Mineralogy Problem Set Crystal Systems, Crystal Classes

Size: px
Start display at page:

Download "Mineralogy Problem Set Crystal Systems, Crystal Classes"

Transcription

1 Mineralogy Problem Set Crystal Systems, Crystal Classes (1) For each of the three accompanying plane patterns: (a) Use a ruler to draw solid lines to show where there are mirror planes on the pattern. (b) Where mirror planes intersect, show the required rotation axis symbols. (c) If there are no mirror planes look for rotation axes. (d) If there are no mirror planes or rotation axes, look for glide planes only. (e) Using the symmetry elements you have found, identify the plane pattern group (see attached description of the 17 plane patterns). (f) Show a unit cell for the pattern that has symmetry elements located in the same places as the unit cell shown for the plane pattern in the plane pattern reference diagram. Add any symmetry elements that you missed in steps (a)-(d) that must be present for the plane pattern group. Be sure to add the glide planes as dashed lines (glide planes were not asked for above and are not needed to identify the plane pattern except for pattern pg). (2) For the lattice accompanying this assignment: (a) Show three different unit cells (not just offset!) including one primitive and one centered unit cell. Make sure that there are lattice points only at corners and possibly inside your unit cell; there should be no lattice points on the edges of your unit cell. Label the unit cells clearly. (b) Draw a vector in the direction [250]. Be sure to show which unit cell you are using to define the coordinate system that you are using to locate this vector. (c) Show the lines (vertical planes) with Miller indices (340) and (12 0). Use the same coordinate system (unit cell) that you used to answer (b). (3) For each of the five numbered wooden blocks (record the version examined, e.g. 5a or 5b): (a) Identify the crystal system; (b) Identify the crystal class; (c) List the forms present. (4) Determine the axial ratios (a:b:c) for the mineral celestite using the crystals and goniometers (contact or reflection) available in the lab. Please show all of your calculations and reference them to cross-section diagrams of the crystal(s) measured. Draw carefully. Make your diagrams accurate. Be sure to label all faces with the appropriate Miller indices on your diagrams. Celestite has an orthorhombic unit cell with α = β = γ = 90. It is isostructural with barite, with similar crystal forms. The most common faces are c (001), m, o (011), and d. You may also see b (010) or l (102). See attached diagram. (5) Real crystals are rarely as perfect as models. The symmetry of their shapes does not always match their crystal class because of the circumstances of crystal growth. Nevertheless, the angles between faces must be consistent with the mineral s crystal system. Some good natural crystals are also in the tray with the wooden blocks. Determine the crystal system for each of the eight examples of real crystals (149, 602, 1101, 2502, 2506, 2807, 2837).

2 The 17 Plane Patterns p1 p2 pm pg cm p2mm p2mg p2gg c2mm p3 p3m1 p31m p6 p6mm p4 p4mm p4gm 2-fold axis 3-fold axis 4-fold axis 6-fold axis mirror plane glide plane

3

4

5

6 Stereographic Projections of the Symmetry Elements in the 32 Crystal Classes Triclinic Monoclinic Orthorhombic Trigonal Hexagonal Tetragonal Isometric One 1-fold or 1 axis One 2-fold or 2 axis Three 2-fold or 2 axes One 3-fold or 3 axis One 6-fold or 6 axis One 4-fold or 4 axis Four 3-fold or 3 axes = i m = = 3/m /m 6/m 4/m (2nd Setting) 2mm 3m 6mm 4mm 43m Symmetry Element Symbols inversion center 2-fold rotation axis 3-fold rotation axis 4-fold rotation axis 6-fold rotation axis mirror plane (= 2 axis) 3-fold rotoinversion axis 4-fold rotoinversion axis 6-fold rotoinversion axis 3 2 m 6 m 2 = 3 m m 2 42m 2 m 3 Lattice Constraints: α = γ = m m m α = β = γ = m m m a = b a = b α = β = 90, γ = 120 α = β = 90, γ = m m m a = b α = β = γ = 90 4 m 3 2m a = b = c α = β = γ = 90

7 SEVERAL WAYS OF DESCRIBING THE 32 CRYSTAL CLASSES Rogers (1937) Schoenflies Full Hermann-Mauguin SHAPE (Example) TRICLINIC Pedial C calcium thiosulfate Pinacoidal C i 1 B1 albite MONOCLINIC Sphenoidal C clinohedrite Domatic C s m m tartaric acid Prismatic C 2h 2/m 2/m gypsum ORTHORHOMBIC Rhombic-pyramidal C 2v m m 2 mm2 hemimorphite Rhombic-disphenoidal D epsomite Rhombic-dipyramidal D 2h 2/m 2/m 2/m mmm barite TRIGONAL Trigonal-pyramidal C sodium periodite Rhombohedral C 3i 3 B3 phenacite Trigonal-trapezohedral D low quartz Ditrigonal-pyramidal C 3v 3m 3m tourmaline Hexagonal-scalenohedral D 3d 3 2/m B3m calcite TETRAGONAL Tetragonal-pyramidal C wulfenite Tetragonal-disphenoidal S 4 4 B Tetragonal-dipyramidal C 4h 4/m 4/m scheelite Tetragonal-trapezohedral D nickel sulfate Ditetragonal-pyramidal C 4v 4 m m 4mm iodosuccinimide Tetragonal-scalenohedral D 2d 42m B42m chalcopyrite Ditetragonal-dipyramidal D 4h 4/m 2/m 2/m 4/mmm zircon HEXAGONAL Hexagonal-pyramidal C nepheline Trigonal-dipyramidal C 3h 6 B6 disilverorthophosphate Hexagonal-dipyramidal C 6h 6/m 6/m apatite Hexagonal-trapezohedral D high quartz Dihexagonal-pyramidal C 6v 6 m m 6mm zincite Ditrigonal-dipyramidal D 3h 6 m 2 B6m2 benitoite Dihexagonal-dipyramidal D 6h 6/m 2/m 2/m 6/mmm beryl ISOMETRIC Tetartoidal T ullmanite Diploidal T h 2/m 3 mb3 pyrite Hextetrahedral T d 4 3 m B43m tetrahedrite Gyroidal O cuprite Hexoctahedral O h 4/m 3 2/m m3m galena Notes: 1. In the SHAPE program, a B preceeding a number indicates an rotary inversion axis. Thus B3 is equivalent to 3. SHAPE usage is in column 4, and is a variant of the short Hermann-Mauguin symbols. 2. This list is modified from Dana's System of Mineralogy, Edition 7, volume 1 page 8. A listing of more alternative descriptions can be found in Dana's Textbook of Mineralogy, Fourth Edition (1932) pages "Type minerals" or chemicals for most classes are given in column 5, as listed in Dana's Textbook. Ironically, some of them are no longer considered to belong to the class for which they are the supposed type minerals.

8 Celestite (SrSO 4 ) (001) (001) Common faces: c (001) m o (011) d b (010) l (102) (001) (001)

Introduction to Crystallography and Mineral Crystal Systems by Mike and Darcy Howard Part 6: The Hexagonal System

Introduction to Crystallography and Mineral Crystal Systems by Mike and Darcy Howard Part 6: The Hexagonal System Introduction to Crystallography and Mineral Crystal Systems by Mike and Darcy Howard Part 6: The Hexagonal System Now we will consider the only crystal system that has 4 crystallographic axes! You will

More information

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart CHAPTER 5: CRYSTAL DEFECTS AND TWINNING Sarah Lambart RECAP CHAP. 4 Hermann-Mauguin symbols 32 crystal classes Miller indices Crystal forms RECAP CHAP. 4 Crystal System Crystal Class Symmetry Name of Class

More information

REVIEW: CHAPTERS 1 TO 5. Sarah Lambart

REVIEW: CHAPTERS 1 TO 5. Sarah Lambart REVIEW: CHAPTERS 1 TO 5 Sarah Lambart CHAPTER 1: MINERAL PROPERTIES AND CLASSIFICATION CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION Mineral: naturally occurring (always) a structure and a composition

More information

Introduction to Materials Science Graduate students (Applied Physics)

Introduction to Materials Science Graduate students (Applied Physics) Introduction to Materials Science Graduate students (Applied Physics) Prof. Michael Roth Chapter 1 Crystallography Overview Performance in Engineering Components Properties Mechanical, Electrical, Thermal

More information

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation. Symmetry a. Two-fold rotation = 30 o /2 rotation a. Two-fold rotation = 30 o /2 rotation Operation Motif = the symbol for a two-fold rotation EESC 2100: Mineralogy 1 a. Two-fold rotation = 30 o /2 rotation

More information

NOMENCLATURE REMARKS ON CRYSTALLOGRAPHIC. M. A. PBacocr, (Jni,aersity of Toronto, Toronto, Canaila.* Assrnecr

NOMENCLATURE REMARKS ON CRYSTALLOGRAPHIC. M. A. PBacocr, (Jni,aersity of Toronto, Toronto, Canaila.* Assrnecr REMARKS ON CRYSTALLOGRAPHIC NOMENCLATURE M. A. PBacocr, (Jni,aersity of Toronto, Toronto, Canaila.* Assrnecr In special cases the lattice (not structure) of a crystal in any system may be indistinguishable

More information

Axial Ratios, Parameters, Miller Indices

Axial Ratios, Parameters, Miller Indices Page 1 of 7 EENS 2110 Tulane University Mineralogy Prof. Stephen A. Nelson Axial Ratios, Parameters, Miller Indices This document last updated on 07-Sep-2016 We've now seen how crystallographic axes can

More information

Mineralogy ( ) Chapter 5: Crystallography

Mineralogy ( ) Chapter 5: Crystallography Hashemite University Faculty of Natural Resources and Environment Department of earth and environmental sciences Mineralogy (1201220) Chapter 5: Crystallography Dr. Faten Al-Slaty First Semester 2015/2016

More information

CRYSTAL MEASUREMENT AND AXIAL RATIO LABORATORY

CRYSTAL MEASUREMENT AND AXIAL RATIO LABORATORY CRYSTAL MEASUREMENT AND AXIAL RATIO LABORATORY George R. McCormick Department of Geology The University of Iowa Iowa City, Iowa 52242 george_mccormick@uiowa.edu Goals of the Exercise This exercise is designed

More information

TILES, TILES, TILES, TILES, TILES, TILES

TILES, TILES, TILES, TILES, TILES, TILES 3.012 Fund of Mat Sci: Structure Lecture 15 TILES, TILES, TILES, TILES, TILES, TILES Photo courtesy of Chris Applegate. Homework for Fri Nov 4 Study: Allen and Thomas from 3.1.1 to 3.1.4 and 3.2.1, 3.2.4

More information

n-dimensional, infinite, periodic array of points, each of which has identical surroundings.

n-dimensional, infinite, periodic array of points, each of which has identical surroundings. crystallography ll Lattice n-dimensional, infinite, periodic array of points, each of which has identical surroundings. use this as test for lattice points A2 ("bcc") structure lattice points Lattice n-dimensional,

More information

Crystal Chem Crystallography

Crystal Chem Crystallography Crystal Chem Crystallography Chemistry behind minerals and how they are assembled Bonding properties and ideas governing how atoms go together Mineral assembly precipitation/ crystallization and defects

More information

Symmetry Crystallography

Symmetry Crystallography Crystallography Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern In 3-D, translation defines operations which move the motif into infinitely repeating patterns

More information

Crystallographic Calculations

Crystallographic Calculations Page 1 of 7 EENS 2110 Tulane University Mineralogy Prof. Stephen A. Nelson This page last updated on 07-Sep-2010 Crystallographic calculations involve the following: 1. Miller Indices (hkl) 2. Axial ratios

More information

Crystallographic Point Groups and Space Groups

Crystallographic Point Groups and Space Groups Crystallographic Point Groups and Space Groups Physics 251 Spring 2011 Matt Wittmann University of California Santa Cruz June 8, 2011 Mathematical description of a crystal Definition A Bravais lattice

More information

THE FIVE TYPES OF PLANAR 2-D LATTICES. (d) (e)

THE FIVE TYPES OF PLANAR 2-D LATTICES. (d) (e) THE FIVE TYPES OF PLANAR 2-D LATTICES (a) (d) (b) (d) and (e) are the same (e) (c) (f) (a) OBLIQUE LATTICE - NO RESTRICTIONS ON ANGLES BETWEEN THE UNIT CELL EDGES (b) RECTANGULAR LATTICE - ANGLE BETWEEN

More information

PART I. CRYSTALLOGRAPHY

PART I. CRYSTALLOGRAPHY PART I. CRYSTALLOGRAPHY GENERAL MORPHOLOGICAL RELATIONS OF CRYSTALS 5. Crystallography. - The subject of Crystallography includes the description of the characters of crystals in general; of the various

More information

Tim Hughbanks CHEMISTRY 634. Two Covers. Required Books, etc.

Tim Hughbanks CHEMISTRY 634. Two Covers. Required Books, etc. CHEMISTRY 634 This course is for 3 credits. Lecture: 2 75 min/week; TTh 11:10-12:25, Room 2122 Grades will be based on the homework (roughly 25%), term paper (15%), midterm and final exams Web site: http://www.chem.tamu.edu/rgroup/

More information

Symmetry in 2D. 4/24/2013 L. Viciu AC II Symmetry in 2D

Symmetry in 2D. 4/24/2013 L. Viciu AC II Symmetry in 2D Symmetry in 2D 1 Outlook Symmetry: definitions, unit cell choice Symmetry operations in 2D Symmetry combinations Plane Point groups Plane (space) groups Finding the plane group: examples 2 Symmetry Symmetry

More information

Structure of Earth Materials

Structure of Earth Materials 12.108 Structure of Earth Materials I. Lecture 1: Minerals and Symmetry Operations Definition of a mineral A mineral is a naturally occurring homogeneous solid usually formed by inorganic processes. It

More information

Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts

Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts Didactic material for the MaThCryst schools, France massimo.nespolo@univ-lorraine.fr Ideal vs.

More information

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?

More information

SPACE GROUPS AND SYMMETRY

SPACE GROUPS AND SYMMETRY SPACE GROUPS AND SYMMETRY Michael Landsberg Electron Crystallography Workshop C-CINA, Basel, 1-7 Aug 2010 m.landsberg@uq.edu.au Averaging Why single molecule EM techniques are far superior in resolution

More information

Earth Materials Lab 2 - Lattices and the Unit Cell

Earth Materials Lab 2 - Lattices and the Unit Cell Earth Materials Lab 2 - Lattices and the Unit Cell Unit Cell Minerals are crystallographic solids and therefore are made of atoms arranged into lattices. The average size hand specimen is made of more

More information

Chapter 2 Introduction to Phenomenological Crystal Structure

Chapter 2 Introduction to Phenomenological Crystal Structure Chapter 2 Introduction to Phenomenological Crystal Structure 2.1 Crystal Structure An ideal crystal represents a periodic pattern generated by infinite, regular repetition of identical microphysical structural

More information

UNIT I SOLID STATE PHYSICS

UNIT I SOLID STATE PHYSICS UNIT I SOLID STATE PHYSICS CHAPTER 1 CRYSTAL STRUCTURE 1.1 INTRODUCTION When two atoms are brought together, two kinds of forces: attraction and repulsion come into play. The force of attraction increases

More information

Crystallographic Symmetry. Jeremy Karl Cockcroft

Crystallographic Symmetry. Jeremy Karl Cockcroft Crystallographic Symmetry Jeremy Karl Cockcroft Why bother? To describe crystal structures Simplifies the description, e.g. NaCl structure Requires coordinates for just 2 atoms + space group symmetry!

More information

Lecture 1 Symmetry in the solid state -

Lecture 1 Symmetry in the solid state - Lecture 1 Symmetry in the solid state - Part I: Simple patterns and groups 1 Symmetry operators: key concepts Operators: transform (move) the whole pattern (i.e., the attributes, or content, of all points

More information

Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography

Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography Dr Semën Gorfman Department of Physics, University of SIegen Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography UNIT CELL and ATOMIC POSITIONS

More information

Crystal Grids, Doorways, And other Energetic Structures

Crystal Grids, Doorways, And other Energetic Structures Crystal Grids, Doorways, And other Energetic Structures Workshop With Naisha Ahsian Crystalis Institute P.O. Box 827 Hardwick, VT 05843 USA Toll Free: 866.462.4742 Phone/Fax: 802.563.2843 info@crystalisinstitute.com

More information

WALLPAPER GROUPS. Julija Zavadlav

WALLPAPER GROUPS. Julija Zavadlav WALLPAPER GROUPS Julija Zavadlav Abstract In this paper we present the wallpaper groups or plane crystallographic groups. The name wallpaper groups refers to the symmetry group of periodic pattern in two

More information

Tables of crystallographic properties of double antisymmetry space groups

Tables of crystallographic properties of double antisymmetry space groups Tables of crystallographic properties of double antisymmetry space groups Mantao Huang a, Brian K. VanLeeuwen a, Daniel B. Litvin b and Venkatraman Gopalan a * a Department of Materials Science and Engineering,

More information

Appendix A: Crystal Symmetries and Elastic Constants. A.1 Crystal Classes, Point Groups, and Laue Groups

Appendix A: Crystal Symmetries and Elastic Constants. A.1 Crystal Classes, Point Groups, and Laue Groups Appendix A: Crystal Symmetries and Elastic Constants In anisotropic materials, constitutive relations and corresponding material coefficients depend on the orientation of the body with respect to the reference

More information

Lecture 2 Symmetry in the solid state -

Lecture 2 Symmetry in the solid state - Lecture 2 Symmetry in the solid state - Part II: Crystallographic coordinates and Space Groups. 1 Coordinate systems in crystallography and the mathematical form of the symmetry operators 1.1 Introduction

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 4_2

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 4_2 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 4_2 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics

More information

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples:

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Snow (SnowCrystals.com) Bismuth (Bao, Kavanagh, APL 98 66103 (2005) Hexagonal,

More information

GEOL. 40 ELEMENTARY MINERALOGY

GEOL. 40 ELEMENTARY MINERALOGY CRYSTAL DESCRIPTION AND CALCULATION A. INTRODUCTION This exercise develops the framework necessary for describing a crystal. In essence we shall discuss how we fix the position of any crystallographic

More information

Overview - Macromolecular Crystallography

Overview - Macromolecular Crystallography Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous

More information

Translational symmetry, point and space groups in solids

Translational symmetry, point and space groups in solids Translational symmetry, point and space groups in solids Michele Catti Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano, Italy ASCS26 Spokane Michele Catti a = b = 4.594 Å; Å;

More information

And the study of mineral the branch in geology is termed as mineralogy. (Refer Slide Time: 0:29)

And the study of mineral the branch in geology is termed as mineralogy. (Refer Slide Time: 0:29) Earth Sciences for Civil Engineering Professor Javed N Malik Department of Earth Sciences Indian Institute of Technology Kanpur Module 2 Lecture No 6 Rock-Forming Minerals and their Properties (Part-2)

More information

Earth Materials 114 Lecture Notes

Earth Materials 114 Lecture Notes Earth Materials 114 Lecture Notes Introduction Read Chapters 1 & 2 of Klein & Philpotts or Read Chapter 1 of Nesse (2000) Strategic Minerals and Metals Atoms and Elements Read Chapter 4 of Klein & Philpotts

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 03 Symmetry in Perfect Solids Worked Examples Stated without prove to be in the lecture.

More information

5 Symmetries and point group in a nut shell

5 Symmetries and point group in a nut shell 30 Phys520.nb 5 Symmetries and point group in a nut shell 5.1. Basic ideas: 5.1.1. Symmetry operations Symmetry: A system remains invariant under certain operation. These operations are called symmetry

More information

Crystallography basics

Crystallography basics Crystallography basics 1 ? 2 Family of planes (hkl) - Family of plane: parallel planes and equally spaced. The indices correspond to the plane closer to the origin which intersects the cell at a/h, b/k

More information

Basics of crystallography

Basics of crystallography Basics of crystallography 1 Family of planes (hkl) - Family of plane: parallel planes and equally spaced. The indices correspond to the plane closer to the origin which intersects the cell at a/h, b/k

More information

Chapter 4. Crystallography. 4.1 The crystalline state

Chapter 4. Crystallography. 4.1 The crystalline state Crystallography Atoms form bonds which attract them to one another. When you put many atoms together and they form bonds amongst themselves, are there any rules as to how they order themselves? Can we

More information

Lecture 3: Earth Materials and their Properties I: Minerals. Introduction to the Earth System EAS 2200

Lecture 3: Earth Materials and their Properties I: Minerals. Introduction to the Earth System EAS 2200 Lecture 3: Earth Materials and their Properties I: Minerals Introduction to the Earth System EAS 2200 Earth Materials Plan of the Why it matters Nature of the Earth/Composition The Solid Earth Mineral

More information

0 T 1. When twinning occurs in minerals of low symmetry, it may cause the mineral to appear to possess more symmetry than it actually does.

0 T 1. When twinning occurs in minerals of low symmetry, it may cause the mineral to appear to possess more symmetry than it actually does. GLY4200C Name 90 points October 26, 2016 17 took exam - Numbers to the left of the question number in red are the number of incorrect responses. Instructor comments are in blue. Florida Atlantic University

More information

Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012

Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012 Department of Drug Design and Pharmacology Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012 Michael Gajhede Biostructural Research Copenhagen

More information

Directions Within The Unit Cell NCSU

Directions Within The Unit Cell NCSU Smmetr In Crstalline Materials SiO 2 1) Draw the unit cell, and label the internal rotational/ mirror/inversion smmetries. C 2 2) Show all positions of the molecule generated b smmetr (out to 4 unit cells).

More information

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7 MSE 21A Thermodynamics and Phase Transformations Fall, 28 Problem Set No. 7 Problem 1: (a) Show that if the point group of a material contains 2 perpendicular 2-fold axes then a second-order tensor property

More information

Resolution of Ambiguities and the Discovery of

Resolution of Ambiguities and the Discovery of ISST Journal of Applied hysics, Vol. 6 No. 1, (January - June), p.p. 1-10 ISSN No. 0976-90X Intellectuals Society for Socio-Techno Welfare Resolution of Ambiguities and the Discovery of Two New Space Lattices

More information

Chemical Crystallography

Chemical Crystallography Chemical Crystallography Prof Andrew Goodwin Michaelmas 2014 Recap: Lecture 1 Why does diffraction give a Fourier transform? k i = k s = 2π/λ k i k s k i k s r l 1 = (λ/2π) k i r l 2 = (λ/2π) k s r Total

More information

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS International Tables for Crystallography, Volume A: Space-group Symmetry Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: Space group G: A model of the

More information

M\1any arguments have been concerned with what these symbols mean, and how they

M\1any arguments have been concerned with what these symbols mean, and how they SOME DESIRABLE MODIFICATIONS OF THE INTERNATIONAL SYMMETRY SYMBOLS* BY MARTIN J. BUERGER MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated August 21, 1967 With the publication of Hilton's Mathematical

More information

OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2017 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE. New York s Gemstone

OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2017 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE. New York s Gemstone OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2017 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE 2017 SHOW THEME Garnet -variety: ALMANDINE New York s Gemstone Please sign in at the Earth Science

More information

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography We divide materials into

More information

The Seventeen Plane Groups (Two-dimensional Space Groups)

The Seventeen Plane Groups (Two-dimensional Space Groups) Korean J. Crystallography Vol. 16, o. 1, pp.11~20, 2005 The Seventeen Plane Groups (Two-dimensional Space Groups) ƒá Á a Á Ÿ a Á~ a Áªœ a Á ž a ano-œ ª, ªƒ ª œ œ a ˆ ª Ÿ ª ( campus) The Seventeen Plane

More information

NMR Shifts. I Introduction and tensor/crystal symmetry.

NMR Shifts. I Introduction and tensor/crystal symmetry. NMR Shifts. I Introduction and tensor/crystal symmetry. These notes were developed for my group as introduction to NMR shifts and notation. 1) Basic shift definitions and notation: For nonmagnetic materials,

More information

Crystal Structure. Dr Bindu Krishnan

Crystal Structure. Dr Bindu Krishnan Solid State Physics-1 Crystal Structure Dr Bindu Krishnan CRYSTAL LATTICE What is crystal (space) lattice? In crystallography, only the geometrical properties of the crystal are of interest, therefore

More information

THE STRAIN-ENERGY FUNCTION FOR ANISOTROPIC ELASTIC MATERIALS

THE STRAIN-ENERGY FUNCTION FOR ANISOTROPIC ELASTIC MATERIALS THE STRAIN-ENERGY FUNCTION FOR ANISOTROPIC ELASTIC MATERIALS BY G. F. SMITH AND R. S. RIVLIN(') 1. Introduction. If we consider a body of perfectly elastic material to undergo deformation in which a point

More information

Solids / Crystal Structure

Solids / Crystal Structure The first crystal analysis proved that in the typical inorganic salt, NaCl, there is no molecular grouping. The inference that the structure consists of alternate ions of sodium and chlorine was an obvious

More information

INTRODUCTION TO MINERALOGY 15

INTRODUCTION TO MINERALOGY 15 INTRODUCTION TO MINERALOGY 15 Silicates vs. phosphates, and sulphates Electronegativities: Si 1.8 P 2.1 S 2.5 Typical occurences: Accessory in igneous rocks, large masses in pegmatites, also biomineral

More information

TETRAGONAL SYSTEM. (Ditetragonal Bipyramidal or Holohedral Class)

TETRAGONAL SYSTEM. (Ditetragonal Bipyramidal or Holohedral Class) TETRAGONAL SYSTEM 11. TETRAGONAL SYSTEM 86. THE TETRAGONAL SYSTEM includes all the forms which are referred to three axes at right angles to each other of which the two horizontal axes are equal to each

More information

Introduction to point and space group symmetry

Introduction to point and space group symmetry Workshop on Electron Crystallography, Nelson Mandela Metropolitan University, South Africa, October 14-16, 2013 Introduction to point and space group syetry Hol Kirse Huboldt-Universität zu Berlin, Institut

More information

POINT SYMMETRY AND TYPES OF CRYSTAL LATTICE

POINT SYMMETRY AND TYPES OF CRYSTAL LATTICE POINT SYMMETRY AND TYPES OF CRYSTAL LATTICE Abdul Rashid Mirza Associate Professor of Physics. Govt. College of Science, wahdatroad, Lahore. 1 WHAT ARE CRYSTALS? The word crystal means icy or frozen water.

More information

God Wholeness Rocks Minerals (Chemical bonds, Crystals) Chemical elements Atoms Something Nothing God

God Wholeness Rocks Minerals (Chemical bonds, Crystals) Chemical elements Atoms Something Nothing God God Wholeness Rocks Minerals (Chemical bonds, Crystals) Chemical elements Atoms Something Nothing God Theme 4. Cristals and Minerals 4.1. Elements 4.2. Identifying minerals 4.3. Common minerals 4.1. Elements

More information

Condensed Matter A Week 2: Crystal structure (II)

Condensed Matter A Week 2: Crystal structure (II) QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY Condensed Matter A Week : Crystal structure (II) References for crystal structure: Dove chapters 3; Sidebottom chapter. Last week we learnt

More information

1/2, 1/2,1/2, is the center of a cube. Induces of lattice directions and crystal planes (a) Directions in a crystal Directions in a crystal are

1/2, 1/2,1/2, is the center of a cube. Induces of lattice directions and crystal planes (a) Directions in a crystal Directions in a crystal are Crystallography Many materials in nature occur as crystals. Examples include the metallic elements gold, copper and silver, ionic compounds such as salt (e.s. NaCl); ceramics, rutile TiO2; and nonmetallic

More information

Inorganic materials chemistry and functional materials

Inorganic materials chemistry and functional materials Chemical bonding Inorganic materials chemistry and functional materials Helmer Fjellvåg and Anja Olafsen Sjåstad Lectures at CUTN spring 2016 CRYSTALLOGRAPHY - SYMMETRY Symmetry NATURE IS BEAUTIFUL The

More information

PX-CBMSO Course (2) of Symmetry

PX-CBMSO Course (2) of Symmetry PX-CBMSO Course (2) The mathematical description of Symmetry y PX-CBMSO-June 2011 Cele Abad-Zapatero University of Illinois at Chicago Center for Pharmaceutical Biotechnology. Lecture no. 2 This material

More information

UNIVERSITY OF EDINBURGH. College of Science and Engineering School of GeoSciences. Earth Materials UO4824 DEGREE EXAMINATION (MOCK) xxxxxxxxxxxxxxxxx

UNIVERSITY OF EDINBURGH. College of Science and Engineering School of GeoSciences. Earth Materials UO4824 DEGREE EXAMINATION (MOCK) xxxxxxxxxxxxxxxxx UNIVERSITY OF EDINBURGH College of Science and Engineering School of GeoSciences Earth Materials UO4824 DEGREE EXAMINATION (MOCK) xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx Chairman: External Examiners:

More information

Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova

Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova University of Hamburg, Institute of Mineralogy and Petrology Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova Outline. The dynamics of atoms in

More information

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY SPACE-GROUP SYMMETRY (short overview) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: infinite, idealized crystal

More information

OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2018 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE

OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2018 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2018 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE SHOW THEM Fossils of New York and more! Please sign in at the Earth Science Table before you start

More information

Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University

Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University Created by Jeremiah Duncan, Dept. of Atmospheric Science and Chemistry, Plymouth State University (2012).

More information

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode: Metode zasnovane na sinhrotronskom zracenju Plan predavanja: Difrakcione metode strukturne karakterizacije

More information

Scattering and Diffraction

Scattering and Diffraction Scattering and Diffraction Andreas Kreyssig, Alan Goldman, Rob McQueeney Ames Laboratory Iowa State University All rights reserved, 2018. Atomic scale structure - crystals Crystalline materials... atoms

More information

This Lab will not be marked so make sure to get anything you are unsure about checked by your TA!

This Lab will not be marked so make sure to get anything you are unsure about checked by your TA! Lab One. Microscope Refresher and Advanced Microscope Techniques Learning Goals. After this Lab, you should be able: Demonstrate the operation of the petrographic microscope in plane and crossed polarized

More information

Physical Chemistry I. Crystal Structure

Physical Chemistry I. Crystal Structure Physical Chemistry I Crystal Structure Crystal Structure Introduction Crystal Lattice Bravis Lattices Crytal Planes, Miller indices Distances between planes Diffraction patters Bragg s law X-ray radiation

More information

Planar Symmetries. Chapter Introduction

Planar Symmetries. Chapter Introduction Chapter 6 Planar Symmetries 6.1 Introduction The use of symmetry as an aspect of art goes back several millennia, and some early samples of artistic creations into which symmetry was consciously incorporated

More information

1 What Is a Mineral? Critical Thinking 2. Apply Concepts Glass is made up of silicon and oxygen atoms in a 1:2 ratio. The SiO 2

1 What Is a Mineral? Critical Thinking 2. Apply Concepts Glass is made up of silicon and oxygen atoms in a 1:2 ratio. The SiO 2 CHAPTER 5 1 What Is a Mineral? SECTION Minerals of Earth s Crust KEY IDEAS As you read this section, keep these questions in mind: What is a mineral? What are the two main groups of minerals? What are

More information

Crystallographic structure Physical vs Chemical bonding in solids

Crystallographic structure Physical vs Chemical bonding in solids Crystallographic structure Physical vs Chemical bonding in solids Inert gas and molecular crystals: Van der Waals forces (physics) Water and organic chemistry H bonds (physics) Quartz crystal SiO 2 : covalent

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 11 Crystallography and Crystal Structures, Part 3 Suggested Reading Chapter 6 in Waseda Chapter 1 in F.D. Bloss, Crystallography and Crystal Chemistry: An Introduction,

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination We have a crystal How do we get there? we want a structure! The Unit Cell Concept Ralph Krätzner Unit Cell Description

More information

THE BILBAO CRYSTALLOGRAPHIC SERVER EXERCISES

THE BILBAO CRYSTALLOGRAPHIC SERVER EXERCISES INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume A: Space-group Symmetry Volume A1: Symmetry Relations between Space Groups THE BILBAO CRYSTALLOGRAPHIC SERVER EXERCISES Mois I. Aroyo Departamento Física

More information

GEOMETRY 3 BEGINNER CIRCLE 5/19/2013

GEOMETRY 3 BEGINNER CIRCLE 5/19/2013 GEOMETRY 3 BEGINNER CIRCLE 5/19/2013 1. COUNTING SYMMETRIES A drawing has symmetry if there is a way of moving the paper in such a way that the picture looks after moving the paper. Problem 1 (Rotational

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 20: Class VIII-Silicates Soro- and Cyclosilicates Instructor: Dr. Douglas Haywick Mineral Quiz 4 results 1: Witherite (21%) 2: Cerussite

More information

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3 Roger Johnson Structure and Dnamics: The 23 space groups Lecture 3 3.1. Summar In the first two lectures we considered the structure and dnamics of single molecules. In this lecture we turn our attention

More information

Atoms Elements Minerals

Atoms Elements Minerals Atoms Elements Minerals Atoms The building blocks of all matter. Atoms The building blocks of all matter. Atoms The building blocks of all matter. 1 Atoms consist of a positively charged nucleus of protons

More information

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods X-ray analysis 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods Introduction Noble prizes associated with X-ray diffraction 1901 W. C. Roentgen (Physics) for the discovery

More information

Low Frequency Properties of Dielectric Crystals

Low Frequency Properties of Dielectric Crystals Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series I Editor in Chief: O. Madelung Group III: Solid State Physics Volume 29 Low Frequency Properties of Dielectric

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT Sources: Cornell EAS302 lab, UMass Lowell 89.301 Mineralogy, LHRIC.org The Petrographic Microscope As you know, light is an electromagnetic

More information

OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2013 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE (KEY)

OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2013 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE (KEY) OFFICIAL MID-HUDSON VALLEY GEM & MINERAL SOCIETY (MHVG&MS) 2013 EARTH SCIENCE SCAVENGER HUNT QUESTIONNAIRE (KEY) SHOW THEME - The World of Agates & Jaspers Please sign in at the Earth Science Table before

More information

SOLID STATE CHEMISTRY

SOLID STATE CHEMISTRY SOLID STATE CHEMISTRY Crystal Structure Solids are divided into 2 categories: I. Crystalline possesses rigid and long-range order; its atoms, molecules or ions occupy specific positions, e.g. ice II. Amorphous

More information

Lattices and Symmetry Scattering and Diffraction (Physics)

Lattices and Symmetry Scattering and Diffraction (Physics) Lattices and Symmetry Scattering and Diffraction (Physics) James A. Kaduk INEOS Technologies Analytical Science Research Services Naperville IL 60566 James.Kaduk@innovene.com 1 Harry Potter and the Sorcerer

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

3-D Crystal Lattice Images

3-D Crystal Lattice Images 3-D Crystal Lattice Images All of the following images are crossed-stereo pairs. To view them, cross your eyes and focus. Author's note this material has been expanded and updated, and can be found at

More information

Introduction to Twinning

Introduction to Twinning S.Parsons@ed.ac.uk Introduction to Twinning Simon Parsons School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK. Introduction Although twinning has

More information

Biaxial Minerals This document last updated on 27-Oct-2014

Biaxial Minerals This document last updated on 27-Oct-2014 1 of 18 10/27/2014 1:10 PM EENS 2110 Tulane University Biaxial Minerals Mineralogy Prof. Stephen A. Nelson This document last updated on 27-Oct-2014 All minerals that crystallize in the orthorhombic, monoclinic,

More information