Problem structure in semidefinite programs arising in control and signal processing

Size: px
Start display at page:

Download "Problem structure in semidefinite programs arising in control and signal processing"

Transcription

1 Problem structure in semidefinite programs arising in control and signal processing Lieven Vandenberghe Electrical Engineering Department, UCLA Joint work with: Mehrdad Nouralishahi, Tae Roh Semidefinite Programming and Its Applications IMS, National University of Singapore January 13, 2006

2 Outline Model calibration in optical lithography. Optimization over nonnegative polynomials. Robust least squares. 1

3 Model calibration in optical lithography mask imaging system wafer PSfrag replacements source PSfrag replacements Model of the lithography process layout optical system resist/etch process simulated pattern Model calibration: adjust optical model to include resist/etching effects. 2

4 I(x) = The Hopkins model f(x v) K(v) J(u v)k(u) f(x u) du dv f(x): input image (mask); I(x): output image intensity Coherent illumination: J(u v) = 1 I(x) = K(u)f(x u)du 2 = (K f)(x) 2 Incoherent illumination: J(u v) = δ(u v) I(x) = K(u)f(x u) 2 du Other choices for J model partially coherent systems. 3

5 Discrete Hopkins model Optimal coherent approximation I(x) = f H x W f x f x is vector of input values around at x; for example, for 1-D systems, f x = (f(x N), f(x N 1),..., f(x + N)) Low-rank approximation ( r I(x) = fx H φ k φ H k k=1 ) f x = r (φ k f)(x) 2 k=1 φ 1,..., φ r are first few eigenvectors of W. 4

6 SDP formulation (for real data) minimize tr(dw ) subject to ɛi W W 0 ɛi l k a T k W a k u k, k = 1,..., m symmetry constraints on W W 0 W 0 is prior model of optical system. Measurements give m upper/lower bounds on intensity for given inputs. Objective rewards smoothness or low rank (D = I). 5

7 Symmetry constraints One-dimensional system: W S n is persymmetric, i.e., W = JW J, J = Two-dimensional system: W S n2 with W = (J n I n )W (J n I n ) = (I n J n )W (I n J n ) General constraint: W = P W P P a symmetric permutation matrix 6

8 Exploiting symmetry Suppose P is a symmetric permutation matrix (P 2 = I): P = [ V e V o ] [ I 0 0 I ] [ Ve V o ] T V e/o are eigenvectors with eigenvalue ±1. Property: if W = P W P, then W = [ V e V o ] [ W e 0 0 W o ] [ Ve V o ] T Reduces the number of variables: One-dimensional problem: 2 matrices of size n/2 Two-dimensional problem: 4 matrices of size n 2 /4 7

9 Variable upper bounds LP with upper bounds minimize subject to c T x Ax = b 0 x 1 Can introduce slack variables to convert to standard form x + s = 1, s 0. n new variables, n (sparse) equality constraints. Upper bounds are easily incorporated in IP methods (at no extra cost). 8

10 SDP with upper bounds Introduce slack variables: minimize tr(cx) subject to tr(a i X) = b i, i = 1,..., m 0 X I X + S = I, S 0 Adds n(n + 1)/2 variables and constraints. Hence, it is important to handle upper bounds directly. 9

11 Newton equations for SDP with upper bounds T1 1 1 XT where T 1, T T2 1 XT m y j A j = D j=1 tr(a i X) = d i, i = 1,..., m Find congruence that simultaneously diagonalizes T 1 and T 2 : R T T 1 R = I, R T T 2 R = diag(γ) 1 Make change of variables X = R T XR. 10

12 Transformed equations: X diag(γ) X diag(γ) + m y j à j = D j=1 tr(ãi X) = d i, i = 1,..., m Eliminate X from first equation: X = m y j (Ãj Γ) D Γ, Γ kl = 1/(1 + γ k γ l ) j=1 Solve m tr(ãi(ãj Γ)) y j = b i, j=1 i = 1,..., m Cost: comparable to SDP without upper bounds. 11

13 Example Calibration step (using simulated data) Left: mask. Right: measured intensity. W, W 0 S Sample output image at m = 2500 points. 12

14 Test input and actual output Predicted output with uncalibrated and calibrated model 13

15 Outline Model calibration in optical lithography. Optimization over nonnegative polynomials. Robust least squares.

16 A useful SDP standard form minimize subject to tr(bx) A diag(cxc T ) = b X 0 maximize subject to b T y C T diag(a T y)c B Interpretation (for A R m r with rows a T i, C Rr n ) Constraints are equivalent to tr(f i X) = b i, i = 1,..., m, where F i = C T diag(a i )C, i = 1,..., m. Matrices F i are linear combinations of r rank-one matrices. Possible for arbitrary F i if r = mn. Interesting when r mn. F i s can be dense and full-rank. 14

17 Newton equations T 1 XT 1 + C T diag(a T y)c = D A diag(c XC T ) = d Eliminate X from first equation, substitute in second: H y = g with H = A ( (CT C T ) (CT C T ) ) A T Cost if m = O(n), r = O(n): O(n 3 ) operations 15

18 SDP formulation of sums of squares x T f(t) = s (yk T q(t)) 2 k=1 r.h.s. sampled at t 1,..., t N, s k=1 ((Cy k ) (Cy k )) = k diag(cy k y T k C T ) = diag(cxc T ) where C = [ q(t 1 ) q(t 2 ) q(t N ) ] T, X = k y ky T k. Coefficients of l.h.s. from samples at t 1,..., t N : x = A diag(cxc T ) 16

19 Applications Trigonometric polynomial nonnegative on (subinterval of) [0, 2π] (via discrete Fourier transform). Cosine polynomials nonnegative on (subinterval of) [0, π] (via discrete cosine transform). Real polynomials nonnegative on (subintervals of) R (via discrete polynomial transforms and orthogonal polynomials). Sum-of-squares representations of multivariate nonnegative polynomials. 17

20 Nonnegative trigonometric polynomial x 0 + 2R(x 1 e jω + + x n e jnω ) = y0 + y 1 e jω + + y n e jnω 2 r.h.s. at ω = 2πk/N, k = 0,..., N 1, where N 2n + 1: (W y) (W y) = diag(w XW H ), X = yy H W : first n + 1 columns of DFT matrix of length N. Inverse DFT maps sampled values to coefficients of l.h.s.: x = 1 N W H diag(w XW H ) (1) Hence, polynomial is nonnegative iff (1) for some X 0. 18

21 Dual interpretation: parametrization of Toeplitz matrix 1 2 2z 0 z 1 z n z 1 2z 0 z n z n z n 1 2z 0 = 1 N W H diag(r(w z))w Follows from expressions for convolution of z with a vector u: z u = z z 1 z z n z n 1 z 0 u = 1 N W H ((W z) (W u)) = 1 N W H diag(w z)w u 19

22 Example: Linear-phase Nyquist filter minimize sup ω ωs h 0 + h 1 cos ω + + h n cos nω with h 0 = 1/M, h km = 0 for positive integer k H(ω) PSfrag replacements ω (Example with n = 50, M = 5, ω s = 0.69.) 20

23 SDP formulation Semi-infinite LP minimize t subject to t h 0 + h 1 cos ω + + h n cos nω t, ω s ω π SDP formulation minimize t subject to h + te 0 = A 1 diag(c 1 X 1 C1 T ) + A 2 diag(c 2 X 2 C2 T ) h + te 0 = A 1 diag(c 1 X 3 C1 T ) + A 2 diag(c 2 X 4 C2 T ) X 1 0, X 2 0, X 3 0, X 4 0 Variables: t, h i (except for i = km), 4 matrices X i of size roughly n/2. A i, C i constructed from DCT matrices of length N n. 21

24 Nonnegative polynomial on R x 0 p 0 (t) + x 1 p 1 (t) + + x n p n (t) = (u 0 p 0 (t) + + u m p m (t)) 2 + (v 0 p 0 (t) + + v m p m (t)) 2 (p k : basis polynomial of degree k; n = 2m) r.h.s. evaluated at t 0,..., t N : (Cu) (Cu) + (Cv) (Cv) = diag(cxc T ), X = uu T + vv T where C ij = p j (t i ) If N n and t i are distinct, the sample values uniquely specify x: x = A diag(cxc T ) (2) Polynomial is nonnegative iff (2) holds for some X 0. 22

25 Discrete polynomial transform V DPT = p 0 (t 0 ) p 1 (t 0 ) p N (t 0 ) p 0 (t 1 ). p 1 (t 1 ). p N (t 1 ). p 0 (t N ) p 1 (t N ) p N (t N ), W DPT = V 1 DPT p 0, p 1,... : system of orthogonal polynomials t 0,..., t N : roots of p N+1 V DPT maps coefficients of x 0 p 0 (t) + x 1 p 1 (t) + + x N p N (t) to values at t 0,... t N W DPT maps values at t 0,..., t N to coefficients 23

26 Three-term recursion t p 0 (t) p 1 (t) p 2 (t). p N (t) = β 0 α α 0 β 1 α α 1 β β N p 0 (t) p 1 (t) p 2 (t). p N (t) + α N p N+1 (t) tp(t) = Jp(t) + α N p N+1 (t)e N Eigenvalues of J are the roots of p N+1 : t i p(t i ) = Jp(t i ) V DPT, W DPT easily computed from eigenvalue decomposition of J. 24

27 Magnitude FIR filter design Numerical example π minimize Y (ω) dω ω s subject to 1/δ p Y (ω) δ p, 0 ω ω p Y (ω) δ s, ω s ω π Y (ω) 0, 0 ω π where Y (ω) = y 0 + y 1 cos ω + + y n cos nω. Constraints result in 4 LMI constraints. Variables: y and 8 auxiliary matrix variables of size roughly n/2. 25

28 Example (n = 101) 10 0 Y (ω) 10 2 PSfrag replacements ω 26

29 Time per iteration (Matlab on 2.8GHz P4) 10 3 Sfrag replacements Time per iteration (s) SDPT3 fast implementation SDPT3-style primal-dual method with fast solution of Newton equations n 27

30 Outline Model calibration in optical lithography. Optimization over nonnegative polynomials. Robust least squares.

31 Robust least-squares minimize sup u 2 1 A(u)x b 2 2 where A(u) = Ā + U diag(du)v T Example. A is lower triangular Toeplitz with coefficients h k + u k A(u) = 1 N W H 1 diag(w 1 (h + u))w 2 W 1, W 2 : first n + 1, resp. m + 1, columns of DFT matrix 28

32 SDP formulation minimize subject to t + λ t 0 (Āx b)t 0 λi D T diag(v T x)u T (Āx b) U diag(v T x)d 0 0 Cost per iteration is dominated by constructing the matrix V ( (DT 23 U) (DT 23 U) T + (DT 22 D T ) (U T T 33 U) ) V T T ij are submatrices of scaling matrix O(n 3 ) operations (if all dimensions are of the same order) 29

33 Conclusions Some interesting types of problem structure that are easily exploited. Symmetry constraints. Upper bounds on the matrix variables. A generalization of low-rank structure. 30

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Semidefinite Programming Duality and Linear Time-invariant Systems

Semidefinite Programming Duality and Linear Time-invariant Systems Semidefinite Programming Duality and Linear Time-invariant Systems Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 2 July 2004 Workshop on Linear Matrix Inequalities in Control LAAS-CNRS,

More information

III. Applications in convex optimization

III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions.

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions. L Vandenberghe EE133A (Spring 2017) 3 Matrices notation and terminology matrix operations linear and affine functions complexity 3-1 Matrix a rectangular array of numbers, for example A = 0 1 23 01 13

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-284 Research Reports on Mathematical and Computing Sciences Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion Sunyoung Kim, Masakazu

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

Sparse Matrix Theory and Semidefinite Optimization

Sparse Matrix Theory and Semidefinite Optimization Sparse Matrix Theory and Semidefinite Optimization Lieven Vandenberghe Department of Electrical Engineering University of California, Los Angeles Joint work with Martin S. Andersen and Yifan Sun Third

More information

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Lecture 2 INF-MAT 4350 2009: 7.1-7.6, LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Tom Lyche and Michael Floater Centre of Mathematics for Applications, Department of Informatics,

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

More information

The maximal stable set problem : Copositive programming and Semidefinite Relaxations

The maximal stable set problem : Copositive programming and Semidefinite Relaxations The maximal stable set problem : Copositive programming and Semidefinite Relaxations Kartik Krishnan Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 USA kartis@rpi.edu

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

Interior-point algorithms for semidefinite programming problems derived from the KYP lemma

Interior-point algorithms for semidefinite programming problems derived from the KYP lemma Interior-point algorithms for semidefinite programming problems derived from the KYP lemma Lieven Vandenberghe, V. Ragu Balakrishnan, Ragnar Wallin, Anders Hansson, and Tae Roh Summary. We discuss fast

More information

11.2 Basic First-order System Methods

11.2 Basic First-order System Methods 112 Basic First-order System Methods 797 112 Basic First-order System Methods Solving 2 2 Systems It is shown here that any constant linear system u a b = A u, A = c d can be solved by one of the following

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

COM Optimization for Communications 8. Semidefinite Programming

COM Optimization for Communications 8. Semidefinite Programming COM524500 Optimization for Communications 8. Semidefinite Programming Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 1 Semidefinite Programming () Inequality form: min c T x s.t.

More information

Tutorials in Optimization. Richard Socher

Tutorials in Optimization. Richard Socher Tutorials in Optimization Richard Socher July 20, 2008 CONTENTS 1 Contents 1 Linear Algebra: Bilinear Form - A Simple Optimization Problem 2 1.1 Definitions........................................ 2 1.2

More information

12. Cholesky factorization

12. Cholesky factorization L. Vandenberghe ECE133A (Winter 2018) 12. Cholesky factorization positive definite matrices examples Cholesky factorization complex positive definite matrices kernel methods 12-1 Definitions a symmetric

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION APPENDIX B EIGENVALUES AND SINGULAR VALUE DECOMPOSITION B.1 LINEAR EQUATIONS AND INVERSES Problems of linear estimation can be written in terms of a linear matrix equation whose solution provides the required

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

Matrix Algebra, part 2

Matrix Algebra, part 2 Matrix Algebra, part 2 Ming-Ching Luoh 2005.9.12 1 / 38 Diagonalization and Spectral Decomposition of a Matrix Optimization 2 / 38 Diagonalization and Spectral Decomposition of a Matrix Also called Eigenvalues

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Convex Optimization. Lieven Vandenberghe Electrical Engineering Department, UCLA. Joint work with Stephen Boyd, Stanford University

Convex Optimization. Lieven Vandenberghe Electrical Engineering Department, UCLA. Joint work with Stephen Boyd, Stanford University Convex Optimization Lieven Vandenberghe Electrical Engineering Department, UCLA Joint work with Stephen Boyd, Stanford University Ph.D. School in Optimization in Computer Vision DTU, May 19, 2008 Introduction

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Homework 2 Foundations of Computational Math 2 Spring 2019

Homework 2 Foundations of Computational Math 2 Spring 2019 Homework 2 Foundations of Computational Math 2 Spring 2019 Problem 2.1 (2.1.a) Suppose (v 1,λ 1 )and(v 2,λ 2 ) are eigenpairs for a matrix A C n n. Show that if λ 1 λ 2 then v 1 and v 2 are linearly independent.

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Lecture 3: QR-Factorization

Lecture 3: QR-Factorization Lecture 3: QR-Factorization This lecture introduces the Gram Schmidt orthonormalization process and the associated QR-factorization of matrices It also outlines some applications of this factorization

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

MIT Algebraic techniques and semidefinite optimization May 9, Lecture 21. Lecturer: Pablo A. Parrilo Scribe:???

MIT Algebraic techniques and semidefinite optimization May 9, Lecture 21. Lecturer: Pablo A. Parrilo Scribe:??? MIT 6.972 Algebraic techniques and semidefinite optimization May 9, 2006 Lecture 2 Lecturer: Pablo A. Parrilo Scribe:??? In this lecture we study techniques to exploit the symmetry that can be present

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Mathematical Methods wk 2: Linear Operators

Mathematical Methods wk 2: Linear Operators John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

Problem 1: Solving a linear equation

Problem 1: Solving a linear equation Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Chapter 6. Eigenvalues. Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45

Chapter 6. Eigenvalues. Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45 Chapter 6 Eigenvalues Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45 Closed Leontief Model In a closed Leontief input-output-model consumption and production coincide, i.e. V x = x

More information

Symmetric Norm Inequalities And Positive Semi-Definite Block-Matrices

Symmetric Norm Inequalities And Positive Semi-Definite Block-Matrices Symmetric Norm Inequalities And Positive Semi-Definite lock-matrices Antoine Mhanna To cite this version: Antoine Mhanna Symmetric Norm Inequalities And Positive Semi-Definite lock-matrices 15

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Instructor: Farid Alizadeh Scribe: Haengju Lee 10/1/2001 1 Overview We examine the dual of the Fermat-Weber Problem. Next we will

More information

Positive semidefinite rank

Positive semidefinite rank 1/15 Positive semidefinite rank Hamza Fawzi (MIT, LIDS) Joint work with João Gouveia (Coimbra), Pablo Parrilo (MIT), Richard Robinson (Microsoft), James Saunderson (Monash), Rekha Thomas (UW) DIMACS Workshop

More information

THE EIGENVALUE PROBLEM

THE EIGENVALUE PROBLEM THE EIGENVALUE PROBLEM Let A be an n n square matrix. If there is a number λ and a column vector v 0 for which Av = λv then we say λ is an eigenvalue of A and v is an associated eigenvector. Note that

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex Optimization in Convex and Control Theory System Stephen Boyd Engineering Department Electrical University Stanford 3rd SIAM Conf. Control & Applications 1 Basic idea Many problems arising in system and

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 1. Basic Linear Algebra Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki Example

More information

Matrix Theory. A.Holst, V.Ufnarovski

Matrix Theory. A.Holst, V.Ufnarovski Matrix Theory AHolst, VUfnarovski 55 HINTS AND ANSWERS 9 55 Hints and answers There are two different approaches In the first one write A as a block of rows and note that in B = E ij A all rows different

More information

Principal Component Analysis CS498

Principal Component Analysis CS498 Principal Component Analysis CS498 Today s lecture Adaptive Feature Extraction Principal Component Analysis How, why, when, which A dual goal Find a good representation The features part Reduce redundancy

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Course and Wavelets and Filter Banks

Course and Wavelets and Filter Banks Course 18.327 and 1.130 Wavelets and Filter Banks Refinement Equation: Iterative and Recursive Solution Techniques; Infinite Product Formula; Filter Bank Approach for Computing Scaling Functions and Wavelets

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

Matrices A brief introduction

Matrices A brief introduction Matrices A brief introduction Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Matrices Semester 1, 2014-15 1 / 44 Definitions Definition A matrix is a set of N real or complex

More information

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

Sparse least squares and Q-less QR

Sparse least squares and Q-less QR Notes for 2016-02-29 Sparse least squares and Q-less QR Suppose we want to solve a full-rank least squares problem in which A is large and sparse. In principle, we could solve the problem via the normal

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Main matrix factorizations

Main matrix factorizations Main matrix factorizations A P L U P permutation matrix, L lower triangular, U upper triangular Key use: Solve square linear system Ax b. A Q R Q unitary, R upper triangular Key use: Solve square or overdetrmined

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley A. d Aspremont, INFORMS, Denver,

More information

The Simplest Semidefinite Programs are Trivial

The Simplest Semidefinite Programs are Trivial The Simplest Semidefinite Programs are Trivial Robert J. Vanderbei Bing Yang Program in Statistics & Operations Research Princeton University Princeton, NJ 08544 January 10, 1994 Technical Report SOR-93-12

More information

ACM 104. Homework Set 5 Solutions. February 21, 2001

ACM 104. Homework Set 5 Solutions. February 21, 2001 ACM 04 Homework Set 5 Solutions February, 00 Franklin Chapter 4, Problem 4, page 0 Let A be an n n non-hermitian matrix Suppose that A has distinct eigenvalues λ,, λ n Show that A has the eigenvalues λ,,

More information

The Singular Value Decomposition and Least Squares Problems

The Singular Value Decomposition and Least Squares Problems The Singular Value Decomposition and Least Squares Problems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 27, 2009 Applications of SVD solving

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Linear algebra for MATH2601: Theory

Linear algebra for MATH2601: Theory Linear algebra for MATH2601: Theory László Erdős August 12, 2000 Contents 1 Introduction 4 1.1 List of crucial problems............................... 5 1.2 Importance of linear algebra............................

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information