Minimizing the total flow-time on a single machine with an unavailability period

Size: px
Start display at page:

Download "Minimizing the total flow-time on a single machine with an unavailability period"

Transcription

1 Minimizing the total flow-time on a single machine with an unavailability period Julien Moncel (LAAS-CNRS, Toulouse France) Jérémie Thiery (DIAGMA Supply Chain, Paris France) Ariel Waserhole (G-SCOP, Grenoble France) Project Management and Scheduling 2 4 April 2012

2 Outline 1 Introduction 2 Literature review 3 Our contribution : theoretical results 4 Our contribution : experimental results

3 And now... 1 Introduction 2 Literature review 3 Our contribution : theoretical results 4 Our contribution : experimental results

4 The problem Settings One machine One unavailability period [R, R + L] No preemption Total flow-time i C i Denoted 1, h 1 i C i

5 The problem Why unavailable? Unavailability = planned maintenance, lunch break, commitment for other tasks, etc.

6 Similar problems (1) 1, h 1 C max Same settings with C max instead of i C i : NP-complete Related to problem PARTITION PARTITION n numbers a 1,..., a n is there a partition I J = {1,..., n} such that i I a i = j J a j? (problem SP12 in the Garey-Johnson)

7 Similar problems (2) 1, h 1 preemption i C i Same settings with preemption : trivial (SPT)

8 And now... 1 Introduction 2 Literature review 3 Our contribution : theoretical results 4 Our contribution : experimental results

9 Complexity Complexity 1, h 1 i C i is NP-hard [Lee & Liman (1992)] Proof using EVEN-ODD PARTITION EVEN-ODD PARTITION 2n numbers a 1,..., a 2n such that a i < a i+1 for all i is there a partition I J = {1,..., n} such that i I a i = j J a j and I {x 2i 1, x 2i } = 1 for all i?

10 Idea of proof Settings 2n + 1 jobs M P two large constants p i = M + a i for i = 1,..., 2n and p 2n+1 = P Z = 1 2 i a i R = nm + Z and L = M Settings that ensure there always are n jobs before R (and n + 1 jobs after) the problem reduces to minimizing the idle time before R

11 Approximation algorithms (1) [Lee & Liman (1992)] SPT : O(n log n) heuristic of relative error 2 7 [Sadfi et al. (2005)] 2-OPT with SPT : O(n 2 ) heuristic of relative error 3 17 schedule jobs according to SPT try all possible exchanges of 1 job before R with 1 job after R output the best schedule

12 Approximation algorithms (2) [He et al. (2006)] 2k-OPT with SPT : O(n 2k ) heuristic of relative error k+8 schedule jobs according to SPT try all possible exchanges of k jobs before R with k jobs after R output the best schedule This is a PTAS called MSPT-k 2 We improve the 5+2 bound of [He et al. (2006)], and 2k+8 provide a new bound that is asymptotically tight

13 Other approximation algorithms [Breit (2007)] An O(n log n) parameterized heuristic of best relative error [Kacem & Mahjoub (2009)] An FPTAS for 1, h 1 i w ic i

14 And now... 1 Introduction 2 Literature review 3 Our contribution : theoretical results 4 Our contribution : experimental results

15 Main results Theorem (Improved bound) An improved error bound of the PTAS MSPT-k is k+2 2k 2 +8k+7. This improves the computation of the bound made by [He et al. (2006)]. Theorem (Tightness of the new bound) This error bound is asymptotically tight.

16 Notations (1) p i C i C [i] R L δ S S S processing time of job i completion time of job i completion time of job scheduled at position i starting time of unavailability period duration of unavailability period idle time of the machine before the unavailability period schedule obtained by SPT schedule obtained by MSPT-k optimal schedule

17 Notations (2) S S S schedule obtained by SPT schedule obtained by MSPT-k optimal schedule

18 How to improve the bound (1) Lemma If Ŝ is a schedule better than the SPT schedule S, then δ δ. Remark : the converse is not true

19 How to improve the bound (2) Lemma Let C [i] and C[i] be completion times of job scheduled at position i in the SPT and in the optimal solution (resp.). Then we have: i A C [i] j Y C [j] + Y (δ δ ). Lemma Let t 1 be an integer. If (at least) t jobs of X are scheduled after the period of maintenance in the optimal solution, then we have: n i=1 C i n i=1 C i + ( Y (t + 1)) (δ δ ).

20 How to improve the bound (3) Lemma Let t 1 be an integer. If (at least) t jobs of B are scheduled after the period of maintenance in the optimal schedule S, then we have: Lemma n i=1 C i { Y ( Y + 1) 2 } + t (δ δ ) Let p 1 and q 1 s.t. p q. If it is possible to exchange p jobs of B with q jobs of A, then it is possible to exchange p q + 1 jobs of B with 1 job of A.

21 The new bound The error bound ε k of MSPT-k satisfies ε k = n i=1 C i n n i=1 C i i=1 C i 2( Y (k + 1)) Y ( Y + 1) + 2(k + 1). For all k > 0, the function f k : x f k (x) = 2(x (k+1)) x(x+1)+2(k+1), x N+ reaches its maximum for x k = 2k + 3. Then we have Hence max ε Y N + k f k (x k ) = k + 2 2k 2 + 8k + 7 k + 2 2k 2 + 8k + 7. is an (improved) relative error bound for MSPT-k.

22 Why is the new bound tight? (1) Family of extremal instances k N and M N s.t. k 2 = o(m) 3k + 4 jobs with p i = 1 for i {1, 2,.., k + 1} p i = M for i {k + 2,.., 3k + 4} R = M and L = 1 Such that the SPT schedule is

23 Why is the new bound tight? (2) n i=1 C i = M(2k 2 +9k+9)+o(M) and n i=1 C i = M(2k 2 +8k+7)+o(M) n i=1 C i n n i=1 C i i=1 C i = M(k + 2) + o(m) M(2k 2 + 8k + 7) + o(m) k + 2 2k 2 + 8k + 7

24 And now... 1 Introduction 2 Literature review 3 Our contribution : theoretical results 4 Our contribution : experimental results

25 Settings Tested algorithms MSPT-k for k = 0, 1, 2 Random instances job processing times : integers randomly and uniformly chosen in [1, 100] duration L = mean of job processing times starting time D = proportion R perc of the sum of the processing times, R perc {0.1, 0.3, 0.5, 0.7, 0.9} number n of jobs ranged from 10 to 5000 (Classical settings for this problem, see e.g. [Breit (2007)] or [Sadfi et al. (2005)])

26 n M0(m) M0(w) M1(m) M1(w) M2(m) M2(w) Av Theor Table: Percent deviations. M0, M1, M2 = SPT, MSPT-1, MSPT-2. A(m) = mean percent deviation of A from the optimal, A(w) = worse percent deviation of A from the optimal. Av. = average value for the lines n = 10 to n = 1000, Theor. = theoretical value of the error bound.

27 n OPT M0 M1 M Av Table: Mean running time (in ms).

28 Conclusion DP, SPT, and MSPT-1 already very efficient MSPT-2 dominated by DP, SPT, MSPT-1 other tests : FPTAS of [Kacem & Mahjoub (2009)], dominated by DP, SPT, MSPT-1

29 References (1) J. Breit, Improved approximation for non-preemptive single machine flow-time scheduling with an availability constraint, European Journal of Operational Research 183 (2007), Y. He, W. Zhong, H. Gu, Improved algorithms for two single machine scheduling problems, Theoretical Computer Science 363 (2006) I. Kacem, A. Ridha Mahjoub, Fully polynomial time approximation scheme for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers and Industrial Engineering 56 (2009),

30 References (2) C.-Y. Lee, S. D. Liman, Single machine flow-time scheduling with scheduled maintenance, Acta Informatica 29 (1992), C. Sadfi, B. Penz, C. Rapine, J. B lażewicz, P. Formanowicz, An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints, European Journal of Operational Research 161 (2005), 3 10.

Research Article Minimizing the Number of Tardy Jobs on a Single Machine with an Availability Constraint

Research Article Minimizing the Number of Tardy Jobs on a Single Machine with an Availability Constraint Journal of Industrial Engineering, Article ID 568317, 13 pages http://dx.doi.org/10.1155/2014/568317 Research Article Minimizing the Number of Tardy Jobs on a Single Machine with an Availability Constraint

More information

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint Joachim Breit Department of Information and Technology Management, Saarland University,

More information

Lecture 4 Scheduling 1

Lecture 4 Scheduling 1 Lecture 4 Scheduling 1 Single machine models: Number of Tardy Jobs -1- Problem 1 U j : Structure of an optimal schedule: set S 1 of jobs meeting their due dates set S 2 of jobs being late jobs of S 1 are

More information

An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint

An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint J. Breit Department of Information and Technology Management, Saarland University, Saarbrcken, Germany

More information

Minimizing maximum earliness in single-machine scheduling with exible maintenance time

Minimizing maximum earliness in single-machine scheduling with exible maintenance time Scientia Iranica E (2017) 24(4), 2082{2094 Sharif University of Technology Scientia Iranica Transactions E: Industrial Engineering www.scientiairanica.com Minimizing maximum earliness in single-machine

More information

Single Machine Scheduling with Job-Dependent Machine Deterioration

Single Machine Scheduling with Job-Dependent Machine Deterioration Single Machine Scheduling with Job-Dependent Machine Deterioration Wenchang Luo 1, Yao Xu 2, Weitian Tong 3, and Guohui Lin 4 1 Faculty of Science, Ningbo University. Ningbo, Zhejiang 315211, China; and

More information

Complexity and Algorithms for Two-Stage Flexible Flowshop Scheduling with Availability Constraints

Complexity and Algorithms for Two-Stage Flexible Flowshop Scheduling with Availability Constraints Complexity and Algorithms or Two-Stage Flexible Flowshop Scheduling with Availability Constraints Jinxing Xie, Xijun Wang Department o Mathematical Sciences, Tsinghua University, Beijing 100084, China

More information

APTAS for Bin Packing

APTAS for Bin Packing APTAS for Bin Packing Bin Packing has an asymptotic PTAS (APTAS) [de la Vega and Leuker, 1980] For every fixed ε > 0 algorithm outputs a solution of size (1+ε)OPT + 1 in time polynomial in n APTAS for

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev, m.uetz}@ke.unimaas.nl

More information

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Min Ji a, b, 2 Yong He b, 3 T.C.E. Cheng c, 4 a College of Computer Science & Information Engineering, Zhejiang

More information

Minimizing Mean Flowtime and Makespan on Master-Slave Systems

Minimizing Mean Flowtime and Makespan on Master-Slave Systems Minimizing Mean Flowtime and Makespan on Master-Slave Systems Joseph Y-T. Leung,1 and Hairong Zhao 2 Department of Computer Science New Jersey Institute of Technology Newark, NJ 07102, USA Abstract The

More information

Bin packing and scheduling

Bin packing and scheduling Sanders/van Stee: Approximations- und Online-Algorithmen 1 Bin packing and scheduling Overview Bin packing: problem definition Simple 2-approximation (Next Fit) Better than 3/2 is not possible Asymptotic

More information

Single machine scheduling with forbidden start times

Single machine scheduling with forbidden start times 4OR manuscript No. (will be inserted by the editor) Single machine scheduling with forbidden start times Jean-Charles Billaut 1 and Francis Sourd 2 1 Laboratoire d Informatique Université François-Rabelais

More information

HEURISTICS FOR TWO-MACHINE FLOWSHOP SCHEDULING WITH SETUP TIMES AND AN AVAILABILITY CONSTRAINT

HEURISTICS FOR TWO-MACHINE FLOWSHOP SCHEDULING WITH SETUP TIMES AND AN AVAILABILITY CONSTRAINT HEURISTICS FOR TWO-MACHINE FLOWSHOP SCHEDULING WITH SETUP TIMES AND AN AVAILABILITY CONSTRAINT Wei Cheng Health Monitor Network, Parmus, NJ John Karlof Department of Mathematics and Statistics University

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

STABILITY OF JOHNSON S SCHEDULE WITH LIMITED MACHINE AVAILABILITY

STABILITY OF JOHNSON S SCHEDULE WITH LIMITED MACHINE AVAILABILITY MOSIM 01 du 25 au 27 avril 2001 Troyes (France) STABILITY OF JOHNSON S SCHEDULE WITH LIMITED MACHINE AVAILABILITY Oliver BRAUN, Günter SCHMIDT Department of Information and Technology Management Saarland

More information

Partition is reducible to P2 C max. c. P2 Pj = 1, prec Cmax is solvable in polynomial time. P Pj = 1, prec Cmax is NP-hard

Partition is reducible to P2 C max. c. P2 Pj = 1, prec Cmax is solvable in polynomial time. P Pj = 1, prec Cmax is NP-hard I. Minimizing Cmax (Nonpreemptive) a. P2 C max is NP-hard. Partition is reducible to P2 C max b. P Pj = 1, intree Cmax P Pj = 1, outtree Cmax are both solvable in polynomial time. c. P2 Pj = 1, prec Cmax

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

A Framework for Scheduling with Online Availability

A Framework for Scheduling with Online Availability A Framework for Scheduling with Online Availability Florian Diedrich, and Ulrich M. Schwarz Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany {fdi,ums}@informatik.uni-kiel.de

More information

Batch delivery scheduling with simple linear deterioration on a single machine 1

Batch delivery scheduling with simple linear deterioration on a single machine 1 Acta Technica 61, No. 4A/2016, 281 290 c 2017 Institute of Thermomechanics CAS, v.v.i. Batch delivery scheduling with simple linear deterioration on a single machine 1 Juan Zou 2,3 Abstract. Several single

More information

Lecture 2: Scheduling on Parallel Machines

Lecture 2: Scheduling on Parallel Machines Lecture 2: Scheduling on Parallel Machines Loris Marchal October 17, 2012 Parallel environment alpha in Graham s notation): P parallel identical Q uniform machines: each machine has a given speed speed

More information

Scheduling linear deteriorating jobs with an availability constraint on a single machine

Scheduling linear deteriorating jobs with an availability constraint on a single machine Theoretical Computer Science 362 (2006 115 126 www.elsevier.com/locate/tcs Scheduling linear deteriorating jobs with an availability constraint on a single machine Min Ji a,b, Yong He b, T.C.E. Cheng c,

More information

Approximation Basics

Approximation Basics Approximation Basics, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Fall 2012 Special thanks is given to Dr. Guoqiang Li for

More information

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines?

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines? Multiple Machines Model Multiple Available resources people time slots queues networks of computers Now concerned with both allocation to a machine and ordering on that machine. P C max NP-complete from

More information

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Knapsack Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Goal: find a subset of items of maximum profit such that the item subset fits in the bag Knapsack X: item set

More information

Polynomial Time Algorithms for Minimum Energy Scheduling

Polynomial Time Algorithms for Minimum Energy Scheduling Polynomial Time Algorithms for Minimum Energy Scheduling Philippe Baptiste 1, Marek Chrobak 2, and Christoph Dürr 1 1 CNRS, LIX UMR 7161, Ecole Polytechnique 91128 Palaiseau, France. Supported by CNRS/NSF

More information

Single Machine Problems Polynomial Cases

Single Machine Problems Polynomial Cases DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING Lecture 2 Single Machine Problems Polynomial Cases Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline

More information

Single-machine scheduling problems with position- dependent processing times

Single-machine scheduling problems with position- dependent processing times Single-machine scheduling problems with position- dependent processing times Julien Moncel Université Toulouse 1 IUT Rodez LAAS-CNRS Joint work Gerd Finke G-SCOP Grenoble (France) Vincent Jost LIX Paris

More information

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned.

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned. LPT rule Whenever a machine becomes free for assignment, assign that job whose processing time is the largest among those jobs not yet assigned. Example m1 m2 m3 J3 Ji J1 J2 J3 J4 J5 J6 6 5 3 3 2 1 3 5

More information

On Machine Dependency in Shop Scheduling

On Machine Dependency in Shop Scheduling On Machine Dependency in Shop Scheduling Evgeny Shchepin Nodari Vakhania Abstract One of the main restrictions in scheduling problems are the machine (resource) restrictions: each machine can perform at

More information

8 Knapsack Problem 8.1 (Knapsack)

8 Knapsack Problem 8.1 (Knapsack) 8 Knapsack In Chapter 1 we mentioned that some NP-hard optimization problems allow approximability to any required degree. In this chapter, we will formalize this notion and will show that the knapsack

More information

arxiv: v1 [math.oc] 3 Jan 2019

arxiv: v1 [math.oc] 3 Jan 2019 The Product Knapsack Problem: Approximation and Complexity arxiv:1901.00695v1 [math.oc] 3 Jan 2019 Ulrich Pferschy a, Joachim Schauer a, Clemens Thielen b a Department of Statistics and Operations Research,

More information

Study of Scheduling Problems with Machine Availability Constraint

Study of Scheduling Problems with Machine Availability Constraint Journal of Industrial and Systems Engineering Vol. 1, No. 4, pp 360-383 Winter 2008 Study of Scheduling Problems with Machine Availability Constraint Hamid Reza Dehnar Saidy 1*, Mohammad Taghi Taghavi-Fard

More information

Approximation Algorithms for Scheduling with Reservations

Approximation Algorithms for Scheduling with Reservations Approximation Algorithms for Scheduling with Reservations Florian Diedrich 1,,, Klaus Jansen 1,, Fanny Pascual 2, and Denis Trystram 2, 1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel,

More information

Machine scheduling with resource dependent processing times

Machine scheduling with resource dependent processing times Mathematical Programming manuscript No. (will be inserted by the editor) Alexander Grigoriev Maxim Sviridenko Marc Uetz Machine scheduling with resource dependent processing times Received: date / Revised

More information

Approximation Algorithms (Load Balancing)

Approximation Algorithms (Load Balancing) July 6, 204 Problem Definition : We are given a set of n jobs {J, J 2,..., J n }. Each job J i has a processing time t i 0. We are given m identical machines. Problem Definition : We are given a set of

More information

Analysis of Scheduling Algorithms with Reservations

Analysis of Scheduling Algorithms with Reservations Analysis of Scheduling Algorithms with Reservations Lionel Eyraud-Dubois 2, Grégory Mounié and Denis Trystram LIG, Grenoble Universités, 2 LIP, ÉNS Lyon, ENSIMAG-montbonnot, 5 avenue Kuntzmann 46 allée

More information

Scheduling chains of operations on a batching machine with disjoint sets of operation compatibility

Scheduling chains of operations on a batching machine with disjoint sets of operation compatibility Scheduling chains of operations on a batching machine with disjoint sets of operation compatibility Nadia Brauner, Guyslain Naves To cite this version: Nadia Brauner, Guyslain Naves. Scheduling chains

More information

Preemptive Scheduling of Independent Jobs on Identical Parallel Machines Subject to Migration Delays

Preemptive Scheduling of Independent Jobs on Identical Parallel Machines Subject to Migration Delays Preemptive Scheduling of Independent Jobs on Identical Parallel Machines Subject to Migration Delays Aleksei V. Fishkin 1, Klaus Jansen 2, Sergey V. Sevastyanov 3,andRené Sitters 1 1 Max-Planck-Institute

More information

COSC 341: Lecture 25 Coping with NP-hardness (2)

COSC 341: Lecture 25 Coping with NP-hardness (2) 1 Introduction Figure 1: Famous cartoon by Garey and Johnson, 1979 We have seen the definition of a constant factor approximation algorithm. The following is something even better. 2 Approximation Schemes

More information

Energy-efficient scheduling

Energy-efficient scheduling Energy-efficient scheduling Guillaume Aupy 1, Anne Benoit 1,2, Paul Renaud-Goud 1 and Yves Robert 1,2,3 1. Ecole Normale Supérieure de Lyon, France 2. Institut Universitaire de France 3. University of

More information

RCPSP Single Machine Problems

RCPSP Single Machine Problems DM204 Spring 2011 Scheduling, Timetabling and Routing Lecture 3 Single Machine Problems Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Resource

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths

No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths J.C. Billaut 1, F.Della Croce 2, Fabio Salassa 2, V. T kindt 1 1. Université Francois-Rabelais, CNRS, Tours, France

More information

1 Ordinary Load Balancing

1 Ordinary Load Balancing Comp 260: Advanced Algorithms Prof. Lenore Cowen Tufts University, Spring 208 Scribe: Emily Davis Lecture 8: Scheduling Ordinary Load Balancing Suppose we have a set of jobs each with their own finite

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Ideal preemptive schedules on two processors

Ideal preemptive schedules on two processors Acta Informatica 39, 597 612 (2003) Digital Object Identifier (DOI) 10.1007/s00236-003-0119-6 c Springer-Verlag 2003 Ideal preemptive schedules on two processors E.G. Coffman, Jr. 1, J. Sethuraman 2,,

More information

Exponential neighborhood search for a parallel machine scheduling problem

Exponential neighborhood search for a parallel machine scheduling problem xponential neighborhood search for a parallel machine scheduling problem Y.A. Rios Solis and F. Sourd LIP6 - Université Pierre et Marie Curie 4 Place Jussieu, 75252 Paris Cedex 05, France Abstract We consider

More information

Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem

Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem Mukul Subodh Bansal V.Ch.Venkaiah International Institute of Information Technology Hyderabad, India Abstract

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

Approximation schemes for parallel machine scheduling with non-renewable resources

Approximation schemes for parallel machine scheduling with non-renewable resources Approximation schemes for parallel machine scheduling with non-renewable resources Péter Györgyi a,b, Tamás Kis b, a Department of Operations Research, Loránd Eötvös University, H1117 Budapest, Pázmány

More information

Heuristics for two-machine flowshop scheduling with setup times and an availability constraint

Heuristics for two-machine flowshop scheduling with setup times and an availability constraint Heuristics for two-machine flowshop scheduling with setup times and an availability constraint Wei Cheng A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment Of the

More information

Single Machine Scheduling with a Non-renewable Financial Resource

Single Machine Scheduling with a Non-renewable Financial Resource Single Machine Scheduling with a Non-renewable Financial Resource Evgeny R. Gafarov a, Alexander A. Lazarev b Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65, 117997

More information

hal , version 1-27 Mar 2014

hal , version 1-27 Mar 2014 Author manuscript, published in "2nd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2005), New York, NY. : United States (2005)" 2 More formally, we denote by

More information

Scheduling Online Algorithms. Tim Nieberg

Scheduling Online Algorithms. Tim Nieberg Scheduling Online Algorithms Tim Nieberg General Introduction on-line scheduling can be seen as scheduling with incomplete information at certain points, decisions have to be made without knowing the complete

More information

arxiv: v1 [cs.ds] 15 Sep 2018

arxiv: v1 [cs.ds] 15 Sep 2018 Approximation algorithms for the three-machine proportionate mixed shop scheduling Longcheng Liu Yong Chen Jianming Dong Randy Goebel Guohui Lin Yue Luo Guanqun Ni Bing Su An Zhang arxiv:1809.05745v1 [cs.ds]

More information

Single Machine Models

Single Machine Models Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 8 Single Machine Models 1. Dispatching Rules 2. Single Machine Models Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Dispatching

More information

High Multiplicity Scheduling on One Machine with Forbidden Start and Completion Times

High Multiplicity Scheduling on One Machine with Forbidden Start and Completion Times High Multiplicity Scheduling on One Machine with Forbidden Start and Completion Times Michaël Gabay, Christophe Rapine, Nadia Brauner Abstract We are interested in a single machine scheduling problem where

More information

bound of (1 + p 37)=6 1: Finally, we present a randomized non-preemptive 8 -competitive algorithm for m = 2 7 machines and prove that this is op

bound of (1 + p 37)=6 1: Finally, we present a randomized non-preemptive 8 -competitive algorithm for m = 2 7 machines and prove that this is op Semi-online scheduling with decreasing job sizes Steve Seiden Jir Sgall y Gerhard Woeginger z October 27, 1998 Abstract We investigate the problem of semi-online scheduling jobs on m identical parallel

More information

Fixed-sequence single machine scheduling and outbound delivery problems

Fixed-sequence single machine scheduling and outbound delivery problems Fixed-sequence single machine scheduling and outbound delivery problems Azeddine Cheref, Alessandro Agnetis, Christian Artigues, Jean-Charles Billaut To cite this version: Azeddine Cheref, Alessandro Agnetis,

More information

Event-based formulations for the RCPSP with production and consumption of resources

Event-based formulations for the RCPSP with production and consumption of resources Event-based formulations for the RCPSP with production and consumption of resources Oumar KONE 1, Christian ARTIGUES 1, Pierre LOPEZ 1, and Marcel MONGEAU 2 May 2010 1: CNRS ; LAAS ; 7 avenue du colonel

More information

A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation

A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation Friedrich Eisenbrand and Thomas Rothvoß Institute of Mathematics École Polytechnique Féderale de Lausanne, 1015 Lausanne, Switzerland

More information

ILP Formulations for the Lazy Bureaucrat Problem

ILP Formulations for the Lazy Bureaucrat Problem the the PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France, CNRS, LAMSADE UMR 7243 Department of Statistics and Operations Research, University of Vienna, Vienna, Austria EURO 2015, 12-15 July,

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal October 16, 2012 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer

More information

A new analysis of Best Fit bin packing

A new analysis of Best Fit bin packing A new analysis of Best Fit bin packing Jiří Sgall Computer Science Institute of Charles University, Prague, Czech Republic. sgall@iuuk.mff.cuni.cz Abstract. We give a simple proof and a generalization

More information

Smith s Rule in Stochastic Scheduling

Smith s Rule in Stochastic Scheduling Smith s Rule In Stochastic Scheduling Caroline Jagtenberg Uwe Schwiegelshohn Utrecht University Dortmund University University of Twente Aussois 2011 The (classic) setting Problem n jobs, nonpreemptive,

More information

The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan

The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan J.J. YUAN 1,, Z.H. Liu 2,, C.T. NG and T.C.E. CHENG 1 Department of Mathematics, Zhengzhou

More information

CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring / 1

CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring / 1 CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 1 Part I Greedy Algorithms: Tools and Techniques Chandra

More information

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling Andreas Karrenbauer and Thomas Rothvoß Institute of Mathematics École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

More information

Real-Time k-bounded Preemptive Scheduling

Real-Time k-bounded Preemptive Scheduling Real-Time k-bounded Preemptive Scheduling Sivan Albagli-Kim Baruch Schieber Hadas Shachnai Tami Tamir Abstract We consider a variant of the classic real-time scheduling problem, which has natural applications

More information

On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm

On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm Christoph Ambühl and Monaldo Mastrolilli IDSIA Galleria 2, CH-6928 Manno, Switzerland October 22, 2004 Abstract We investigate

More information

A Robust APTAS for the Classical Bin Packing Problem

A Robust APTAS for the Classical Bin Packing Problem A Robust APTAS for the Classical Bin Packing Problem Leah Epstein 1 and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il 2 Department of Statistics,

More information

On-line Scheduling of Two Parallel Machines. with a Single Server

On-line Scheduling of Two Parallel Machines. with a Single Server On-line Scheduling of Two Parallel Machines with a Single Server Lele Zhang, Andrew Wirth Department of Mechanical and Manufacturing Engineering, The University of Melbourne, VIC 3010, Australia Abstract

More information

Online interval scheduling on uniformly related machines

Online interval scheduling on uniformly related machines Online interval scheduling on uniformly related machines Leah Epstein Lukasz Jeż Jiří Sgall Rob van Stee August 27, 2012 Abstract We consider online preemptive throughput scheduling of jobs with fixed

More information

Computers and Intractability. The Bandersnatch problem. The Bandersnatch problem. The Bandersnatch problem. A Guide to the Theory of NP-Completeness

Computers and Intractability. The Bandersnatch problem. The Bandersnatch problem. The Bandersnatch problem. A Guide to the Theory of NP-Completeness Computers and Intractability A Guide to the Theory of NP-Completeness The Bible of complexity theory Background: Find a good method for determining whether or not any given set of specifications for a

More information

Computers and Intractability

Computers and Intractability Computers and Intractability A Guide to the Theory of NP-Completeness The Bible of complexity theory M. R. Garey and D. S. Johnson W. H. Freeman and Company, 1979 The Bandersnatch problem Background: Find

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

Minimizing the weighted completion time on a single machine with periodic maintenance

Minimizing the weighted completion time on a single machine with periodic maintenance Minimizing the weighted completion time on a single machine with periodic maintenance KRIM Hanane University of Valenciennes and Hainaut-Cambrésis LAMIH UMR CNRS 8201 1st year Phd Student February 12,

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs

Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs This is the Pre-Published Version. Multi-agent scheduling on a single machine to minimize total weighted number of tardy obs T.C.E. Cheng 1, C.T. Ng 1 and J.J. Yuan 2 1 Department of Logistics, The Hong

More information

A lower bound for scheduling of unit jobs with immediate decision on parallel machines

A lower bound for scheduling of unit jobs with immediate decision on parallel machines A lower bound for scheduling of unit jobs with immediate decision on parallel machines Tomáš Ebenlendr Jiří Sgall Abstract Consider scheduling of unit jobs with release times and deadlines on m identical

More information

Combinatorial Structure of Single machine rescheduling problem

Combinatorial Structure of Single machine rescheduling problem Workshop on Combinatorics and Optimization Combinatorial Structure of Single machine rescheduling problem Yuan Jinjiang Department of mathematics, Zhengzhou University Zhengzhou, Henan 450052 Page 1 of

More information

The path partition problem and related problems in bipartite graphs

The path partition problem and related problems in bipartite graphs The path partition problem and related problems in bipartite graphs Jérôme Monnot and Sophie Toulouse Abstract We prove that it is NP-complete to decide whether a bipartite graph of maximum degree three

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Junsung Kim, Björn Andersson, Dionisio de Niz, and Raj Rajkumar Carnegie Mellon University 2/31 Motion Planning on Self-driving Parallel

More information

The effect of machine availability on the worst-case performance of LPT

The effect of machine availability on the worst-case performance of LPT Discrete Applied Mathematics 148 (2005) 49 61 www.elsevier.com/locate/dam The effect of machine availability on the worst-case performance of LPT Hark-Chin Hwang a, Kangbok Lee b, Soo Y. Chang b a Department

More information

PARALLEL MACHINE SCHEDULING SUBJECT TO MACHINE AVAILABILITY CONSTRAINTS

PARALLEL MACHINE SCHEDULING SUBJECT TO MACHINE AVAILABILITY CONSTRAINTS PARALLEL MACHINE SCHEDULING SUBJECT TO MACHINE AVAILABILITY CONSTRAINTS A THESIS SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING AND THE INSTITUTE OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY

More information

arxiv:cs/ v1 [cs.ds] 18 Oct 2004

arxiv:cs/ v1 [cs.ds] 18 Oct 2004 A Note on Scheduling Equal-Length Jobs to Maximize Throughput arxiv:cs/0410046v1 [cs.ds] 18 Oct 2004 Marek Chrobak Christoph Dürr Wojciech Jawor Lukasz Kowalik Maciej Kurowski Abstract We study the problem

More information

Open Problems in Throughput Scheduling

Open Problems in Throughput Scheduling Open Problems in Throughput Scheduling Jiří Sgall Computer Science Institute of Charles University, Faculty of Mathematics and Physics, Malostranské nám. 25, CZ-11800 Praha 1, Czech Republic. sgall@iuuk.mff.cuni.cz

More information

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices Partitioning Graphs of Supply and Demand Generalization of Knapsack Problem Takao Nishizeki Tohoku University Graph Supply Vertices and Demand Vertices Supply Vertices Demand Vertices Graph Each Supply

More information

Improvements in the Non-Preemptive Speed Scaling Setting

Improvements in the Non-Preemptive Speed Scaling Setting Improvements in the Non-Preemptive Speed Scaling Setting Master s Thesis in Computer Science Algorithms, Languages and Logic PEDRO MATIAS Chalmers University of Technology University of Gothenburg Department

More information

Offline First Fit Scheduling of Power Demands in Smart Grids

Offline First Fit Scheduling of Power Demands in Smart Grids Offline First Fit Scheduling of Power Demands in Smart Grids Anshu Ranjan Pramod Khargonekar Sartaj Sahni Abstract In this paper we consider the problem of scheduling energy consumption loads in the setting

More information

PMS 2012 April Leuven

PMS 2012 April Leuven The multiagent project scheduling problem: complexity of finding a minimum-makespan Nash equilibrium C. Briand A. Agnetis and J.-C Billaut (briand@laas.fr, agnetis@dii.unisi.it, billaut@univ-tours.fr)

More information

M 2 M 3. Robot M (O)

M 2 M 3. Robot M (O) R O M A TRE DIA Universita degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 { 00146 Roma, Italy Part Sequencing in Three Machine No-Wait Robotic Cells Alessandro

More information

Memorandum COSOR 97-23, 1997, Eindhoven University of Technology

Memorandum COSOR 97-23, 1997, Eindhoven University of Technology Memorandum COSOR 97-3, 1997, Eindhoven University of Technology Approximation algorithms for the multiprocessor open shop scheduling problem Petra Schuurman y Gerhard J. Woeginger z Abstract We investigate

More information

An analysis of the LPT algorithm for the max min and the min ratio partition problems

An analysis of the LPT algorithm for the max min and the min ratio partition problems Theoretical Computer Science 349 (2005) 407 419 www.elsevier.com/locate/tcs An analysis of the LPT algorithm for the max min and the min ratio partition problems Bang Ye Wu Department of Computer Science

More information

Scheduling selfish tasks: about the performance of truthful algorithms

Scheduling selfish tasks: about the performance of truthful algorithms Scheduling selfish tasks: about the performance of truthful algorithms (Regular Submission) George Christodoulou Max-Planck-Institut fr Informatik, Saarbrücken, Germany gchristo@mpi-inf.mpg.de Laurent

More information

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France As Soon As Probable O. Maler, J.-F. Kempf, M. Bozga VERIMAG Grenoble, France March 15, 2013 O. Maler, J.-F. Kempf, M. Bozga (VERIMAG Grenoble, France) As Soon As Probable March 15, 2013 1 / 42 Executive

More information

The Constrained Minimum Weighted Sum of Job Completion Times Problem 1

The Constrained Minimum Weighted Sum of Job Completion Times Problem 1 The Constrained Minimum Weighted Sum of Job Completion Times Problem 1 Asaf Levin 2 and Gerhard J. Woeginger 34 Abstract We consider the problem of minimizing the weighted sum of job completion times on

More information