, thus 2V drop across R TH The relative size of the two resistances are in proportion of these two voltage drops, so R in must be 4 (8/2) R TH, so R in = 200k
12 Terminology 12
13 Terminology (cont) 13 Offset = bias A DC voltage shifts an AC voltage up or down. DC bias AC signal AC signal with DC offset Gain: A V = V out V in Voltage gain Unity gain: V out =V in A I = I out I in Current gain
14 Terminology 14 When dealing with AC circuits we ll talk about V & I vs time or A vs f. Lower case symbols: i: AC portion of current waveform v: AC portion of voltage waveform. V(t)= V DC + v Decibels: To compare ratio of two signals: db = 20log 10 amplitude 2 amplitude 1 Often used for gain: eg ratio is log = 3 db NB: 3dB ~ power ratio of ½ ~ amplitude ratio of 0.7
15 Capacitors and RC circuits 15
16 Capacitor: reminder 16 Q = CV conducting plates Q: total charge [Coulomb] insulator C: capacitance [Farad 1F = 1C/1V] V: voltage across cap C = Q V = ε 0 A d [parallelplate capacitor] Since I = dq dt I = C dv dt I: rate at which charge flows or rate of change of the voltage For a capacitor, no DC current flows through, but AC current does. Large capacitances take longer to charge/discharge than smaller ones. Typically, capacitances are µf (106 ) pf (1012 ) C eq = C 1 + C 2 + C 3 [parallel] Same voltage drop across caps 1 C eq = 1 C C C 3 All caps have same Q [series]
17 Frequency analysis of reactive circuit 17 I(t) = C dv(t) = CωV 0 cos(ωt) dt ie the current is out of phase by 90 o to wrt voltage (leading phase) V(t) = V 0 sin(ωt) Considering the amplitude only: Frequency dependent resistance: I = V 0 1 ωc ω = 2π f R = 1 ωc = 1 2π fc Example: C=1µF 110V (rms) 60Hz power line I rms = π ( ) = 41.5mA(rms) I rms = I 2
18 Impedance of a capacitor Impedance is a generalized resistance. It allows rewriting law for capacitors so that it resembles Ohm s law. Symbol is Z and is the ratio of voltage/current. 18 Recall: I = C dv dt I = C d dt V 0 e jωt I = V 0 e jωt j ωc ( ) = jωcv 0 e jωt V(t) = V 0 cos(ωt) = Re V 0 e jωt The actual current is: I = Re V 0e jωt Z Z c = j ωc c Z c is the impedance of a capacitor at frequency ω. As ω (or f) increases (decreases), Z c decreases (increases) The fact that Z c is complex and negative is related to the fact the the voltage across the cap lags the current through it by 90 o.
19 Ohm s law generalized Ohm s law for impedances: V(t) = ZI(t) Z eq = Z 1 + Z 2 + Z 3 [series]!v =! Z! I using complex notation 19 1 Z eq = 1 Z Z Z 3 [parallel] Resistor: Z R = R in phase with I Capacitor: Z lags I by 90 o c = j ωc = 1 jωc Inductor: Z leads I by 90 o (use mainly in RF circuits) L = jωl Can use Kirchhoff s law as before but with complex representation of V & I. Generalized voltage divider:!v out =!V in!z 2!Z 1 +!Z 2
20 RC circuit 20 Capacitor is uncharged. At t=0, the RC circuit is connected to the battery (DC voltage) The voltage across the capacitor increases with time according to: I = C dv dt = V i V R A is determined by the initial t=0, V=0 thus A=V i à V = V i + Ae t RC V = V i ( 1 e t ) RC when t=rc 1/e=0.37 V Rate of charge/discharge is determined by RC 1RC 63% of 5RC 99% of voltage V i 0.63V i Time constant RC: For R Ohms and C in Farads, RC is in seconds For MΩ and µf, RC is seconds For kω and µf, RC is ms
21 RC circuit (cont.) Consider a circuit with a charge capacitor, a resistor, and a switch 21 V τ = RC = time constant V i 0.37V i Before switch is closed, V = V i and Q = Q i = CV i After switch is closed, capacitor discharges and voltage across capacitor decreases exponentially with time C dv dt V = I = à R V = V i e t/rc
22 Differentiator 22 Consider the series RC circuit as a voltage divider, with the output corresponding to the voltage across the resistor: V across C is V in V I = C d ( dt V in V ) = V R If we choose R & C small enough so that dv dt << dv in dt then, V(t) = RC d dt V in (t) Thus the output differentiate the input waveform! Simple rule of thumb: differentiator works well if V out << V in Differentiators are handy for detecting leading edges & trailing edges in pulse signals.
23 Integrator Now flip the order of the resistor and capacitor, with the output corresponding to the voltage across the capacitor: 23 V across R is V in V I = C dv dt = V in V R If RC is large, then V<<V in and C dv dt V in R à V(t) = 1 RC Thus the output integrate the input! Simple rule of thumb: integrator works well if Integrators are used extensively in analog computation (eg analog/digital conversion, waveform generation etc ) t V (t) in dt + cst V out << V in
24 Highpass filter Let s interpret the differentiator RC circuit as a frequencydependent voltage divider ( frequency domain ): Using complex Ohm s law:!i =! V in!z total =!V in ( ) = R j ωc ( )!V in R + j ωc R ω 2 C 2 24 Voltage across R is:!v out =! IR = R ( )!V in R + j ωc R ω 2 C 2 Voltage divider made of R & C jz If we care only about the amplitude: Thus V out increases with increasing f Impedance of a series RC combination: V out = * (!V out!v out ) 12 R = V in!z total = R j ωc R ω 2 C 2 R Z total = R ω 2 C 2 φ = tan ωc R ϕ j/ωc Note phase of output signal V out = V in R Z total impedance of lowerleg of divider Magnitude of impedance of R & C
25 Highpass filter frequency response 25 3dB below unit Output ~ equal to input at high frequency when ω ~ 1/RC [rad] Goes to zero at low frequency. Highpass filter frequency response curve A highpass filter circuit attenuates low frequency and passes the high frequencies. The frequency at which the filter turns the corner (ie V out /V in =1/ 2=0.7) is called the 3dB point: occurs when Z c =R f 3dB = 1 2π RC [Hz] Use this in lab otherwise factor 2π off NB: 3dB ~ power ratio of ½ ~ amplitude ratio of 0.7
26 Lowpass filter Now simply switch the order of the resistor and capacitor in the series circuit (same order as the integrator circuit earlier): 1 ωc impedance of lowerleg of divider 26 V out = V in R ω 2 C Magnitude of impedance of R & C A lowpass filter circuit attenuates high frequency and passes the low frequencies. 3dB below unit Lowpass filter frequency response curve
Lecture 4: RLC Circuits and Resonant Circuits
Lecture 4: RLC Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L
More informationK.K. Gan L3: RLC AC Circuits. amplitude. Volts. period. Vo
Lecture 3: RLC AC Circuits AC (Alternative Current): Most of the time, we are interested in the voltage at a point in the circuit will concentrate on voltages here rather than currents. We encounter
More informationElectronics. Basics & Applications. group talk Daniel Biesinger
Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications  RC circuits
More informationRLC Circuits and Resonant Circuits
P517/617 Lec4, P1 RLC Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationSinusoidal SteadyState Analysis
Chapter 4 Sinusoidal SteadyState Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
More information[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1
1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left
More informationCircuit AnalysisIII. Circuit AnalysisII Lecture # 3 Friday 06 th April, 18
Circuit AnalysisIII Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)
More informationA capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2
Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry
More informationDriven RLC Circuits Challenge Problem Solutions
Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs
More informationChapter 33. Alternating Current Circuits
Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation  Lower case
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations OpAmp Integrator and OpAmp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces
More informationSinusoids and Phasors
CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are timevarying. In this chapter, we are particularly interested in sinusoidally timevarying
More informationELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT
Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the
More informationFigure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
More information2. The following diagram illustrates that voltage represents what physical dimension?
BioE 1310  Exam 1 2/20/2018 Answer Sheet  Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other
More informationPhysics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules
Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys
More information15884/484 Electric Power Systems 1: DC and AC Circuits
15884/484 Electric Power Systems 1: DC and AC Circuits J. Zico Kolter October 8, 2013 1 Hydro Estimated U.S. Energy Use in 2010: ~98.0 Quads Lawrence Livermore National Laboratory Solar 0.11 0.01 8.44
More informationREACTANCE. By: Enzo Paterno Date: 03/2013
REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE  R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or
More informationEXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA
EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor
More informationAC Circuits. The Capacitor
The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance
More informationSCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Selfpaced Course
SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Selfpaced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationAC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage
Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from
More informationOn the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.
1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential
More informationCircuits Practice Websheet 18.1
Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10Ω resistors? a. 24
More information09/29/2009 Reading: Hambley Chapter 5 and Appendix A
EE40 Lec 10 Complex Numbers and Phasors Prof. Nathan Cheung 09/29/2009 Reading: Hambley Chapter 5 and Appendix A Slide 1 OUTLINE Phasors as notation for Sinusoids Arithmetic with Complex Numbers Complex
More informationBasics of Network Theory (PartI)
Basics of Network Theory (PartI) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation
More informationE40M. RC Circuits and Impedance. M. Horowitz, J. Plummer, R. Howe
E40M RC Circuits and Impedance Reading Reader: Chapter 6 Capacitance (if you haven t read it yet) Section 7.3 Impedance You should skip all the parts about inductors We will talk about them in a lecture
More informationPhysics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33
Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1
More informationLab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response
Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented
More informationConsider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.
AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 13 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model
More informationCIRCUIT ELEMENT: CAPACITOR
CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements capable of generating electric energy from nonelectric energy
More information8. Electric Currents
8. Electric Currents S. G. Rajeev January 30, 2011 An electric current is produced by the movement of electric charges. In most cases these are electrons. A conductor is a material through which an electric
More informationLaboratory I: Impedance
Physics 331, Fall 2008 Lab I  Handout 1 Laboratory I: Impedance Reading: Simpson Chapter 1 (if necessary) & Chapter 2 (particularly 2.92.13) 1 Introduction In this first lab we review the properties
More informationName Class Date. RC Circuit Lab
RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge
More informationLab 5 AC Concepts and Measurements II: Capacitors and RC TimeConstant
EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC TimeConstant Capacitors Capacitors are devices that can store electric charge
More informationCapacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.
Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallelplate capacitor connected to battery. (b) is a circuit
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationChapter 28 Solutions
Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution
More informationPHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit
PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,
More informationChapter 10 EMT1150 Introduction to Circuit Analysis
Chapter 10 EM1150 Introduction to Circuit Analysis Department of Computer Engineering echnology Fall 2018 Prof. Rumana Hassin Syed Chapter10 Capacitors Introduction to Capacitors he Electric Field Capacitance
More informationVersion 001 CIRCUITS holland (1290) 1
Version CIRCUITS holland (9) This printout should have questions Multiplechoice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated
More informationElectronics Capacitors
Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationEIT QuickReview Electrical Prof. Frank Merat
CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing
More informationLab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.
Lab 08: Capacitors Last edited March 5, 2018 Learning Objectives: 1. Understand the shortterm and longterm behavior of circuits containing capacitors. 2. Understand the mathematical relationship between
More informationCircuit AnalysisII. Circuit AnalysisII Lecture # 5 Monday 23 rd April, 18
Circuit AnalysisII Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.
More informationExperiment 8: Capacitance and the Oscilloscope
Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYSLAB 1493/1494/2699 Outline Capacitance: Capacitor
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationInductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors
Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors
More informationCapacitors. Chapter How capacitors work Inside a capacitor
Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.
More informationReview of DC Electric Circuit. DC Electric Circuits Examples (source:
Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review  DC Electric Circuit Multisim Circuit Simulation DC Circuit
More informationChapter 26 DirectCurrent Circuits
Chapter 26 DirectCurrent Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing
More informationEXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection
OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1signal function generator 2 Oscilloscope, A.V.O meter 3 Resisters & inductor &capacitor THEORY the following form for
More informationAC Circuits Homework Set
Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.
More informationProblem Set 5 Solutions
University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationLab 10: DC RC circuits
Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors
More informationDEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE
DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal
More informationAP Physics C. Electric Circuits III.C
AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the crosssectional area of the conductor changes. If a conductor has no current,
More informationAlternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)
More informationPhasors: Impedance and Circuit Anlysis. Phasors
Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor
More informationPhysics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes
Physics 405/505 Digital Electronics Techniques University of Arizona Spring 2006 Prof. Erich W. Varnes Administrative Matters Contacting me I will hold office hours on Tuesday from 13 pm Room 420K in
More informationCoulomb s constant k = 9x10 9 N m 2 /C 2
1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy
More informationCourse Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits
ourse Updates http://www.phys.hawaii.edu/~varner/phys272spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 11 Sinusoidal SteadyState Analysis Nam Ki Min nkmin@korea.ac.kr 01094192320 Contents and Objectives 3 Chapter Contents 11.1
More informationECE 201 Fall 2009 Final Exam
ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,
More information(d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration
Chapter 1  Timing Circuits GCSE Electronics Component 2: Application of Electronics Timing Circuits Learners should be able to: (a) describe how a RC network can produce a time delay (b) describe how
More informationENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004
ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms
More informationFig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf
1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A twoway switch S can connect the capacitors either to a d.c.
More informationExperiment Guide for RC Circuits
GuideP1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is
More informationThe RC Time Constant
The RC Time Constant Objectives When a directcurrent source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge
More informationName: Lab Partner: Section:
Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationSinusoidal SteadyState Analysis
Sinusoidal SteadyState Analysis Almost all electrical systems, whether signal or power, operate with alternating currents and voltages. We have seen that when any circuit is disturbed (switched on or
More informationRC, RL, and LCR Circuits
RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationPHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS
PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS The first purpose of this laboratory is to observe voltages as a function of time in an RC circuit and compare it to its expected time behavior. In the second
More informationThe Basic Capacitor. Dielectric. Conductors
Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability
More informationSchedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.
Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationCapacitors are devices which can store electric charge. They have many applications in electronic circuits. They include:
CAPACITORS Capacitors are devices which can store electric charge They have many applications in electronic circuits They include: forming timing elements, waveform shaping, limiting current in AC circuits
More informationChapter 7 DirectCurrent Circuits
Chapter 7 DirectCurrent Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 VoltageCurrent Measurements... 8 7.6
More informationInductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits
Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying
More informationEXPERIMENT 5A RC Circuits
EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationEnergy Storage Elements: Capacitors and Inductors
CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,
More information0 t < 0 1 t 1. u(t) =
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult
More informationENGR 2405 Chapter 6. Capacitors And Inductors
ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They
More informationM. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]
M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance
More informationPhys 2025, First Test. September 20, minutes Name:
Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 101 C / N m e
More informationBasic RL and RC Circuits RL TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri
st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R
More informationDesign Engineering MEng EXAMINATIONS 2016
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
More informationChapter 9 Objectives
Chapter 9 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 9 Objectives Understand the concept of a phasor; Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor
More informationLearnabout Electronics  AC Theory
Learnabout Electronics  AC Theory Facts & Formulae for AC Theory www.learnaboutelectronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...
More informationAn op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details.
CHAPTER 5 Operational Amplifiers In this chapter, we learn how to use a new circuit element called op amp to build circuits that can perform various kinds of mathematical operations. Op amp is a building
More informationPHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017
PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell
More informationUniversity of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB
PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about
More informationChapter 27. Circuits
Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,
More information