Mi] AD-A ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH. G. Preston Burns

Size: px
Start display at page:

Download "Mi] AD-A ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH. G. Preston Burns"

Transcription

1 ; '" ' - - " ''T^^^imi^mrrf^'yf^^vfr^'.«*... AD-A ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH G. Preston Burns Naval Surface Weapons Center Dahlgren Laboratory, Virginia June 1975 DISTRIBUTED BY: Mi] National Technical Information Service U. S. DEPARTMENT OF COMMERCE

2 SECURITY CLASSIFICATION OF THIS PAGE (Whm» Dalm Enltfd) I REPORT NUMBER TR-3218 REPORT DOCUMENTATION PAGE 4 TITLE («nd Subtitle) CN THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH READ INSTRUCTIONS BEFORE COMPLETING FORM 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER 5 TYPE OF REPORT 4 PERI OD COVERED 6. PERFORMING ORG. REPORT NUMBER 7. AuTMORft; G. Preston Bums I. CONTRACT OR GRANT NUMBERf») 9 PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center Dahlgren Laboratory Dahlgren, Va PROGRAM ELEMENT, PROJECT. TASK AREA ft WORK UNIT NUMBERS ' 1 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June 1975 IS. NUMBER OF PAGES 14 MONITORING AGENCY NAME & AODRESSff/ dlttortnt from Controlling Olllc») IS. SECURITY CLASS, (ol Ihli nporl) UNCLASSIFIED IS«. DECLASSlFICATION DOWNGRADING SCHEDULE 16 DISTRIBUTION STATEMENT fo/thli R»por(; Approved for public release; distribution unlimited. 17 DISTRIBUTION STATEMENT (ol Iht»btttmct nlcrad (n Block 20, II dllltfnl Inm Report; IB SUPPLEMENTARY NOTES PRICES SUBJEQ TO CHANGE 19 KEY WORDS (Continue on r»v«raa ajcf«u n«c«««aiy «nd tdmntity by Mock numbmr) Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commorce Spnrglield. VA. J215I 20. ABSTRACT fconilnu«on rmvrt»»ida It n»c»i»mry mnd Idtnllly by block numbtt) An analysis of the effect of the Coriolis acceleration on the flight of projectiles fired fron the surface of the Earth has been extended to include bodies fired or released from any altitude above the surface of the Earth. An equation for Coriolis deflection perpendicular to the line of fire and the general condition for zero deflection are derived. Directions of Coriolis deflections are tabulated for bodies released horizontally at altitude y 0. "*, J N M 7J 1473 EDITION OF I NOV 8» IS OBSOLETE S/N OI I ' SECURITY CLASSIFICATION OF THIS»AGE Cirhon Data KntarodJ

3 r,. - - ; ;,. - NSWC/DL Technical Report rr-321ö June 1975 ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH by G. Preston Burns Warfare Analysis Department r 1 * f^v i i! JÜN IS 1975 ^ij^.^ ij. - c; Approved for public release; distribution unlimited.

4 .iili.!jij^ip,i)ipijjii^i.^!i 'wijwmwbiil..u»t*^^, ', «r^?^www^i^w!^^wr!?^v7-^rpt FOREWORD This report, referred to as Reference 7 in NWL Technical Report TR-3061 published in April, 1974, is one of several written on the effect of Coriolis acceleration on the flight of a projectile. It contains a derivation of the expression for DOMEGA, the Coriolis deflection perpendicular to tii line of fire. This work was performed in the Aeroballistics Division of the Warfare Analysis Department under ORDTASK Released by: Q^k oyuju^ RALPH A. NIEMANN Head, Warfare Analysis Department

5 ^M'MH" *!.1 ^W. WiiiLL!^i..!lJ.Ui:w1j..y..n i.n. T--,T7r.i-wri-r. " '-.TTWiTWf! ABSTRACT An analysis of the effect of the Corlolis acceleration on the flight of projectiles fired from the surface of the Earth has been extended to include bodies fired or released from any altitude above the surface of the Earth. An equation for Coriolis deflection perpendicular to the line of fire and the general condition for zero deflection are derived. Directions of Coriolis deflections are tabulated for bodies released horizontally at altitude y. ii

6 w ""^'""" nvw>'"!»<ik,i,t i^y!iipj^!ij<*pipwpwi5ipi CONTENTS Page FOREWORD i ABSTRACT ti I. INTRODUCTION 1 II. ANALYSIS AND RESULTS 2 III. CONCLUSIONS 4 References 8 iii

7 mßr. ity." r V^- T "~^r)j",»w. -' I. LNiRODUCiION An analysis was made*- of the effect of the Corlolls acceleration on the flight of projectiles fired from the surface of the Earth and the condition for zero deflection was derived. It was assumed that the acceleration of gravity is constant; velocities due to Coriolis accelerations may be neglected in computation of Coriolis accelerations; air resistance is negligible; and the impact posicion is in the plane tangent to the Earth at the gun. The analysis has been extended, using the same assumptions, to include bodies fired or released from any altitude (y 0 ) above the surface of the Earth.

8 r^^c^-'-t """" II. ANALYSIS AND RESULTS Consider a projectile fired from altitude y 0 above a point on the Earth at latitude 9 in the northern hemisphere with initial velocity Vo having azimuth 0 (measured clockwise from north) and elevation angle t. The time of flight is given by T = (V 0 sin «+ (vs sins e + Zg'y V^/g' (1) where g' = g - 2V 0 U) cos e sin 0 cos 0. The second term in the expression for g' is the vertical component (ZV^io cos 9) of the Cortolis acceleration. Vp is the magnitude of the horizontal east component of projectile velocity and (JU is the angular rate of rotation of the Earth. The horizontal Corlolis displacements are, in the east (x) direction^, x = VQUJ T 2 sin 9 cos e cos 0 -» resulting from the horizontal north component (V N )of projectile velocity; and, in the south (z) directionl, z = VQIUT 2 sin 9 cos e sin 0 resulting from the horizontal east component (V,,). In the west (-x) direction d^x/dts = -2V v a) sin (90-9) from which, using Vy = V sin e - g't and integrating from t = 0 to t = r, ' 0 x = -VQUJT 2 sin e cos 9 + (Ug'l^Ccos 9)/3. Vy is the magnitude ol the vertical component oi projectile velocity. The net horizontal displacement perpendicular to the line of fire is DT = V ^T 2 (sin 9 cos cos p ti + sin 9 cos e sin :, 0 - sin cos 9 cos 0 + g^t cos 9 cos 0) 3V 0 = V 0 U)'L' 2 (sin 9 cos e - sin c cos 9 cos 0 + g' T cos 0 cos 0). (2) 3Vn For no deflection and tan 9 = (tan e DT = 0 ^x 3V 0 cos ) cos 0. (3)

9 pwyin <i ;* r."*7'?ji^>'.y»m i^.inwhipm^t'.'.ij w^i ivt^.'^^w.^j.alyi ^..^lymipi» ^inj.. IIHHUIM^MMWIH ' " H.-T- ^^,,. -.. This is the general condition for zero detlection. If y 0 = 0, T = 2V 0 (sin e )/g,, and Eq. (3) reduces to tan e = 3(tan 9)/cos 0. (4) Conclusions for this case are given in the previous analysis. If = 0, T = (Zyo/g') 2, and we have Irom Eq. (3) V 0 = -(2g, y 0 )^ (cos 0)/(3 tan 9). (5) therefore, neglecting air resistance, the initial velocity for zero deflection of a body projected horizontally at azimuth 0 from altitude y 0 above the. surface of the Earth at latitude 9 varies directly as the square root of the altitude.

10 miauiuiw^ri^iiiji.ipij;!«!«iii. CONCLUSIONS The following conclusions are drawn from a study of liqs. (3) and (5) and Figure 1 for a body projected horizontally or dropped vertically downward from a point above the surface of the Earth: (1) If the body is released horizontally in a northward direction (270 < 0 < 90 ) in the northern hemisphere (Figure 1), the deflection is to the right for all velocities. If it is released horizontally in a southward direction (90 < 0 < 270 ) in the northern hemisphere, the deflection is to the right or left depending on whether the horizontal velocity is greater or less, respectively, than that given by Eq. (5) for zero deflection. Horizontal velocities required for zero deflection are given in lable I for different latitudes for azimuth 180 degrees. These were calculated using g = 32 ft/sec^, the approximate average value for altitudes between zero and 100,000 feet. To obtain values for other azimuth angles, multiply the table values by the fibsolute value of cos 0. (.2; If the body is released horizontally in a southward direction in the southern hemisphere (Figure 1), the deflection is to the left for all velocities. If it is released horizontally in a northward direction in the southern hemisphere, the deflection is to the left or right depending on whether the horizontal velocity is greater or less than that given by Eq. (5) for zero deflection. (3) A body projected or released directly east (0 = 90 ) or vest (0 = 270 ) from a point above the surface of the Earth will deflect to the right in the northern hemisphere and to the left in the southern hemisphere; if released directly east or west horizontally from a point directly above the equator, the deflection is zero. (4) A body projected horizontally from a point directly above the north pole will deflect to the right; a body projected horizontally from a point directly above the south pole will deflect to the left, (5) A body dropped vertically down from a point above the surface of the Earth, except at the poles, will deflect toward east; if dropped vertically down from a point above either pole, the deflection is zero. A summary of ^oriolis deflections of bodies released horizontally or vertically downward at altitude y 0 above the surface of the Earth is given in Table II.

11 Jli i,l«^«hi)»ijwwi^jij,«l«ul*itk^ 7»-u..«.i»i.!!1«;J-ti!.i..,»»- ui.»wt i' FIGURE 1 EARm AND BODY VELOCIiT COMPONENTS FOR HORIZONiAL, BODY PROJECTION

12 - i n.l^bljnp TABLE I Horizontal Velocities (fc/sec) Required tor Zero Cortolis Deflection (0 = 180 )* Allitude (It) 15 Latitude {den) 30 hi b booo b 'To obtain values for other azimuth angles, multiply l\\a table valut-: the absolute value of cos 0. by

13 mm 11P5 '^ ^ ', iiiifii«iiii?ih'^it"wi«,"i"j*iy^i ' 0) ja o r4 4) 0) u r-t ^-4 Ü V 4J Ou <5 O-i r^ «tm x: 4J. HI 4J 4J X! u Q M-l 3 00 U (U 0 i-4 0 O J W ad ss S5 0) O 4-1 cr c c 0 Q l-t r Ü Ü U (U <u XI u 4J I-l ih bc >w (0 U-l U-l M (U to <u (U 06 -J W Q Q ro 1-4 p 1-1 OJ 0) u. 1>\ u jr.] a CH o M in "-* c s OJ H ^1 0 O % z u u > o > kw «4-1 'b Vo 4J 4J UJ 0) > > 14-1 to J 0) IT! IH tm J w rj r4 J OS I> > > > Vo 14-1 «4-1 r-l r4 J OS 01 to O o c oc im a u (Ü OJ ^ ^ 0) JJ M '; CO öj 82 r-l g C an VJ O Q CU 4-1 u 4J K\ ^l J 0) «H to ID 0 u 3 Zl u u 4-) OS KJ H "" I i-i to u -C»4 4J 4J 3 u\ ^1 0 tu tn 4J Si x: > > to J3 M3 oo 00 to 00-1 M >-( iw iw w r4 as as OS 1-4 rj Oi AQVQ > > i+-i y-i M ** OS KJ > o CD 0 ^ CD St Q «l n 9i (U M tu 4) "0 J3 o U-l T3 x: tj 3 4J s 3 4J 3 4-t 3 4J x: u 3 4J i-l g rl 4J t-i e u i-l i-l 4J 3 u i-i 4J to N.-4 0 to N i-4 J < < in J < <;.,-1 XI 30 0 ~J u X V N OS in r-l 4J C U-l 0 m ^ ^J 4-1 Ü» 0) o U-l (U li Q u tl) o to - 3»5

14 .11 Jji^il.ll i.i w^ni^w^^^^wrk^w"^^ '^ ' ' mi<" '<W'-f.Wm''jmiim liv^- EKT^"«" 1«",!. - REFERENCES» 1. Burns. G. Preston. "Deflection of Projectiles due J 0 J* 0^1 f 1 the Earth." wrlcm Journal of Physics. November 1971, p

A0A TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/G 7/5 PHOTOASSISTED WATER-GAS SHIFT REACTION ON PLATINIZED T7TANIAI T--ETCIUI

A0A TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/G 7/5 PHOTOASSISTED WATER-GAS SHIFT REACTION ON PLATINIZED T7TANIAI T--ETCIUI AA113 878 TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/G 7/5 PHOTOASSISTED WATER-GAS SHIFT REACTION ON PLATINIZED T7TANIAI T--ETCIUI APR 82 S FANG. 8 CHEN..J M WHITE N14-75-C-922 UNCLASSIFIED NL OFFICE OF

More information

Physics 351 Monday, February 26, 2018

Physics 351 Monday, February 26, 2018 Physics 351 Monday, February 26, 2018 You just read the first half ( 10.1 10.7) of Chapter 10, which we ll probably start to discuss this Friday. The midterm exam (March 26) will cover (only!) chapters

More information

RD-R14i 390 A LIMIT THEOREM ON CHARACTERISTIC FUNCTIONS VIA RN ini EXTREMAL PRINCIPLE(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A BEN-TAL

RD-R14i 390 A LIMIT THEOREM ON CHARACTERISTIC FUNCTIONS VIA RN ini EXTREMAL PRINCIPLE(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A BEN-TAL RD-R14i 390 A LIMIT THEOREM ON CHARACTERISTIC FUNCTIONS VIA RN ini EXTREMAL PRINCIPLE(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A BEN-TAL DEC 83 CCS-RR-477 UNCLASSIFIED N@884-i-C-236 F/0 2/1

More information

urn DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE Prepared for: Army Research Office October 1975 AD-A

urn DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE Prepared for: Army Research Office October 1975 AD-A - MMHH^MiM^^MaMBMMMHH AD-A017 637 AN EXTENSION OF ERLANG'S LOSS FORMULA Ronald W. Wolff, et a1 California University Prepared for: Army Research Office October 1975 urn DISTRIBUTED BY: National Technical

More information

UNCLASSIFIED U. OF ZOWA81-2 ML.

UNCLASSIFIED U. OF ZOWA81-2 ML. AD-AO9 626 IONA WNI IONA CITY DEPT OF PH4YSICS AND ASTRONOMY F/6 17/7 AN ANALYTICAL. SOLUTION OF THE TWO STAR SIGHT PROBLEM OF CELESTI-ETC(Ul FEB 81.J A VAN ALLEN N00014-76-C-OO16 UNCLASSIFIED U. OF ZOWA81-2

More information

Knü. ADOAOll 835 ON PACKING SQUARES WITH EQUAL SQUARES. P. Erdos, et al. Stanford University. Prepared for:

Knü. ADOAOll 835 ON PACKING SQUARES WITH EQUAL SQUARES. P. Erdos, et al. Stanford University. Prepared for: ADOAOll 835 ON PACKING SQUARES WITH EQUAL SQUARES P. Erdos, et al Stanford University Prepared for: National Science Foundation Office of Naval Research March 1975 DISTRIBUTED BY: Knü National Technical

More information

INTRODUCTION FOREWORD

INTRODUCTION FOREWORD FOREWORD The Sight Reduction Tables for Air Navigation consist of three volumes of comprehensive tables of altitude and azimuth designed for the rapid reduction of astronomical sights in the air. This

More information

Mathematics Extension 1

Mathematics Extension 1 BAULKHAM HILLS HIGH SCHOOL TRIAL 04 YEAR TASK 4 Mathematics Etension General Instructions Reading time 5 minutes Working time 0 minutes Write using black or blue pen Board-approved calculators may be used

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

OF NAVAL RESEARCH. Technical Report No. 87. Prepared for Publication. in the.. v.. il and/or -- c Spocial Journal of Elactroanalytical Chemistry it

OF NAVAL RESEARCH. Technical Report No. 87. Prepared for Publication. in the.. v.. il and/or -- c Spocial Journal of Elactroanalytical Chemistry it ,~OFFICE OF NAVAL RESEARCH Contract N00014-86-K-0556 Technical Report No. 87. Th., Combined Influence of Solution Resistance and Charge-Transfer Kinetics on Microelectrode Cyclic Voltammetry oo i Acee'ic

More information

Department of Physics, Korea University Page 1 of 8

Department of Physics, Korea University Page 1 of 8 Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

Graphical Vector Addition

Graphical Vector Addition Vectors Chapter 4 Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper unit) for description. Examples: distance, speed, mass, temperature,

More information

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

z E z * I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% fei 'Q f I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

AD-A FATION PAGE cmb No SUPPLEMENTARY NOTESlIII lllll II ili JUN PRICE CODE

AD-A FATION PAGE cmb No SUPPLEMENTARY NOTESlIII lllll II ili JUN PRICE CODE Form Approved AD-A252 270 FATION PAGE cmb No. 0704-0188 ge I~ uour oer resorse. including tile time for reviewing instructions. searchng existing cata sourcf-.. 'r, P 'llecicon o0 of information Send Commintsr

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

Expressions for the Total Yaw Angle

Expressions for the Total Yaw Angle ARL-TN-0775 SEP 2016 US Army Research Laboratory Expressions for the Total Yaw Angle by Benjamin A Breech NOTICES Disclaimers The findings in this report are not to be construed as an official Department

More information

A STUDY OF SEQUENTIAL PROCEDURES FOR ESTIMATING. J. Carroll* Md Robert Smith. University of North Carolina at Chapel Hill.

A STUDY OF SEQUENTIAL PROCEDURES FOR ESTIMATING. J. Carroll* Md Robert Smith. University of North Carolina at Chapel Hill. A STUDY OF SEQUENTIAL PROCEDURES FOR ESTIMATING THE LARGEST OF THREE NORMAL t4eans Ra~nond by J. Carroll* Md Robert Smith University of North Carolina at Chapel Hill -e Abstract We study the problem of

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

AD-AISS "3 IMPACT OF DETECTOR LOCATION AND ORIENTATION ERRORS ON in THE PERPENDICULAR METHOD AN INTRODUCTION(U) JET PROPULSION LAB PASADENA CA 03 OCT

AD-AISS 3 IMPACT OF DETECTOR LOCATION AND ORIENTATION ERRORS ON in THE PERPENDICULAR METHOD AN INTRODUCTION(U) JET PROPULSION LAB PASADENA CA 03 OCT AD-AISS "3 IMPACT OF DETECTOR LOCATION AND ORIENTATION ERRORS ON in THE PERPENDICULAR METHOD AN INTRODUCTION(U) JET PROPULSION LAB PASADENA CA 03 OCT 05 JPL-D-4301 UNCLASSIFIED, F/G 17/11 NL if I 258 KiE

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

Introduction to Mechanics Projectiles

Introduction to Mechanics Projectiles Introduction to Mechanics Projectiles Lana heridan De Anza College Feb 6, 2018 Last time relative motion examples Overview another relative motion example motion with constant acceleration projectiles

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

Non-inertial systems - Pseudo Forces

Non-inertial systems - Pseudo Forces Non-inertial systems - Pseudo Forces ?? ame Accelerating frame Newton's second law F = ma holds true only in inertial coordinate systems. However, there are many noninertial (that is, accelerating) frames

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

m e = m/s. x = vt = t = x v = m

m e = m/s. x = vt = t = x v = m 5. (a) The textbook uses geomagnetic north to refer to Earth s magnetic pole lying in the northern hemisphere. Thus, the electrons are traveling northward. The vertical component of the magnetic field

More information

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion 1.12.1 Introduction Go back to lesson 9 and provide bullet #3 In today s lesson we will consider two examples of non-inertial reference frames: a reference frame that accelerates in a straight line a reference

More information

Lecture-XV. Noninertial systems

Lecture-XV. Noninertial systems Lecture-XV Noninertial systems Apparent Force in Rotating Coordinates The force in the ating system is where The first term is called the Coriolis force, a velocity dependent force and the second term,

More information

F13--HPhys--Q4 Practice POST

F13--HPhys--Q4 Practice POST Name: Class: Date: ID: A F13--HPhys--Q4 Practice POST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not an example of projectile

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences M E C H A N I C S I D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T N O V E M B E R 0 1 3 Definition Mechanics

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

S 3 j ESD-TR W OS VL, t-i 1 TRADE-OFFS BETWEEN PARTS OF THE OBJECTIVE FUNCTION OF A LINEAR PROGRAM

S 3 j ESD-TR W OS VL, t-i 1 TRADE-OFFS BETWEEN PARTS OF THE OBJECTIVE FUNCTION OF A LINEAR PROGRAM I >> I 00 OH I vo Q CO O I I I S 3 j ESD-TR-65-363 W-07454 OS VL, t-i 1 P H I CO CO I LU U4 I TRADE-OFFS BETWEEN PARTS OF THE OBECTIVE FUNCTION OF A LINEAR PROGRAM ESD RECORD COPY ESD ACCESSION LIST ESTI

More information

i of 6. PERFORMING ORG. REPORT NUMBER Approved for public Dtatibuft Unlimited

i of 6. PERFORMING ORG. REPORT NUMBER Approved for public Dtatibuft Unlimited SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER WP-MDSGA-65-4

More information

/D Ö C. 0SI5L L iu PICATINNY ARSENAL MOISTURE SORPTION LEAD BETA RESORCYLATE SALTS DOVER, NEW JERSEY JJL OCTOBER 1971 COPY NO. DANIEL R.

/D Ö C. 0SI5L L iu PICATINNY ARSENAL MOISTURE SORPTION LEAD BETA RESORCYLATE SALTS DOVER, NEW JERSEY JJL OCTOBER 1971 COPY NO. DANIEL R. - COPY NO. JJL TECHNICAL MEMORANDUM 2022 t i, u *& MOISTURE SORPTION OF LEAD BETA RESORCYLATE SALTS BY DANIEL R. SATR1ANA OCTOBER 1971 i APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. NATIONAL TECHNICAL

More information

Solution to Problems #1. I. Information Given or Otherwise Known. = 28 m/s. Heading of the ultralight aircraft!! h

Solution to Problems #1. I. Information Given or Otherwise Known. = 28 m/s. Heading of the ultralight aircraft!! h METR 520: Atmospheric Dynamics II Dr. Dave Dempsey Dept. of Geosciences, SFSU Spring 2012 Solution to Problems 1 Problem 1 An ultralight aircraft is flying. I. Information Given or Otherwise Known Horizontal

More information

Metrology Experiment for Engineering Students: Platinum Resistance Temperature Detector

Metrology Experiment for Engineering Students: Platinum Resistance Temperature Detector Session 1359 Metrology Experiment for Engineering Students: Platinum Resistance Temperature Detector Svetlana Avramov-Zamurovic, Carl Wick, Robert DeMoyer United States Naval Academy Abstract This paper

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Sums of the Thue Morse sequence over arithmetic progressions

Sums of the Thue Morse sequence over arithmetic progressions Sums of the Thue Morse sequence over arithmetic progressions T.W. Cusick 1, P. Stănică 2 1 State University of New York, Department of Mathematics Buffalo, NY 14260; Email: cusick@buffalo.edu 2 Naval Postgraduate

More information

REPORT TYPE Conference Proceedings. 2o xo;ui3s/

REPORT TYPE Conference Proceedings. 2o xo;ui3s/ REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

SaL1a. fa/ SLECTE '1~AIR FORCE GECOPNYSICS LABORATORY AIR FORCE SYSTEMS COMMAND AFGL-TH

SaL1a. fa/ SLECTE '1~AIR FORCE GECOPNYSICS LABORATORY AIR FORCE SYSTEMS COMMAND AFGL-TH AD-Alla 950 BOSTON COLL CHESTNUT HILL MA DEPT OF PHYSICS FB2/ '5 PARTICLE TRAJECTORIES IN A MODEL ELECTRIC FIELD II.CU) DEC SI P CARINI. 6 KALMAN, Y SHIMA F19628-79-C-0031 UNCLASSIFIED SCIENTIFIC-2 AFGL-TR-B2-0149

More information

Homework 2: Solutions GFD I Winter 2007

Homework 2: Solutions GFD I Winter 2007 Homework : Solutions GFD I Winter 007 1.a. Part One The goal is to find the height that the free surface at the edge of a spinning beaker rises from its resting position. The first step of this process

More information

PHYS 1111L - Introductory Physics Laboratory I

PHYS 1111L - Introductory Physics Laboratory I PHYS 1111L - Introductory Physics Laboratory I Laboratory Advanced Sheet Projectile Motion Laboratory 1. Objective. The objective of this laboratory is to predict the range of a projectile set in motion

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

PHYS 211 Lecture 12 - The Earth's rotation 12-1

PHYS 211 Lecture 12 - The Earth's rotation 12-1 PHY 211 Lecture 12 - The Earth's rotation 12-1 Lecture 12 - The Earth s rotation Text: Fowles and Cassiday, Chap. 5 Demo: basketball for the earth, cube for Cartesian frame A coordinate system sitting

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

SECURITY CLASSIFICATION OF TWI",A,'- Form Approved. ICUMENTATION'PAGE OMB No b. RESTRICTIVE MARKINGS OF

SECURITY CLASSIFICATION OF TWI,A,'- Form Approved. ICUMENTATION'PAGE OMB No b. RESTRICTIVE MARKINGS OF SECURITY CLASSIFICATION OF TWI",A,'- Form Approved ICUMENTATION'PAGE OMB No. 0704-0188 AD- A207 216 1b. RESTRICTIVE MARKINGS OF 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for puli c release b. DECLASSiFICATION

More information

Two-Dimensional. 8.7 Relative Motion CHAPTER 8

Two-Dimensional. 8.7 Relative Motion CHAPTER 8 CHAPTER 8 Two-Dimensional Motion 8.7 Relative Motion In Chapter 7, we reviewed the basic elements of one-dimensional rectilinear motion. In this chapter, we will consider only two-dimensional motion. In

More information

Cramer-Rao Bound Analysis for Frequency Estimation of Sinusoids in Noise

Cramer-Rao Bound Analysis for Frequency Estimation of Sinusoids in Noise AP/A ESD-TR-85-323 Technical Report 727 Cramer-Rao Bound Analysis for Frequency Estimation of Sinusoids in Noise J.M. Skon 24 March 1986 Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY LEXINGTON,

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

(483 km) ( 966 km) km. tan km

(483 km) ( 966 km) km. tan km Chapter 4 8 Our coordinate system has i pointed east and j pointed north The first displacement is r (483 km)i ˆ AB and the second is r ( 966 km)j ˆ BC (a) The net displacement is r (483 km)i ˆ (966 km)j

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Chapter Units and Measurement

Chapter Units and Measurement 2 Chapter Units and Measurement 1. Identify the pair whose dimensions are equal [2002] torque and work stress and energy force and stress force and work 2. [2003] [L -1 T] ] [L -2 T 2 ] [L 2 T -2 ] [LT

More information

THE COVARIANCE MATRIX OF NORMAL ORDER STATISTICS. BY C. S. DAVIS and M. A. STEPHENS TECHNICAL REPORT NO. 14 FEBRUARY 21, 1978

THE COVARIANCE MATRIX OF NORMAL ORDER STATISTICS. BY C. S. DAVIS and M. A. STEPHENS TECHNICAL REPORT NO. 14 FEBRUARY 21, 1978 THE COVARIANCE MATRIX OF NORMAL ORDER STATISTICS BY C. S. DAVIS and M. A. STEPHENS TECHNICAL REPORT NO. 14 FEBRUARY 21, 1978 PREPARED UNDER GRANT DAAG29-77-G-0031 FOR THE U.S. ARMY RESEARCH OFFICE Reproduction

More information

cot* SEPTEMBER 1965 a CC 0^\ 0 «*«***

cot* SEPTEMBER 1965 a CC 0^\ 0 «*«*** CM 1 1 I >> 1 a, i CO 8! 1 ESD-TR-65-132 vo a! 1 n 1 oc tl. 1 H I 1 -» 1 f- 1 8 CO 1 U4 UJ ESD ACCb^iui^u.-. ESTl Call No._ Copy. No. J Qt 1 ** TM-4187 LIGHT REFLECTIONS FROM SYSTEMS OF PLANE MIRRORS TECHNICAL

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

UNCLASSIFIED UNCLASSIFIED DEFENSE DOCUMENTATION CENTER SCIENTIFIC AND TECHNICAL INFORMATION FOR CAMERON STATION ALEXANDRIA VIRGINIA

UNCLASSIFIED UNCLASSIFIED DEFENSE DOCUMENTATION CENTER SCIENTIFIC AND TECHNICAL INFORMATION FOR CAMERON STATION ALEXANDRIA VIRGINIA UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA VIRGINIA DOWHGRADED AT 3 TOAR INTERVALS: DECLASSIFIED ATTER 12 YEARS DOD DIR 520010 UNCLASSIFIED

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

MOTION OF A PROJECTILE

MOTION OF A PROJECTILE MOTION OF A PROJECTILE Today s Objectives: Students will be able to: 1. Analyze the free-flight motion of a projectile. In-Class Activities: Check Homework Reading Quiz Applications Kinematic Equations

More information

.IEEEEEEIIEII. fflllffo. I ll, 7 AO-AO CALIFORNIA UN IV BERKELEY OPERATIONS RESEARCH CENTER FIG 12/1

.IEEEEEEIIEII. fflllffo. I ll, 7 AO-AO CALIFORNIA UN IV BERKELEY OPERATIONS RESEARCH CENTER FIG 12/1 7 AO-AO95 140 CALIFORNIA UN IV BERKELEY OPERATIONS RESEARCH CENTER FIG 12/1.IEEEEEEIIEII AVAILABILITY OF SERIES SYSTEMS WITH COMPONENTS SUBJECT TO VARIO--ETC(U) JUN 80 Z S KHALIL AFOSR-77-3179 UNCLASSIFIED

More information

THE UNIVERSITY OF ILLINOIS LIBRARY

THE UNIVERSITY OF ILLINOIS LIBRARY THE UNIVERSITY OF ILLINOIS LIBRARY Digitized by the Internet Archive in 203 http://archive.org/details/designofreinforcoorund DESIGN OF A REINFORCED-CONCRETE ARCH BY EARL RUNDLES THESIS FOR DEGREE OF

More information

Volume 6 Water Surface Profiles

Volume 6 Water Surface Profiles A United States Contribution to the International Hydrological Decade HEC-IHD-0600 Hydrologic Engineering Methods For Water Resources Development Volume 6 Water Surface Profiles July 1975 Approved for

More information

Physics 1A, Week 2 Quiz Solutions

Physics 1A, Week 2 Quiz Solutions Vector _ A points north and vector _ B points east. If _ C = _ B _ A, then vector _C points: a. north of east. b. south of east. c. north of west. d. south of west. Find the resultant of the following

More information

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. 0. BOX 631 VICKSBURG. MISSISSIPPI 39180

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. 0. BOX 631 VICKSBURG. MISSISSIPPI 39180 DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. 0. BOX 631 VICKSBURG. MISSISSIPPI 39180 IN REPLY REF6R TO: WESYV 31 July 1978 SUBJECT: Transmittal of Technical Report D-78-34

More information

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Using + or signs is not always sufficient to fully describe motion in more than one dimension Vectors can be used to more fully describe motion

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Phys 2425: University Physics I Summer 2016 Practice Exam 1

Phys 2425: University Physics I Summer 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

REDUCING PEAK POWER IN AUTOMATED WEAPON LAYING

REDUCING PEAK POWER IN AUTOMATED WEAPON LAYING AD AD-E403 AD-E403 737 Technical Report ARWSE-TR-15036 REDUCING PEAK POWER IN AUTOMATED WEAPON LAYING Joshua Stapp Matthew Tomik February 2016 U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

More information

Ranking accounting, banking and finance journals: A note

Ranking accounting, banking and finance journals: A note MPRA Munich Personal RePEc Archive Ranking accounting, banking and finance ournals: A note George Halkos and Nickolaos Tzeremes University of Thessaly, Department of Economics January 2012 Online at https://mpra.ub.uni-muenchen.de/36166/

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

Physics 351 Wednesday, February 21, 2018

Physics 351 Wednesday, February 21, 2018 Physics 351 Wednesday, February 21, 2018 HW5 due Friday. For HW help, Bill is in DRL 3N6 Wed 4 7pm. Grace is in DRL 2C2 Thu 5:30 8:30pm. It is often convenient to treat the inertial (pseudo)force F inertial

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

K-0DI. flflflflflflflflflii

K-0DI. flflflflflflflflflii flflflflflflflflflii AD-Ass7 364 TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/6 7/4 " POTOCATALYTIC PRODUCTION OF HYDROGEN FROM WATER AND TEXAS LIBN-ETC(U) JUM 80 S SATO, J M WHITE NOOOl,-75-C-0922 END K-0DI

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications

Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications Joseph R. Gabriel Naval Undersea Warfare Center Newport, Rl 02841 Steven M. Kay University of Rhode

More information

PHYS 705: Classical Mechanics. Non-inertial Reference Frames Vectors in Rotating Frames

PHYS 705: Classical Mechanics. Non-inertial Reference Frames Vectors in Rotating Frames 1 PHYS 705: Classical Mechanics Non-inertial Reference Frames Vectors in Rotating Frames 2 Infinitesimal Rotations From our previous discussion, we have established that any orientation of a rigid body

More information

Chapter 8 Scalars and vectors

Chapter 8 Scalars and vectors Chapter 8 Scalars and vectors Heinemann Physics 1 4e Section 8.1 Scalars and vectors Worked example: Try yourself 8.1.1 DESCRIBING VECTORS IN ONE DIMENSION west east + 50 N Describe the vector using: a

More information

Best Available. Copy

Best Available. Copy Best Available Copy AD-764 875 "^ SOME GENERALIZATIONS OF SOCIAL DECISIONS UNDER MAJORITY RULE Stuart J. T'iorson, et al Ohio State University Prepared for: Advanced Research Projects Agency 0 June 197

More information

I I ! MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

I I ! MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A , D-Ri33 816 ENERGETIC ION BERM PLASMA INTERRCTIONS(U) PRINCETON / UNIV N J PLASMA PHYSICS LAB R MI KULSRUD 30 JUN 83 UNCLSSIFEDAFOSR-TR-83-0816 AFOSR-81-0106F/209 N EEEEONEE"_ I I 11111.!2 1.1. IL MICROCOPY

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review Chapter 3 Vectors and Two-Dimensional Motion Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size) and

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Motion in a 2 and 3 dimensions Ch 4 HRW

Motion in a 2 and 3 dimensions Ch 4 HRW Motion in a and 3 dimensions Ch 4 HRW Motion in a plane D Motion in space 3D Projectile motion Position and Displacement Vectors A position vector r extends from a reference point (usually the origin O)

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Ocean Currents and Climate

Ocean Currents and Climate Ocean Currents and Climate Ocean water contains streamlike movements of water called ocean currents. Currents are influenced by a number of factors, including weather, the Earth's rotation, and the position

More information

Physics 351 Wednesday, March 1, 2017

Physics 351 Wednesday, March 1, 2017 Physics 351 Wednesday, March 1, 2017 HW7 due this Friday. Over spring break, you ll read 10.1 10.7 of Ch 10 (rigid body rotation). A copy of this Ch 10 is on Canvas so that you don t need to take your

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

SOLUTION T 1 + U 1-2 = T C(31.5)(2.5)A10 6 B(0.2)D = 1 2 (7)(v 2) 2. v 2 = 2121 m>s = 2.12 km>s. Ans. (approx.

SOLUTION T 1 + U 1-2 = T C(31.5)(2.5)A10 6 B(0.2)D = 1 2 (7)(v 2) 2. v 2 = 2121 m>s = 2.12 km>s. Ans. (approx. 4 5. When a 7-kg projectile is fired from a cannon barrel that has a length of 2 m, the explosive force exerted on the projectile, while it is in the barrel, varies in the manner shown. Determine the approximate

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

A MARTINGALE INEQUALITY FOR THE SQUARE AND MAXIMAL FUNCTIONS LOUIS H.Y. CHEN TECHNICAL REPORT NO. 31 MARCH 15, 1979

A MARTINGALE INEQUALITY FOR THE SQUARE AND MAXIMAL FUNCTIONS LOUIS H.Y. CHEN TECHNICAL REPORT NO. 31 MARCH 15, 1979 A MARTINGALE INEQUALITY FOR THE SQUARE AND MAXIMAL FUNCTIONS BY LOUIS H.Y. CHEN TECHNICAL REPORT NO. 31 MARCH 15, 1979 PREPARED UNDER GRANT DAAG29-77-G-0031 FOR THE U.S. ARMY RESEARCH OFFICE Reproduction

More information

UNCLASSIFIED AD NUMBER LIMITATION CHANGES

UNCLASSIFIED AD NUMBER LIMITATION CHANGES TO: UNCLASSIFIED AD NUMBER AD269590 LIMITATION CHANGES Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational

More information

RO-AI55614? CONFIDENCE INTERYALS USIlNG THE REGENERTIYE METHOD FOR 1/1 SIMULATION OUTPUT.. (U) STANFORD UNJY CA DEPT OF 1"'7 1OPERTIONS RESEARCH P W

RO-AI55614? CONFIDENCE INTERYALS USIlNG THE REGENERTIYE METHOD FOR 1/1 SIMULATION OUTPUT.. (U) STANFORD UNJY CA DEPT OF 1'7 1OPERTIONS RESEARCH P W RO-AI55614? CONFIDENCE INTERYALS USIlNG THE REGENERTIYE METHOD FOR 1/1 SIMULATION OUTPUT.. (U) STANFORD UNJY CA DEPT OF 1"'7 1OPERTIONS RESEARCH P W GLYNN ET AL. SEP 84 TR-3 UNCLSSIFIED RO-2927. 3-MA DAA029-84-K-930

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information