Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics

Size: px
Start display at page:

Download "Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics"

Transcription

1 Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25

2 Residuals for the Cox regression model Suppose that the survival times of n individuals are available, where r of these are death times and the remaining n r are right censored. We further suppose that a Cox regression model has been fitted to the survival times. The fitted hazard function for the ith individual is therefore ĥ i (t) = ĥ 0 (t) exp(x i ˆβ), i = 1..., n. where x i ˆβ = ˆβ 1 x 1i + ˆβ 2 x 2i + + ˆβ p x pi is the value of the fitted linear predictor of the model for that individual and ĥ 0 (t) is the estimated baseline hazard function. Winter term 2018/19 2/25

3 Example: Infection in patients on dialysis Patient Time Status Age Sex Figure: Times to removal of a catheter following an infection for a group of kidney patients (Collett 2015, p. 140). Winter term 2018/19 3/25

4 Cox-Snell residuals The Cox-Snell residual for the ith individual is given by r Ci = Ĥ 0 (t i ) exp(x i ˆβ), i = 1..., n, where Ĥ 0 (t) is the Breslow estimate of the baseline cumulative hazard function. If the correct model has been fitted, the n Cox-Snell residuals will behave as n (censored) observations from a unit exponential distribution. Plot of the Nelson-Aalen estimator H(t) for (r Ci, δ i ) (i = 1..., n) versus r Ci should be a straight line through the origin with unit slope. The Cox-Snell residuals can be used to assess the overall model adequacy. Winter term 2018/19 4/25

5 Cox-Snell residuals: Example 2.5. cti :::J 2.0 "0 "üi e:? "0 (ö ~.r:: (]) 1.0 > ~ :s E :::J ü 0.5.,... O.Oc, , , , Cox- Snell residual Figure: Cumulative hazard plot of the Cox-Snell residuals obtained from fitting the kidney catheter data (Collett 2015, p. 144). Winter term 2018/19 5/25

6 Martingale residuals When the data are right-censored and all the covariates are fixed at the start of the study, the martingale residuals are obtained as r Mi = δ i r Ci, i = 1,..., n. Martingale residuals take values between and unity. Properties: E(r Mi ) = 0; n i=1 r Mi = 0; Cov(r Mi, r Mj ) = 0 for i j. r Mi is the difference between the observed number of deaths for the ith individual in [0, t i ] and the corresponding estimated expected number on the basis of the fitted model. Winter term 2018/19 6/25

7 Martingale residuals (2) Martingale residuals can be used to determine the functional form of a covariate. First, obtain martingale residuals from fitting a null model. These residuals are then plotted against the values of each covariate in the model. The functional form required for the covariate can be determined by superimposing a smoothed curve that is fitted to the scatterplot, e.g. using the method LOWESS (locally weighted scatterplot smoothing). Winter term 2018/19 7/25

8 Martingale residuals: Example 10 qs 0.5. D 0 E 0.0 ::J c Q -0.5 Cii ::J -10 :-g (/) [I! -15 Q) Cii Ol -2.0 c t CO Age Figure: Plot of the martingale residuals for the null model against age, with a smoothed curve superimposed, obtained from fitting the kidney catheter data (Collett 2015, p. 148). Winter term 2018/19 8/25

9 Deviance residuals The deviance residuals are less skewed than r Mi and are defined as r Di = sgn(r Mi )[ 2(r Mi + δ i ln(δ i r Mi ))] 1/2, i = 1,..., n, where sgn( ) is the sign function. The original motivation for these residuals is that they are components of the deviance: [ ] D = 2 ln(ˆl c ) ln(ˆl f ), where ˆL c (ˆL f ) is the maximised partial likelihood under the current model (saturated or full model). The deviance residuals are then such that D = r 2 Di. Winter term 2018/19 9/25

10 Deviance residuals (2) The quantity ˆβ x i is called the risk score. The risk score provides information about whether an individual might be expected to survive for a short or long time. A plot of the deviance residuals against the risk score is a helpful diagnostic to identify individuals whose survival times are out of line. Deviance residuals can be used to identify observations that are not well fitted by the model. Winter term 2018/19 10/25

11 Deviance residuals: Example (1j :::J "0 w [!! 1.0 Q) c Cll ;;; Q) Risk score -2-1 Figure: Plot of the deviance residuals against the values of the risk score for the kidney catheter data (Collett 2015, p. 146). Winter term 2018/19 11/25

12 Schoenfeld residuals For each individual, a set of Schoenfeld residuals, one for each covariate included in the fitted Cox model, does exist. The ith Schoenfeld residual for the jth explanatory variable in the model is given by r Sji = δ i (x ji â ji ), where x ji is the value of the jth explanatory variable (j = 1,..., p) for the ith individual in the study, x jl exp(ˆβ x l ) â ji = l R(t (i) ) l R(t (i) ) exp(ˆβ x l ) and R(t (i) ) is the risk set of all individuals at time t (i)., Winter term 2018/19 12/25

13 Scaled Schoenfeld residuals It turns out that a scaled or weighted version of the Schoenfeld residuals is more effective in detecting departures from the assumed model. Let the vector of Schoenfeld residuals for the ith individual be denoted r Si = (r S1i,..., r Spi ). The scaled Schoenfeld residuals, rsji, are then components of the vector r Si = d Ĉov(ˆβ) r Si, where d is the number of deaths among the n individuals. Winter term 2018/19 13/25

14 Score residuals 6.1 Residuals Score residuals are modifications of the Schoenfeld residuals. The ith score residual for the jth explanatory variable in the model is given by r Uji = r Sji + exp (ˆβ ) x i t (r) t (i) (â jr x ji)δ r l R(t (r) ) exp (ˆβ x l ). As for the Schoenfeld residuals, the score residuals sum to zero. The score residuals will not necessarily be zero when an observation is censored. Winter term 2018/19 14/25

15 Example: Infection in patients on dialysis i r Ci r Mi r Di r S1i r S2i rs1i rs2i r U1i r U2i Table: Different types of residual after fitting a Cox model (Collett 2015, p. 141). Winter term 2018/19 15/25

16 Use of Schoenfeld residuals The Schoenfeld residuals are particularly useful in evaluating the assumption of proportional hazards after fitting a Cox regression model. It can be shown that E(r Sji) β j (t i ) ˆβ j, where β j (t i ) is the value of a time-varying coefficient of x j at the survival time of the ith individual, t i, and ˆβ j is the estimated value of β j in the fitted Cox model. A plot of the values of r Sji + ˆβ j or just r Sji against the observed survival times should give information about the form of the time-dependent coefficient β j (t). Winter term 2018/19 16/25

17 Schoenfeld residuals: Example Figure: Plot of scaled Schoenfeld residuals for Age and Sex (Collett 2015, p. 164). Winter term 2018/19 17/25

18 A test for proportional hazards for a particular covariate A test of the proportional hazards assumption can be based on testing whether there is a linear relationship between E(rSji ) and some function of time. For a particular covariate x j, linear dependence of the coefficient of x j on time can be expressed by taking β j (t i ) = β j + ν j (t i t), where ν j is an unknown regression coefficient. This leads to a linear regression model with E(r Sji ) = ν j(t i t). A test of whether the slope ν j is zero leads to a test of whether the coefficient of x j is time-dependent and hence of proportional hazards with respect to x j. Winter term 2018/19 18/25

19 A test for proportional hazards for a particular covariate (2) Let τ 1,..., τ d be the d observed death times across all n individuals. An appropriate test statistic is where τ = 1 d d i=1 τ i. ( d i=1 (τ i τ)r Sji) 2 d Var( ˆβ j ) d i=1 (τ i τ) 2, Under the null hypothesis that the slope is zero, this statistic has a χ 2 distribution on 1 d.f. Winter term 2018/19 19/25

20 A global test for proportional hazards An overall or global test of the proportional hazards assumption across all the p explanatory variables included in a Cox model is based on the following test statistic: (τ τ ) S Ĉov(ˆβ) S (τ τ ) d i=1 (τ, i τ) 2 1 d where τ = (τ 1,..., τ d ) and S is the d p matrix whose columns are the (unscaled) Schoenfeld residuals for the jth explanatory variable. This test statistic has a χ 2 distribution on p d.f. This test is sometimes referred to as the zph test. Winter term 2018/19 20/25

21 Example: Infection in patients on dialysis The estimated variances of the estimated coefficients of the variables age and sex are and , respectively and the sum of squares of the 12 mean-centred event times is The values of the test statistic are (p-value = 0.368) and (p-value = 0.636) for age and sex, respectively. The numerator of the global test statistic is , from which the zph test statistic is This has a χ 2 distribution on 2 d.f. leading to a p-value of Winter term 2018/19 21/25

22 Adding a time-dependent variable To examine the assumption of proportional hazards, a time-dependent variable can be added to the model. Let x 1 be a fixed covariate. Define x 2 (t) = x 1 g(t), where g(t) is a known function of t, e.g. ln(t). Consider a survival study in which each patient has been allocated to one of two groups, corresponding to a standard treatment and a new treatment. Winter term 2018/19 22/25

23 Adding a time-dependent variable (2) The hazard function for the ith individual in the study is then h i (t) = h 0 (t) exp(β 1 x 1i ), where x 1i is the value of an indicator variable x 1 that is zero for the standard treatment and unity for the new treatment. Let x 2i = x 1i t be the value of x 2 = x 1 t for the ith individual. The hazard of death at time t for the ith individual becomes h i (t) = h 0 (t) exp(β 1 x 1i + β 2 x 2i ). The relative hazard at time t is now exp(β 1 + β 2 t). A test of the hypothesis that β 2 = 0 is a test of the assumption of proportional hazards. Winter term 2018/19 23/25

24 Plot of the relative hazard Time Figure: Plot of the relative hazard, exp(β 1 + β 2 t), against t, for different values of β 2 (Collett 2015, p. 167). Winter term 2018/19 24/25

25 Example: Infection in patients on dialysis Fitting a Cox regression model containing just age and sex leads to a value of 2 ln(ˆl) of Define terms that are the products of these variables, namely age * t and sex * t. When the variable age * t is added to the model that has age and sex, the value of 2 ln(ˆl) reduces to , but this reduction is not significant at the 5% level (p-value = 0.117). The reduction in 2 ln(ˆl) is only (p-value = 0.546), when the variable sex * t is added to the model that has age and sex. Winter term 2018/19 25/25

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

Cox s proportional hazards/regression model - model assessment

Cox s proportional hazards/regression model - model assessment Cox s proportional hazards/regression model - model assessment Rasmus Waagepetersen September 27, 2017 Topics: Plots based on estimated cumulative hazards Cox-Snell residuals: overall check of fit Martingale

More information

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Right censored

More information

1 Introduction. 2 Residuals in PH model

1 Introduction. 2 Residuals in PH model Supplementary Material for Diagnostic Plotting Methods for Proportional Hazards Models With Time-dependent Covariates or Time-varying Regression Coefficients BY QIQING YU, JUNYI DONG Department of Mathematical

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

Residuals and model diagnostics

Residuals and model diagnostics Residuals and model diagnostics Patrick Breheny November 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/42 Introduction Residuals Many assumptions go into regression models, and the Cox proportional

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

8. Parametric models in survival analysis General accelerated failure time models for parametric regression

8. Parametric models in survival analysis General accelerated failure time models for parametric regression 8. Parametric models in survival analysis 8.1. General accelerated failure time models for parametric regression The accelerated failure time model Let T be the time to event and x be a vector of covariates.

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

Chapter 7: Hypothesis testing

Chapter 7: Hypothesis testing Chapter 7: Hypothesis testing Hypothesis testing is typically done based on the cumulative hazard function. Here we ll use the Nelson-Aalen estimate of the cumulative hazard. The survival function is used

More information

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see Title stata.com stcrreg postestimation Postestimation tools for stcrreg Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Lecture 7. Proportional Hazards Model - Handling Ties and Survival Estimation Statistics Survival Analysis. Presented February 4, 2016

Lecture 7. Proportional Hazards Model - Handling Ties and Survival Estimation Statistics Survival Analysis. Presented February 4, 2016 Proportional Hazards Model - Handling Ties and Survival Estimation Statistics 255 - Survival Analysis Presented February 4, 2016 likelihood - Discrete Dan Gillen Department of Statistics University of

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE Annual Conference 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Author: Jadwiga Borucka PAREXEL, Warsaw, Poland Brussels 13 th - 16 th October 2013 Presentation Plan

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen Recap of Part 1 Per Kragh Andersen Section of Biostatistics, University of Copenhagen DSBS Course Survival Analysis in Clinical Trials January 2018 1 / 65 Overview Definitions and examples Simple estimation

More information

Chapter 4 Regression Models

Chapter 4 Regression Models 23.August 2010 Chapter 4 Regression Models The target variable T denotes failure time We let x = (x (1),..., x (m) ) represent a vector of available covariates. Also called regression variables, regressors,

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Müller: Goodness-of-fit criteria for survival data

Müller: Goodness-of-fit criteria for survival data Müller: Goodness-of-fit criteria for survival data Sonderforschungsbereich 386, Paper 382 (2004) Online unter: http://epub.ub.uni-muenchen.de/ Projektpartner Goodness of fit criteria for survival data

More information

( t) Cox regression part 2. Outline: Recapitulation. Estimation of cumulative hazards and survival probabilites. Ørnulf Borgan

( t) Cox regression part 2. Outline: Recapitulation. Estimation of cumulative hazards and survival probabilites. Ørnulf Borgan Outline: Cox regression part 2 Ørnulf Borgan Department of Mathematics University of Oslo Recapitulation Estimation of cumulative hazards and survival probabilites Assumptions for Cox regression and check

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

More on Cox-regression

More on Cox-regression More on Cox-regression p. 1/45 More on Cox-regression STK4080 H16 1. Repetition 2. Left truncation 3. Time-dependent covariates 4. Stratified Cox-regression 5. Residuals - Model check 6. How to handle

More information

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require Chapter 5 modelling Semi parametric We have considered parametric and nonparametric techniques for comparing survival distributions between different treatment groups. Nonparametric techniques, such as

More information

Time-dependent covariates

Time-dependent covariates Time-dependent covariates Rasmus Waagepetersen November 5, 2018 1 / 10 Time-dependent covariates Our excursion into the realm of counting process and martingales showed that it poses no problems to introduce

More information

e 4β e 4β + e β ˆβ =0.765

e 4β e 4β + e β ˆβ =0.765 SIMPLE EXAMPLE COX-REGRESSION i Y i x i δ i 1 5 12 0 2 10 10 1 3 40 3 0 4 80 5 0 5 120 3 1 6 400 4 1 7 600 1 0 Model: z(t x) =z 0 (t) exp{βx} Partial likelihood: L(β) = e 10β e 10β + e 3β + e 5β + e 3β

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

Time-dependent coefficients

Time-dependent coefficients Time-dependent coefficients Patrick Breheny December 1 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/20 Introduction As we discussed previously, stratification allows one to handle variables that

More information

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016 Statistics 255 - Survival Analysis Presented March 8, 2016 Dan Gillen Department of Statistics University of California, Irvine 12.1 Examples Clustered or correlated survival times Disease onset in family

More information

Reduced-rank hazard regression

Reduced-rank hazard regression Chapter 2 Reduced-rank hazard regression Abstract The Cox proportional hazards model is the most common method to analyze survival data. However, the proportional hazards assumption might not hold. The

More information

Lecture 10. Diagnostics. Statistics Survival Analysis. Presented March 1, 2016

Lecture 10. Diagnostics. Statistics Survival Analysis. Presented March 1, 2016 Statistics 255 - Survival Analysis Presented March 1, 2016 Dan Gillen Department of Statistics University of California, Irvine 10.1 Are model assumptions correct? Is the proportional hazards assumption

More information

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 9.1 Survival analysis involves subjects moving through time Hazard may

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Survival Analysis. STAT 526 Professor Olga Vitek

Survival Analysis. STAT 526 Professor Olga Vitek Survival Analysis STAT 526 Professor Olga Vitek May 4, 2011 9 Survival Data and Survival Functions Statistical analysis of time-to-event data Lifetime of machines and/or parts (called failure time analysis

More information

Philosophy and Features of the mstate package

Philosophy and Features of the mstate package Introduction Mathematical theory Practice Discussion Philosophy and Features of the mstate package Liesbeth de Wreede, Hein Putter Department of Medical Statistics and Bioinformatics Leiden University

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Survival Models for the Social and Political Sciences Week 6: More on Cox Regression

Survival Models for the Social and Political Sciences Week 6: More on Cox Regression Survival Models for the Social and Political Sciences Week 6: More on Cox Regression JEFF GILL Professor of Political Science Professor of Biostatistics Professor of Surgery (Public Health Sciences) Washington

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek Survival Analysis 732G34 Statistisk analys av komplexa data Krzysztof Bartoszek (krzysztof.bartoszek@liu.se) 10, 11 I 2018 Department of Computer and Information Science Linköping University Survival analysis

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Proportional hazards regression

Proportional hazards regression Proportional hazards regression Patrick Breheny October 8 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/28 Introduction The model Solving for the MLE Inference Today we will begin discussing regression

More information

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science Log-linearity for Cox s regression model Thesis for the Degree Master of Science Zaki Amini Master s Thesis, Spring 2015 i Abstract Cox s regression model is one of the most applied methods in medical

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Jadwiga Borucka, PAREXEL, Warsaw, Poland ABSTRACT Cox proportional hazard model is one of the most common methods used

More information

Analysis of Time-to-Event Data: Chapter 2 - Nonparametric estimation of functions of survival time

Analysis of Time-to-Event Data: Chapter 2 - Nonparametric estimation of functions of survival time Analysis of Time-to-Event Data: Chapter 2 - Nonparametric estimation of functions of survival time Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term

More information

Goodness-Of-Fit for Cox s Regression Model. Extensions of Cox s Regression Model. Survival Analysis Fall 2004, Copenhagen

Goodness-Of-Fit for Cox s Regression Model. Extensions of Cox s Regression Model. Survival Analysis Fall 2004, Copenhagen Outline Cox s proportional hazards model. Goodness-of-fit tools More flexible models R-package timereg Forthcoming book, Martinussen and Scheike. 2/38 University of Copenhagen http://www.biostat.ku.dk

More information

Relative-risk regression and model diagnostics. 16 November, 2015

Relative-risk regression and model diagnostics. 16 November, 2015 Relative-risk regression and model diagnostics 16 November, 2015 Relative risk regression More general multiplicative intensity model: Intensity for individual i at time t is i(t) =Y i (t)r(x i, ; t) 0

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

First Aid Kit for Survival. Hypoxia cohort. Goal. DFS=Clinical + Marker 1/21/2015. Two analyses to exemplify some concepts of survival techniques

First Aid Kit for Survival. Hypoxia cohort. Goal. DFS=Clinical + Marker 1/21/2015. Two analyses to exemplify some concepts of survival techniques First Aid Kit for Survival Melania Pintilie pintilie@uhnres.utoronto.ca Two analyses to exemplify some concepts of survival techniques Checking linearity Checking proportionality of hazards Predicted curves:

More information

Multivariable Fractional Polynomials

Multivariable Fractional Polynomials Multivariable Fractional Polynomials Axel Benner May 17, 2007 Contents 1 Introduction 1 2 Inventory of functions 1 3 Usage in R 2 3.1 Model selection........................................ 3 4 Example

More information

Goodness-of-Fit Tests With Right-Censored Data by Edsel A. Pe~na Department of Statistics University of South Carolina Colloquium Talk August 31, 2 Research supported by an NIH Grant 1 1. Practical Problem

More information

Single-level Models for Binary Responses

Single-level Models for Binary Responses Single-level Models for Binary Responses Distribution of Binary Data y i response for individual i (i = 1,..., n), coded 0 or 1 Denote by r the number in the sample with y = 1 Mean and variance E(y) =

More information

Chapter 17. Failure-Time Regression Analysis. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 17. Failure-Time Regression Analysis. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 17 Failure-Time Regression Analysis William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

Validation. Terry M Therneau. Dec 2015

Validation. Terry M Therneau. Dec 2015 Validation Terry M Therneau Dec 205 Introduction When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean - neither more nor less. The question is, said

More information

Outline. Frailty modelling of Multivariate Survival Data. Clustered survival data. Clustered survival data

Outline. Frailty modelling of Multivariate Survival Data. Clustered survival data. Clustered survival data Outline Frailty modelling of Multivariate Survival Data Thomas Scheike ts@biostat.ku.dk Department of Biostatistics University of Copenhagen Marginal versus Frailty models. Two-stage frailty models: copula

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

Checking model assumptions with regression diagnostics

Checking model assumptions with regression diagnostics @graemeleehickey www.glhickey.com graeme.hickey@liverpool.ac.uk Checking model assumptions with regression diagnostics Graeme L. Hickey University of Liverpool Conflicts of interest None Assistant Editor

More information

Consider Table 1 (Note connection to start-stop process).

Consider Table 1 (Note connection to start-stop process). Discrete-Time Data and Models Discretized duration data are still duration data! Consider Table 1 (Note connection to start-stop process). Table 1: Example of Discrete-Time Event History Data Case Event

More information

8 Nominal and Ordinal Logistic Regression

8 Nominal and Ordinal Logistic Regression 8 Nominal and Ordinal Logistic Regression 8.1 Introduction If the response variable is categorical, with more then two categories, then there are two options for generalized linear models. One relies on

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

9 Estimating the Underlying Survival Distribution for a

9 Estimating the Underlying Survival Distribution for a 9 Estimating the Underlying Survival Distribution for a Proportional Hazards Model So far the focus has been on the regression parameters in the proportional hazards model. These parameters describe the

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Model Adequacy Test for Cox Proportional Hazard Model

Model Adequacy Test for Cox Proportional Hazard Model Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Master of Science Thesis Model Adequacy Test for Cox Proportional

More information

DAGStat Event History Analysis.

DAGStat Event History Analysis. DAGStat 2016 Event History Analysis Robin.Henderson@ncl.ac.uk 1 / 75 Schedule 9.00 Introduction 10.30 Break 11.00 Regression Models, Frailty and Multivariate Survival 12.30 Lunch 13.30 Time-Variation and

More information

Tests of independence for censored bivariate failure time data

Tests of independence for censored bivariate failure time data Tests of independence for censored bivariate failure time data Abstract Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of χ

More information

The coxvc_1-1-1 package

The coxvc_1-1-1 package Appendix A The coxvc_1-1-1 package A.1 Introduction The coxvc_1-1-1 package is a set of functions for survival analysis that run under R2.1.1 [81]. This package contains a set of routines to fit Cox models

More information

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20 Logistic regression 11 Nov 2010 Logistic regression (EPFL) Applied Statistics 11 Nov 2010 1 / 20 Modeling overview Want to capture important features of the relationship between a (set of) variable(s)

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression OI CHAPTER 7 Important Concepts Correlation (r or R) and Coefficient of determination (R 2 ) Interpreting y-intercept and slope coefficients Inference (hypothesis testing and confidence

More information

Lecture 8 Stat D. Gillen

Lecture 8 Stat D. Gillen Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 8.1 Example of two ways to stratify Suppose a confounder C has 3 levels

More information

Section IX. Introduction to Logistic Regression for binary outcomes. Poisson regression

Section IX. Introduction to Logistic Regression for binary outcomes. Poisson regression Section IX Introduction to Logistic Regression for binary outcomes Poisson regression 0 Sec 9 - Logistic regression In linear regression, we studied models where Y is a continuous variable. What about

More information

Chapter 7 Fall Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample

Chapter 7 Fall Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 7 Fall 2012 Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample H 0 : S(t) = S 0 (t), where S 0 ( ) is known survival function,

More information

Poisson Regression. Gelman & Hill Chapter 6. February 6, 2017

Poisson Regression. Gelman & Hill Chapter 6. February 6, 2017 Poisson Regression Gelman & Hill Chapter 6 February 6, 2017 Military Coups Background: Sub-Sahara Africa has experienced a high proportion of regime changes due to military takeover of governments for

More information

Smoothing Spline-based Score Tests for Proportional Hazards Models

Smoothing Spline-based Score Tests for Proportional Hazards Models Smoothing Spline-based Score Tests for Proportional Hazards Models Jiang Lin 1, Daowen Zhang 2,, and Marie Davidian 2 1 GlaxoSmithKline, P.O. Box 13398, Research Triangle Park, North Carolina 27709, U.S.A.

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

A Regression Model For Recurrent Events With Distribution Free Correlation Structure

A Regression Model For Recurrent Events With Distribution Free Correlation Structure A Regression Model For Recurrent Events With Distribution Free Correlation Structure J. Pénichoux(1), A. Latouche(2), T. Moreau(1) (1) INSERM U780 (2) Université de Versailles, EA2506 ISCB - 2009 - Prague

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Faculty of Health Sciences. Cox regression. Torben Martinussen. Department of Biostatistics University of Copenhagen. 20. september 2012 Slide 1/51

Faculty of Health Sciences. Cox regression. Torben Martinussen. Department of Biostatistics University of Copenhagen. 20. september 2012 Slide 1/51 Faculty of Health Sciences Cox regression Torben Martinussen Department of Biostatistics University of Copenhagen 2. september 212 Slide 1/51 Survival analysis Standard setup for right-censored survival

More information

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Patrick J. Heagerty PhD Department of Biostatistics University of Washington 1 Biomarkers Review: Cox Regression Model

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

Survival models and health sequences

Survival models and health sequences Survival models and health sequences Walter Dempsey University of Michigan July 27, 2015 Survival Data Problem Description Survival data is commonplace in medical studies, consisting of failure time information

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

49th European Organization for Quality Congress. Topic: Quality Improvement. Service Reliability in Electrical Distribution Networks

49th European Organization for Quality Congress. Topic: Quality Improvement. Service Reliability in Electrical Distribution Networks 49th European Organization for Quality Congress Topic: Quality Improvement Service Reliability in Electrical Distribution Networks José Mendonça Dias, Rogério Puga Leal and Zulema Lopes Pereira Department

More information

Tied survival times; estimation of survival probabilities

Tied survival times; estimation of survival probabilities Tied survival times; estimation of survival probabilities Patrick Breheny November 5 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Tied survival times Introduction Breslow approximation

More information

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU.

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU. SOS3003 Applied data analysis for social science Lecture note 08-00 Erling Berge Department of sociology and political science NTNU Erling Berge 00 Literature Logistic regression II Hamilton Ch 7 p7-4

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION. by Zhaowen Sun M.S., University of Pittsburgh, 2012

POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION. by Zhaowen Sun M.S., University of Pittsburgh, 2012 POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION by Zhaowen Sun M.S., University of Pittsburgh, 2012 B.S.N., Wuhan University, China, 2010 Submitted to the Graduate Faculty of the Graduate

More information