Spectral Flow, the Magnus Force, and the. Josephson-Anderson Relation

Size: px
Start display at page:

Download "Spectral Flow, the Magnus Force, and the. Josephson-Anderson Relation"

Transcription

1 Spectral Flow, the Magnus Force, an the arxiv:con-mat/ v1 16 Feb 1996 Josephson-Anerson Relation P. Ao Department of Theoretical Physics Umeå University, S , Umeå, SWEDEN October 18, 2018 Abstract We show that the spectral flow ue to a moving vortex is ientical to the phase slippage process, an conclue that its evaluation confirms the results by the Berry s phase calculation of the Magnus force. 1

2 Consier a rectilinear vortex moving in a superconuctor with a small velocity v v relative to the backgroun of the crystal lattice, both the Berry s phase[1] an the irect total transverse force[2] calculations lea to the Magnus force: F M = L q v h ρ s 2 v v ẑ. (1) Here ρ s is the superflui electron number ensity, q v = ±1 is the vorticity, an the vortex line is along the z-irection with the length L. The crystal lattice backgroun of the superconuctor is hel at rest in the laboratory frame to avoi further complications. Looking from the point of view of the electron flui, a Fermi liqui, moving vortices cause phase slippages, generating a potential ifference. Therefore the electron flui also feels a force, corresponing to the measure electric fiel. This process has been analyze by Josephson[3] an Anerson[4]. Recently, it has been reanalyze by the calculation of the spectral or momentum flow in the electron flui[5, 6]. Since this spectral flow has a sign opposite to that of the Magnus force, one might be tempte to conclue that it cancels the Magnus force. The purpose of the present letter is to show that those two views of looking at the consequences of a moving vortex are equivalent as the action-reaction forces. This equivalence must have been implicitly containe in the literature, but it has not been explicitly state yet. Instea, some confusion still exists.[7, 8] We start by stuying the momentum flow in the electron flui ue to a moving vortex trappe by a potential locate at r 0. The trapping potential can be arbitrarily weak, an just efines the vortex position. The electron flui system is homogeneous other than this trapping potential, an the system of vortex-electron flui is translational invariant. The momentum flow in the electron flui ue to the moving of the trapping potential, the moving of the vortex, is t P(t) = Tr[ ˆρ(t)ˆP]. (2) 2

3 Here the ensity matrix for the whole electron flui is governe by the equation i h ˆρ(t) = [Ĥ, ˆρ(t)], with ˆP the total momentum operator an Ĥ the truncate Hamiltonian of the system: the lattice phonon inuce effective electron-electron interaction is treate as an attractive one, which gives arise to the superconuctivity. One may inclue the lattice ynamics into the formulation. In this case, because the electron-lattice system consists of a clean superconuctor, our following conclusion will remain unmoifie. We first evaluate the momentum flow from a safe istance far away from the vortex core. Later we point out that it can be evaluate near the vortex core by the spectral flow metho an the results of the two calculations are equal as guarantee by the momentum conservation law. We note that for a slow moving vortex, the aiabatic conition hols: At a given time the ensity matrix ˆρ of the electron flui system can be approximate by its instantaneous equilibrium ensity matrix ˆρ 0 an the eviation ˆρ 1 : ˆρ = ˆρ 0 + ˆρ 1. Here ˆρ 1 is etermine by the equation [Ĥ, ˆρ 1] = i h ˆρ 0, an ˆρ 0 (t) = n f n Ψ n >< Ψ n, (3) with f n = e En/k BT / ne En/k BT the normalize Boltzmann factor an Ψ n the n-th eigenstate of the Hamiltonian. The eigenenergies {E n } are inepenent of time. The time epenence of the ensity matrix is through the vortex position epenence of the wavefunction. Then we have, to the lowest orer in the vortex velocity, { } P(t) = Tr f n v v [ r0 Ψ n >< Ψ n + Ψ n >< r0 Ψ n ]ˆP t n. (4) Here the operator r0 is the graient with respect to the vortex position, an v v = ṙ 0. Since the vortex position, or the position of the trapping potential, is the only reference point in the electron flui system, we have the ientity r0 Ψ n ({r j },r 0 ) = j rj Ψ n ({r j },r 0 ), (5) 3

4 with r j the position of the j-th electron in the system. Note that the total momentum operator is ˆP = i h j rj i h R, Eq.(4) gives us { } P(t) = i h f n [ < R Ψ n v v R Ψ n > + < v v R Ψ n R Ψ n >] t n = i hv v n f n j 3 r j [ R R Ψ n ({r j})ψ n({r j })] {r j }={r j }. (6) Following the same proceure as in Ref.[2], we first reuce the N-boy ensity to the oneboy ensity matrix ρ 1 : t P(t) = i hv v 3 r 1 [ r1 r 1 ρ 1 (r 1 ;r 1)] r 1 =r 1, (7) with ρ 1 (r 1;r 1 ) N n f n j 1 3 r j Ψ n (r 1,{r j })Ψ n(r 1,{r j }), (8) an N the total electron number. Then we use the Stokes theorem to evaluate the integral far away from the vortex core, an obtain t P(t) = L hv v ẑ r i 2 [( r r )ρ 1 (r ;r)] r =r = L q v h ρ s 2 v v ẑ, (9) which shows that the force felt by the electron flui has the same magnitue as the Magnus force, but with the opposite sign. We will return to this point below. In the integration leaing to Eq.(9) we have use the fact that the integran is the momentum ensity. The two-flui moel has been employe to account for the fact that the momentum generate by the vortex correspons to a supercurrent. The momentum flow calculation can also be performe near the vortex core by counting the flow of the energy spectrum, the so-calle spectral flow metho, anhave been oneinref.[5]. The mainiea isthat, by linearizing the time-epenent Bogoliubov-e Gennes equation near the Fermi surface, a pseuorelativistic Dirac equation will be obtaine. This linearization reuces the original 3+1 imensional problem to an effective 1+1 imensional one. As a vortex moves, there is a continuous flow 4

5 of the energy spectrum, emerging from(or sinking into) the Fermi sea. The spectral flow rate is proportional to the vortex velocity. By counting their contributions to the momentum, the same result as Eq.(9) has been arrive at in Ref.[5]. This proceure has been further verifie by a moel calculation.[8] The agreement between two seemingly totally ifferent ways, lookingfromasafeistance away fromthecoreanwatching thespectral flownear the core, of calculating the momentum flow may first appear surprising. It has been, however, explicitly emonstrate in Ref.[9] in a slightly ifferent context in the 3 He-A phase that they are inee the complementary two ways of keeping track of the same physics, an they are equal as a result of the momentum conservation in the electron flui system. In the present situation the link between those two ways has been iscusse in Ref.[6]. It is the ifferential form of the momentum flow: t (m v s )+ µ = q v hv v ẑ δ 2 (r r 0 ), (10) with the electrochemical potential µ as the sum of the chemical potential µ 0, the flui kinetic energyantheelectricpotential µ = µ 0 + m 2 v2 s+e (φ+ 1 r r A(r,t)), anthesuperflui c t velocity istribution m v s = h θ e c A. Here m an e are effective mass an charge of a Cooper pair, respectively, an θ is the phase of the superconucting conensate wavefunction. Eq.(10) is gauge invariant, an is a precise statement about the phase slippage process ue to a moving vortex. Its various consequences have been explore by Josephson[3] an Anerson[4]. An ientical equation for the special case of v v = v s in the neutral superflui has been stuie by Anerson[4]. We may call Eq.(10) the Josephson-Anerson relation. It isclear now that a moving vortex feels a transverse force, the Magnus force; if one looks from the point of view of the electron flui, the flui also feels a force with the magnitue equal to but thesign oppositeto themagnus force. The two forces areacting ontwo ifferent objects, the vortex an the electron flui, an are the action-reaction forces. In the following 5

6 we strengthen this point by a straightforwar proof. We write Eq.(2) in its equivalent form of the Ehrenfest theorem: Using R Ĥ = r0 Ĥ, we obtain P(t) = Tr[ˆρ(t) RĤ]. (11) t t P(t) = Tr[ˆρ(t) r 0 Ĥ] = F M. (12) This shows that the two forces uner iscussion are inee the action-reaction forces. In the last equality we have use the formal efinition of the Magnus force[2]. The present result, the equivalence between the Magnus force an the spectral flow as action-reaction forces, may seem obvious. Nevertheless it has never been explicitly spelle out in the literature. Instea, some recent work have treate the spectral flow as a way to cancel the Magnus force[5, 7, 8], which is incorrect accoring to the present emonstration. It shoul be pointe out that the spectral flow is a counting of contributions from extene states. There is no involvement of the localize core states. This can be explicitly checke by expressing the one-boy ensity matrix in Eq.(9) in terms of extene an localize states, an latter gives zero contribution, as having been note in Ref.[2] in the evaluation of the Magnus force. Incientally, in Ref.[5] the Wess-Zumino term for a moving vortex has been ientifie as the same force as the one ue to the spectral flow. Recent as well as earlier work have shown that the Wess-Zumino term gives exactly the Magnus force[10, 11, 12, 6], not the spectral flow. Comparing the Berry s phase calculation away from the vortex core with the spectral or momentum flow counting near the vortex core, we fin that the former only epens on a few global properties of a superconuctor, namely the topology of a vortex, an the latter is a rather etaile calculation. The topological constraints behave like conservations laws. 6

7 Results obtaine uner them shoul, an have to, be borne out by etaile calculations, which are concrete realizations. For the Magnus force, it is inee the case. Acknowlegements: The author thanks Davi Thouless an Qian Niu for numerous iscussions, an Mike Stone an Frank Gaitan for informative corresponences. The paper was initiate at the Institute of Scientific Information at Turin in the fall of 1993, an was shape into the present form at the Aspen Center for Physics in the summer of Their hospitalities are gratefully acknowlege. The work was supporte in part by Sweish Natural Science Research Council an by US NSF Grant No. DMR Present aress: Department of Physics, Box , University of Washington, Seattle, WA 98195, USA. References [1] P. Ao an D.J. Thouless, Phys. Rev. Lett. 70, 2158 (1993); P. Ao, Q. Niu, an D.J. Thouless, Physica B , 1453 (1994). [2] D.J. Thouless, P. Ao, an Q. Niu, Transverse force on a quantize vortex in a superflui, preprint, High-Tc Upate, Nov. 15, [3] B.D. Josephson, Phys. Lett. 1, 251 (1962); ibi. 16, 242 (1965). [4] P.W. Anerson, Rev. Mo. Phys. 38, 298 (1966). [5] G.E. Volovik, JETP Lett. 57, 244 (1993); JETP 77, 435 (1993). [6] F. Gaitan, J. Phys. Con. Matt. 7, L165 (1995); Phys. Rev. B51, 9061 (1995). [7] G.E. Volovik, JETP Lett. 62, 65 (1995). 7

8 [8] Y.G. Makhlin an T.S. Misirpashaev, JETP Lett. 62, 83 (1995). [9] M. Stone an F. Gaitan, Ann. Phys.(N.Y.) 178, 89 (1987). [10] M. Hatsua, S. Yahikozawa, P. Ao, an D.J. Thouless, Phys. Rev. B49, (1994); an references therein. [11] P. Ao, D.J. Thouless, an X.-M. Zhu, Mo. Phys. Lett. B9, 755 (1995); I.J.R. Aitchison, P. Ao, D.J. Thouless, an X.-M. Zhu, Phys, Rev, B51, 6531 (1995). [12] M. Stone, Int. J. Mo. Phys. B9, 1359 (1995). 8

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

How the potentials in different gauges yield the same retarded electric and magnetic fields

How the potentials in different gauges yield the same retarded electric and magnetic fields How the potentials in ifferent gauges yiel the same retare electric an magnetic fiels José A. Heras a Departamento e Física, E. S. F. M., Instituto Politécnico Nacional, México D. F. México an Department

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Delocalization of boundary states in disordered topological insulators

Delocalization of boundary states in disordered topological insulators Journal of Physics A: Mathematical an Theoretical J. Phys. A: Math. Theor. 48 (05) FT0 (pp) oi:0.088/75-83/48//ft0 Fast Track Communication Delocalization of bounary states in isorere topological insulators

More information

PHYS 414 Problem Set 2: Turtles all the way down

PHYS 414 Problem Set 2: Turtles all the way down PHYS 414 Problem Set 2: Turtles all the way own This problem set explores the common structure of ynamical theories in statistical physics as you pass from one length an time scale to another. Brownian

More information

On the number of isolated eigenvalues of a pair of particles in a quantum wire

On the number of isolated eigenvalues of a pair of particles in a quantum wire On the number of isolate eigenvalues of a pair of particles in a quantum wire arxiv:1812.11804v1 [math-ph] 31 Dec 2018 Joachim Kerner 1 Department of Mathematics an Computer Science FernUniversität in

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

arxiv: v1 [physics.class-ph] 20 Dec 2017

arxiv: v1 [physics.class-ph] 20 Dec 2017 arxiv:1712.07328v1 [physics.class-ph] 20 Dec 2017 Demystifying the constancy of the Ermakov-Lewis invariant for a time epenent oscillator T. Pamanabhan IUCAA, Post Bag 4, Ganeshkhin, Pune - 411 007, Inia.

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

CONSERVATION PROPERTIES OF SMOOTHED PARTICLE HYDRODYNAMICS APPLIED TO THE SHALLOW WATER EQUATIONS

CONSERVATION PROPERTIES OF SMOOTHED PARTICLE HYDRODYNAMICS APPLIED TO THE SHALLOW WATER EQUATIONS BIT 0006-3835/00/4004-0001 $15.00 200?, Vol.??, No.??, pp.?????? c Swets & Zeitlinger CONSERVATION PROPERTIES OF SMOOTHE PARTICLE HYROYNAMICS APPLIE TO THE SHALLOW WATER EQUATIONS JASON FRANK 1 an SEBASTIAN

More information

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments 2 Conference on Information Sciences an Systems, The Johns Hopkins University, March 2, 2 Time-of-Arrival Estimation in Non-Line-Of-Sight Environments Sinan Gezici, Hisashi Kobayashi an H. Vincent Poor

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

arxiv: v1 [physics.flu-dyn] 8 May 2014

arxiv: v1 [physics.flu-dyn] 8 May 2014 Energetics of a flui uner the Boussinesq approximation arxiv:1405.1921v1 [physics.flu-yn] 8 May 2014 Kiyoshi Maruyama Department of Earth an Ocean Sciences, National Defense Acaemy, Yokosuka, Kanagawa

More information

On Characterizing the Delay-Performance of Wireless Scheduling Algorithms

On Characterizing the Delay-Performance of Wireless Scheduling Algorithms On Characterizing the Delay-Performance of Wireless Scheuling Algorithms Xiaojun Lin Center for Wireless Systems an Applications School of Electrical an Computer Engineering, Purue University West Lafayette,

More information

Chapter 6: Energy-Momentum Tensors

Chapter 6: Energy-Momentum Tensors 49 Chapter 6: Energy-Momentum Tensors This chapter outlines the general theory of energy an momentum conservation in terms of energy-momentum tensors, then applies these ieas to the case of Bohm's moel.

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

arxiv:hep-th/ v1 3 Feb 1993

arxiv:hep-th/ v1 3 Feb 1993 NBI-HE-9-89 PAR LPTHE 9-49 FTUAM 9-44 November 99 Matrix moel calculations beyon the spherical limit arxiv:hep-th/93004v 3 Feb 993 J. Ambjørn The Niels Bohr Institute Blegamsvej 7, DK-00 Copenhagen Ø,

More information

Stable and compact finite difference schemes

Stable and compact finite difference schemes Center for Turbulence Research Annual Research Briefs 2006 2 Stable an compact finite ifference schemes By K. Mattsson, M. Svär AND M. Shoeybi. Motivation an objectives Compact secon erivatives have long

More information

arxiv: v1 [cond-mat.stat-mech] 9 Jan 2012

arxiv: v1 [cond-mat.stat-mech] 9 Jan 2012 arxiv:1201.1836v1 [con-mat.stat-mech] 9 Jan 2012 Externally riven one-imensional Ising moel Amir Aghamohammai a 1, Cina Aghamohammai b 2, & Mohamma Khorrami a 3 a Department of Physics, Alzahra University,

More information

Switching Time Optimization in Discretized Hybrid Dynamical Systems

Switching Time Optimization in Discretized Hybrid Dynamical Systems Switching Time Optimization in Discretize Hybri Dynamical Systems Kathrin Flaßkamp, To Murphey, an Sina Ober-Blöbaum Abstract Switching time optimization (STO) arises in systems that have a finite set

More information

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM ON THE OPTIMALITY SYSTEM FOR A D EULER FLOW PROBLEM Eugene M. Cliff Matthias Heinkenschloss y Ajit R. Shenoy z Interisciplinary Center for Applie Mathematics Virginia Tech Blacksburg, Virginia 46 Abstract

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons

Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons Plasma Science an Technology, Vol.17, No.9, Sep. 015 Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions an Non-Isothermal Electrons Apul N. DEV 1, Manoj K. DEKA, Rajesh SUBEDI

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

Centrum voor Wiskunde en Informatica

Centrum voor Wiskunde en Informatica Centrum voor Wiskune en Informatica Moelling, Analysis an Simulation Moelling, Analysis an Simulation Conservation properties of smoothe particle hyroynamics applie to the shallow water equations J.E.

More information

Problem Set 6: Workbook on Operators, and Dirac Notation Solution

Problem Set 6: Workbook on Operators, and Dirac Notation Solution Moern Physics: Home work 5 Due ate: 0 March. 014 Problem Set 6: Workbook on Operators, an Dirac Notation Solution 1. nswer 1: a The cat is being escribe by the state, ψ >= ea > If we try to observe it

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

A Review of Multiple Try MCMC algorithms for Signal Processing

A Review of Multiple Try MCMC algorithms for Signal Processing A Review of Multiple Try MCMC algorithms for Signal Processing Luca Martino Image Processing Lab., Universitat e València (Spain) Universia Carlos III e Mari, Leganes (Spain) Abstract Many applications

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7.

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7. Lectures Nine an Ten The WKB Approximation The WKB metho is a powerful tool to obtain solutions for many physical problems It is generally applicable to problems of wave propagation in which the frequency

More information

arxiv:nlin/ v1 [nlin.cd] 21 Mar 2002

arxiv:nlin/ v1 [nlin.cd] 21 Mar 2002 Entropy prouction of iffusion in spatially perioic eterministic systems arxiv:nlin/0203046v [nlin.cd] 2 Mar 2002 J. R. Dorfman, P. Gaspar, 2 an T. Gilbert 3 Department of Physics an Institute for Physical

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom PHYSICAL REVIEW A 69, 063409 (2004) Semiclassical analysis of long-wavelength multiphoton processes: The Ryberg atom Luz V. Vela-Arevalo* an Ronal F. Fox Center for Nonlinear Sciences an School of Physics,

More information

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013 Survey Sampling Kosuke Imai Department of Politics, Princeton University February 19, 2013 Survey sampling is one of the most commonly use ata collection methos for social scientists. We begin by escribing

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

The Ehrenfest Theorems

The Ehrenfest Theorems The Ehrenfest Theorems Robert Gilmore Classical Preliminaries A classical system with n egrees of freeom is escribe by n secon orer orinary ifferential equations on the configuration space (n inepenent

More information

Introduction to variational calculus: Lecture notes 1

Introduction to variational calculus: Lecture notes 1 October 10, 2006 Introuction to variational calculus: Lecture notes 1 Ewin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-106 91 Stockholm, Sween Abstract I give an informal summary of variational

More information

Entanglement is not very useful for estimating multiple phases

Entanglement is not very useful for estimating multiple phases PHYSICAL REVIEW A 70, 032310 (2004) Entanglement is not very useful for estimating multiple phases Manuel A. Ballester* Department of Mathematics, University of Utrecht, Box 80010, 3508 TA Utrecht, The

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Quantum optics of a Bose-Einstein condensate coupled to a quantized light field

Quantum optics of a Bose-Einstein condensate coupled to a quantized light field PHYSICAL REVIEW A VOLUME 60, NUMBER 2 AUGUST 1999 Quantum optics of a Bose-Einstein conensate couple to a quantize light fiel M. G. Moore, O. Zobay, an P. Meystre Optical Sciences Center an Department

More information

Statics. There are four fundamental quantities which occur in mechanics:

Statics. There are four fundamental quantities which occur in mechanics: Statics Mechanics isabranchofphysicsinwhichwestuythestate of rest or motion of boies subject to the action of forces. It can be ivie into two logical parts: statics, where we investigate the equilibrium

More information

conrm that at least the chiral eterminant can be ene on the lattice using the overlap formalism. The overlap formalism has been applie by a number of

conrm that at least the chiral eterminant can be ene on the lattice using the overlap formalism. The overlap formalism has been applie by a number of The Chiral Dirac Determinant Accoring to the Overlap Formalism Per Ernstrom an Ansar Fayyazuin NORDITA, Blegamsvej 7, DK-00 Copenhagen, Denmark Abstract The chiral Dirac eterminant is calculate using the

More information

arxiv: v1 [hep-ex] 4 Sep 2018 Simone Ragoni, for the ALICE Collaboration

arxiv: v1 [hep-ex] 4 Sep 2018 Simone Ragoni, for the ALICE Collaboration Prouction of pions, kaons an protons in Xe Xe collisions at s =. ev arxiv:09.0v [hep-ex] Sep 0, for the ALICE Collaboration Università i Bologna an INFN (Bologna) E-mail: simone.ragoni@cern.ch In late

More information

Vertical shear plus horizontal stretching as a route to mixing

Vertical shear plus horizontal stretching as a route to mixing Vertical shear plus horizontal stretching as a route to mixing Peter H. Haynes Department of Applie Mathematics an Theoretical Physics, University of Cambrige, UK Abstract. The combine effect of vertical

More information

Formulation of statistical mechanics for chaotic systems

Formulation of statistical mechanics for chaotic systems PRAMANA c Inian Acaemy of Sciences Vol. 72, No. 2 journal of February 29 physics pp. 315 323 Formulation of statistical mechanics for chaotic systems VISHNU M BANNUR 1, an RAMESH BABU THAYYULLATHIL 2 1

More information

Agmon Kolmogorov Inequalities on l 2 (Z d )

Agmon Kolmogorov Inequalities on l 2 (Z d ) Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Publishe by Canaian Center of Science an Eucation Agmon Kolmogorov Inequalities on l (Z ) Arman Sahovic Mathematics Department,

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

Optimal Control of Spatially Distributed Systems

Optimal Control of Spatially Distributed Systems Optimal Control of Spatially Distribute Systems Naer Motee an Ali Jababaie Abstract In this paper, we stuy the structural properties of optimal control of spatially istribute systems. Such systems consist

More information

1. At time t = 0, the wave function of a free particle moving in a one-dimension is given by, ψ(x,0) = N

1. At time t = 0, the wave function of a free particle moving in a one-dimension is given by, ψ(x,0) = N Physics 15 Solution Set Winter 018 1. At time t = 0, the wave function of a free particle moving in a one-imension is given by, ψ(x,0) = N where N an k 0 are real positive constants. + e k /k 0 e ikx k,

More information

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate Freun Publishing House Lt., International Journal of Nonlinear Sciences & Numerical Simulation, (9), -, 9 Application of the homotopy perturbation metho to a magneto-elastico-viscous flui along a semi-infinite

More information

Nonlinear Schrödinger equation with a white-noise potential: Phase-space approach to spread and singularity

Nonlinear Schrödinger equation with a white-noise potential: Phase-space approach to spread and singularity Physica D 212 (2005) 195 204 www.elsevier.com/locate/phys Nonlinear Schröinger equation with a white-noise potential: Phase-space approach to sprea an singularity Albert C. Fannjiang Department of Mathematics,

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

The effect of nonvertical shear on turbulence in a stably stratified medium

The effect of nonvertical shear on turbulence in a stably stratified medium The effect of nonvertical shear on turbulence in a stably stratifie meium Frank G. Jacobitz an Sutanu Sarkar Citation: Physics of Fluis (1994-present) 10, 1158 (1998); oi: 10.1063/1.869640 View online:

More information

Proof of SPNs as Mixture of Trees

Proof of SPNs as Mixture of Trees A Proof of SPNs as Mixture of Trees Theorem 1. If T is an inuce SPN from a complete an ecomposable SPN S, then T is a tree that is complete an ecomposable. Proof. Argue by contraiction that T is not a

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods Hyperbolic Moment Equations Using Quarature-Base Projection Methos J. Koellermeier an M. Torrilhon Department of Mathematics, RWTH Aachen University, Aachen, Germany Abstract. Kinetic equations like the

More information

WUCHEN LI AND STANLEY OSHER

WUCHEN LI AND STANLEY OSHER CONSTRAINED DYNAMICAL OPTIMAL TRANSPORT AND ITS LAGRANGIAN FORMULATION WUCHEN LI AND STANLEY OSHER Abstract. We propose ynamical optimal transport (OT) problems constraine in a parameterize probability

More information

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges Plasma Science an Technology, Vol.16, No.1, Oct. 214 A Simple Moel for the Calculation of Plasma Impeance in Atmospheric Raio Frequency Discharges GE Lei ( ) an ZHANG Yuantao ( ) Shanong Provincial Key

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter 2 Governing Equations In the present an the subsequent chapters, we shall, either irectly or inirectly, be concerne with the bounary-layer flow of an incompressible viscous flui without any involvement

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Making a Wavefunctional representation of physical states congruent with the false vacuum hypothesis of Sidney Coleman

Making a Wavefunctional representation of physical states congruent with the false vacuum hypothesis of Sidney Coleman Making a Wavefunctional representation of physical states congruent with the false vacuum hypothesis of Siney Coleman A. W. Beckwith Department of Physics an Texas Center for Superconuctivity an Avance

More information

Evaporating droplets tracking by holographic high speed video in turbulent flow

Evaporating droplets tracking by holographic high speed video in turbulent flow Evaporating roplets tracking by holographic high spee vieo in turbulent flow Loïc Méès 1*, Thibaut Tronchin 1, Nathalie Grosjean 1, Jean-Louis Marié 1 an Corinne Fournier 1: Laboratoire e Mécanique es

More information

The maximum sustainable yield of Allee dynamic system

The maximum sustainable yield of Allee dynamic system Ecological Moelling 154 (2002) 1 7 www.elsevier.com/locate/ecolmoel The maximum sustainable yiel of Allee ynamic system Zhen-Shan Lin a, *, Bai-Lian Li b a Department of Geography, Nanjing Normal Uni ersity,

More information

Slide10 Haykin Chapter 14: Neurodynamics (3rd Ed. Chapter 13)

Slide10 Haykin Chapter 14: Neurodynamics (3rd Ed. Chapter 13) Slie10 Haykin Chapter 14: Neuroynamics (3r E. Chapter 13) CPSC 636-600 Instructor: Yoonsuck Choe Spring 2012 Neural Networks with Temporal Behavior Inclusion of feeback gives temporal characteristics to

More information

Optimal Control of Spatially Distributed Systems

Optimal Control of Spatially Distributed Systems Optimal Control of Spatially Distribute Systems Naer Motee an Ali Jababaie Abstract In this paper, we stuy the structural properties of optimal control of spatially istribute systems. Such systems consist

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 20 Feb 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 20 Feb 2006 Pair tunneling through single molecules arxiv:con-mat/5249v2 con-mat.mes-hall] 2 Feb 26 Jens Koch, M.E. Raikh, 2 an Felix von Oppen Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee

More information

Experimental demonstration of metamaterial multiverse in a ferrofluid

Experimental demonstration of metamaterial multiverse in a ferrofluid Experimental emonstration of metamaterial multiverse in a ferroflui Igor I. Smolyaninov, 1,* Braley Yost, Evan Bates, an Vera N. Smolyaninova 1 Department of Electrical an Computer Engineering, University

More information

Impurities in inelastic Maxwell models

Impurities in inelastic Maxwell models Impurities in inelastic Maxwell moels Vicente Garzó Departamento e Física, Universia e Extremaura, E-671-Baajoz, Spain Abstract. Transport properties of impurities immerse in a granular gas unergoing homogenous

More information

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE Journal of Soun an Vibration (1996) 191(3), 397 414 THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE E. M. WEINSTEIN Galaxy Scientific Corporation, 2500 English Creek

More information

Self-focusing and soliton formation in media with anisotropic nonlocal material response

Self-focusing and soliton formation in media with anisotropic nonlocal material response EUROPHYSICS LETTERS 20 November 1996 Europhys. Lett., 36 (6), pp. 419-424 (1996) Self-focusing an soliton formation in meia with anisotropic nonlocal material response A. A. Zoulya 1, D. Z. Anerson 1,

More information

involve: 1. Treatment of a decaying particle. 2. Superposition of states with different masses.

involve: 1. Treatment of a decaying particle. 2. Superposition of states with different masses. Physics 195a Course Notes The K 0 : An Interesting Example of a Two-State System 021029 F. Porter 1 Introuction An example of a two-state system is consiere. involve: 1. Treatment of a ecaying particle.

More information

Nonlinear Dielectric Response of Periodic Composite Materials

Nonlinear Dielectric Response of Periodic Composite Materials onlinear Dielectric Response of Perioic Composite aterials A.G. KOLPAKOV 3, Bl.95, 9 th ovember str., ovosibirsk, 639 Russia the corresponing author e-mail: agk@neic.nsk.su, algk@ngs.ru A. K.TAGATSEV Ceramics

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

The Hamiltonian structure of a 2-D rigid cylinder interacting dynamically with N point vortices

The Hamiltonian structure of a 2-D rigid cylinder interacting dynamically with N point vortices The Hamiltonian structure of a -D rigi cyliner interacting ynamically with N point vortices Banavara Shashikanth, Jerrol Marsen, Joel Burick, Scott Kelly Control an Dynamical Systems, 07-8, Mechanical

More information

arxiv:physics/ v2 [physics.ed-ph] 23 Sep 2003

arxiv:physics/ v2 [physics.ed-ph] 23 Sep 2003 Mass reistribution in variable mass systems Célia A. e Sousa an Vítor H. Rorigues Departamento e Física a Universiae e Coimbra, P-3004-516 Coimbra, Portugal arxiv:physics/0211075v2 [physics.e-ph] 23 Sep

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

Transmission Line Matrix (TLM) network analogues of reversible trapping processes Part B: scaling and consistency

Transmission Line Matrix (TLM) network analogues of reversible trapping processes Part B: scaling and consistency Transmission Line Matrix (TLM network analogues of reversible trapping processes Part B: scaling an consistency Donar e Cogan * ANC Eucation, 308-310.A. De Mel Mawatha, Colombo 3, Sri Lanka * onarecogan@gmail.com

More information

Implicit Lyapunov control of closed quantum systems

Implicit Lyapunov control of closed quantum systems Joint 48th IEEE Conference on Decision an Control an 28th Chinese Control Conference Shanghai, P.R. China, December 16-18, 29 ThAIn1.4 Implicit Lyapunov control of close quantum systems Shouwei Zhao, Hai

More information

Emergence of quantization: the spin of the electron

Emergence of quantization: the spin of the electron Journal of Physics: Conference Series OPEN ACCESS Emergence of quantization: the spin of the electron To cite this article: A M Cetto et al 2014 J. Phys.: Conf. Ser. 504 012007 View the article online

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

Effective Rheological Properties in Semidilute Bacterial Suspensions

Effective Rheological Properties in Semidilute Bacterial Suspensions Noname manuscript No. (will be inserte by the eitor) Effective Rheological Properties in Semiilute Bacterial Suspensions Mykhailo Potomkin Shawn D. Ryan Leoni Berlyan Receive: ate / Accepte: ate Abstract

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

Optimized Schwarz Methods with the Yin-Yang Grid for Shallow Water Equations

Optimized Schwarz Methods with the Yin-Yang Grid for Shallow Water Equations Optimize Schwarz Methos with the Yin-Yang Gri for Shallow Water Equations Abessama Qaouri Recherche en prévision numérique, Atmospheric Science an Technology Directorate, Environment Canaa, Dorval, Québec,

More information

Convective heat transfer

Convective heat transfer CHAPTER VIII Convective heat transfer The previous two chapters on issipative fluis were evote to flows ominate either by viscous effects (Chap. VI) or by convective motion (Chap. VII). In either case,

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

A coupled surface-cahn-hilliard bulk-diffusion system modeling lipid raft formation in cell membranes

A coupled surface-cahn-hilliard bulk-diffusion system modeling lipid raft formation in cell membranes A couple surface-cahn-hilliar bulk-iffusion system moeling lipi raft formation in cell membranes Haral Garcke, Johannes Kampmann, Anreas Rätz, Matthias Röger Preprint 2015-09 September 2015 Fakultät für

More information

The proper definition of the added mass for the water entry problem

The proper definition of the added mass for the water entry problem The proper efinition of the ae mass for the water entry problem Leonaro Casetta lecasetta@ig.com.br Celso P. Pesce ceppesce@usp.br LIE&MO lui-structure Interaction an Offshore Mechanics Laboratory Mechanical

More information

arxiv: v2 [quant-ph] 27 Apr 2016

arxiv: v2 [quant-ph] 27 Apr 2016 Optimal state iscrimination an unstructure search in nonlinear quantum mechanics Anrew M. Chils 1,,3 an Joshua Young 3,4 arxiv:1507.06334v [quant-ph] 7 Apr 016 1 Department of Computer Science, Institute

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz A note on asymptotic formulae for one-imensional network flow problems Carlos F. Daganzo an Karen R. Smilowitz (to appear in Annals of Operations Research) Abstract This note evelops asymptotic formulae

More information

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis The Kepler Problem For the Newtonian 1/r force law, a miracle occurs all of the solutions are perioic instea of just quasiperioic. To put it another way, the two-imensional tori are further ecompose into

More information