m e = m/s. x = vt = t = x v = m

Size: px
Start display at page:

Download "m e = m/s. x = vt = t = x v = m"

Transcription

1 5. (a) The textbook uses geomagnetic north to refer to Earth s magnetic pole lying in the northern hemisphere. Thus, the electrons are traveling northward. The vertical component of the magnetic field is downward. The right-hand rule indicates that v B is to the west, but since the electron is negatively charged (and F = q v B), the magnetic force on it is to the east. (b) We combine F = m e a with F = evb sin φ. Here, B sin φ represents the downward component of Earth sfield(givenintheproblem). Thus,a = evb/m e. Now, the electron speed can be found from its kinetic energy. Since K = 1 2 mv2, Therefore, v = 2K 2( = 3 ev)( J/eV) m e = m/s. kg a = evb = ( C)( m/s)( T) m e = m/s 2. kg (c) We ignore any vertical deflection of the beam which might arise due to the horizontal component of Earth s field. Technically, then, the electron should followa circular arc. However, the deflection is so small that many of the technicalities of circular geometry may be ignored, and a calculation along the lines of projectile motion analysis (see Chapter 4) provides an adequate approximation: x = vt = t = x v = m m/s which yields a time of t = s. Then, with our y axis oriented eastward, y = 1 2 at2 = 1 ( )( ) 2 = m. 2

2 8. (a) Letting F = q( E + v B) = 0, we get vb sin φ = E. We note that (for given values of the fields) this gives a minimum value for speed whenever the sin φ factor is at its maximum value (which is 1, corresponding to φ =90 ). So v min = E/B =( V/m)/(0.400 T) = m/s. (b) Having noted already that v B,wenowpointoutthat v B (which direction is given by the right-hand rule) must be in the direction opposite to E. Thus, we can use the left hand to indicate the arrangement of vectors: if one points the thumb, index finger, and middle finger on the left hand so that all three are mutually perpendicular, then the thumb represents v, the index finger indicates B, and the middle finger represents E.

3 12. We use Eq to solve for V : V = ib nle = (23 A)(0.65 T) ( /m 3 )(150 µm)( C) = V.

4 26. The equation of motion for the proton is Thus, F = q v B = q(v x î+v y ĵ+v zˆk) Bî =qb(vz ĵ v yˆk) [( ) ( ) ( ) ] dvx dvy dvz = m p a = m p î+ ĵ+ ˆk. dt dt dt dv x dt dv y dt dv z dt = 0 = ωv z = ωv y, where ω = eb/m p. The solution is v x = v 0x, v y = v 0y cos ωt and v z = v 0y sin ωt. In summary, we have v(t) =v 0x î+v 0y cos(ωt)ĵ v 0y (sin ωt)ˆk.

5 33. The magnitude of the magnetic force on the wire is given by F B = ilb sin φ, wherei is the current in the wire, L is the length of the wire, B is the magnitude of the magnetic field, and φ is the angle between the current and the field. In this case φ =70.Thus, F B = (5000 A)(100 m)( T) sin 70 =28.2 N. We apply the right-hand rule to the vector product F B = i L B to show that the force is to the west.

6 47. We use Eq where µ is the magnetic dipole moment of the wire loop and B is the magnetic field, as well as Newton s second law. Since the plane of the loop is parallel to the incline the dipole moment is normal to the incline. The forces acting on the cylinder are the force of gravity mg, actingdownward from the center of mass, the normal force of the incline N, acting perpendicularly to the incline through the center of mass, and the force of friction f, acting up the incline at the point of contact. We take the x axis to be positive down the incline. Then the x component of Newton s second law for the center of mass yields mg sin θ f = ma. For purposes of calculating the torque, we take the axis of the cylinder to be the axis of rotation. The magnetic field produces a torque with magnitude µb sin θ, and the force of friction produces a torque with magnitude fr,wherer is the radius of the cylinder. The first tends to produce an angular acceleration in the counterclockwise direction, and the second tends to produce an angular acceleration in the clockwise direction. Newton s second law for rotation about the center of the cylinder, τ = Iα,gives fr µb sin θ = Iα. Since we want the current that holds the cylinder in place, we set a =0andα = 0, and use one equation to eliminate f from the other. The result is mgr = µb. The loop is rectangular with two sides of length L and two of length 2r, soitsareaisa =2rL and the dipole moment is µ = NiA =2NirL. Thus, mgr =2NirLB and i = mg 2NLB = (0.250 kg)(9.8m/s 2 ) 2(10.0)(0.100 m)(0.500 T) =2.45 A.

7 54. Let a =30.0cm, b =20.0cm, and c =10.0cm.Fromthegivenhint,wewrite Thus, using the Pythagorean theorem, µ = µ 1 + µ 2 = iab( ˆk) + iac(ĵ) = ia(cĵ bˆk) = (5.00 A)(0.300 m)[(0.100 m)ĵ (0.200 m)ˆk] = (0.150ĵ 0.300ˆk) A m 2. µ = (0.150) 2 +(0.300) 2 =0.335 A m 2, and µ is in the yz plane at angle θ to the +y direction, where ( ) ( ) θ =tan 1 µy =tan 1 = µ x 0.150

8 8. Recalling the straight sections discussion in Sample Problem 30-1, we see that the current in segments AH and JD do not contribute to the field at point C. Using Eq (with φ = π) andtheright-hand rule, we find that the current in the semicircular arc HJ contributes µ 0 i/4r 1 (into the page) to the field at C. Also, arc DA contributes µ 0 i/4r 2 (out of the page) to the field there. Thus, the net field at C is B = µ 0i 4 ( 1 R 1 1 R 2 ) into the page.

9 11. Our x axis is along the wire with the origin at the midpoint. The current flows in the positive x direction. All segments of the wire produce magnetic fields at P 1 that are out of the page. According to the Biot-Savart law, the magnitude of the field any(infinitesimal) segment produces at P 1 is given by db = µ 0i sin θ 4π r 2 dx where θ (the angle between the segment and a line drawn from the segment to P 1 )andr (the length of that line) are functions of x. Replacing r with x 2 + R 2 and sin θ with R/r = R/ x 2 + R 2,we integrate from x = L/2 tox = L/2. The total field is B = µ 0iR 4π L/2 L/2 dx (x 2 + R 2 ) = µ 0iR 3/2 4π 1 R 2 If L R, thenr 2 in the denominator can be ignored and B = µ 0i 2πR x (x 2 + R 2 ) 1/2 L/2 L/2 = µ 0i 2πR L L2 +4R 2. is obtained. This is the field of a long straight wire. For points veryclose to a finite wire, the field is quite similar to that of an infinitelylong wire.

10 12. The center of a square is a distance R = a/2 from the nearest side (each side being of length L = a). There are four sides contributing to the field at the center, so the result of problem 11 leads to ( ) ( ) µ0 i a B center =4 = 2 2 µ 0 i. 2π(a/2) a2 +4(a/2) 2 πa

11 28. (a) Consider a segment of the projectile between y and y + dy. We use Eq to find the magnetic force on the segment, and Eq for the magnetic field of each semi-infinite wire (the top rail referred to as wire 1 and the bottom as wire 2). The current in rail 1 is in the +î direction, and the current in the rail 2 is in the î direction. The field (in the region between the wires) set up by wire 1 is into the paper (the ˆk direction) and that set up by wire 2 is also into the paper. The force element (a function of y) acting on the segment of the projectile (in which the current flows in the ĵ direction) is given below. The coordinate origin is at the bottom of the projectile. Thus, the force on the projectile is F = df = i2 µ 0 4π d F = d F 1 + d F 2 = idy( ĵ) B 1 + dy( ĵ) B 2 = i[b 1 + B 2 ] î dy [ µ 0 i = i 4π(2R + w y) + µ ] 0i î dy. 4πy R+w R ( 1 2R + w y + 1 ) dy î = µ 0i 2 (1+ y 2π ln w ) î. R (b) Using the work-energy theorem, we have K = 1 2 mv2 f = W ext = F d s = FL. Thus, the final speed of the projectile is v f = = ( ) 1/2 [ 2Wext 2 µ 0 i 2 = (1+ m m 2π ln w ) ] 1/2 L R [ 2(4π 10 7 T m/a)( A) 2 ln( cm/6.7cm)(4.0m) = m/s. 2π( kg) ] 1/2

12 37. (a) The the magnetic field at a point within the hole is the sum of the fields due to two current distributions. The first is that of the solid cylinder obtained by filling the hole and has a current density that is the same as that in the original cylinder (with the hole). The second is the solid cylinder that fills the hole. It has a current density with the same magnitude as that of the original cylinder but is in the opposite direction. If these two situations are superposed the total current in the region of the hole is zero. Now, a solid cylinder carrying current i, uniformly distributed over a cross section, produces a magnetic field with magnitude B = µ 0ir 2πR 2 a distance r from its axis, inside the cylinder. Here R is the radius of the cylinder. For the cylinder of this problem the current density is J = i A = i π(a 2 b 2 ), where A = π(a 2 b 2 ) is the cross-sectional area of the cylinder with the hole. The current in the cylinder without the hole is I 1 = JA = πja 2 = ia2 a 2 b 2 and the magnetic field it produces at a point inside, a distance r 1 from its axis, has magnitude Thecurrentinthecylinderthatfillstheholeis B 1 = µ 0I 1 r 1 µ 0 ir 1 a 2 2πa 2 = 2πa 2 (a 2 b 2 ) = µ 0 ir 1 2π(a 2 b 2 ). I 2 = πjb 2 = ib2 a 2 b 2 and the field it produces at a point inside, a distance r 2 from the its axis, has magnitude B 2 = µ 0I 2 r 2 µ 0 ir 2 b 2 2πb 2 = 2πb 2 (a 2 b 2 ) = µ 0 ir 2 2π(a 2 b 2 ). At the center of the hole, this field is zero and the field there is exactly the same as it would be if theholewerefilled.placer 1 = d in the expression for B 1 and obtain B = µ 0 id 2π(a 2 b 2 ) for the field at the center of the hole. The field points upward in the diagram if the current is out of the page. (b) If b = 0 the formula for the field becomes B = µ 0id 2πa 2. This correctly gives the field of a solid cylinder carrying a uniform current i, at a point inside the cylinder a distance d from the axis. If d = 0 the formula gives B = 0. This is correct for the field on the axis of a cylindrical shell carrying a uniform current. (c) Consider a rectangular path with two long sides (side 1 and 2, each with length L) and two short sides (each of length less than b). If side 1 is directly along the axis of the hole, then side 2 would be also parallel to it and also in the hole. To ensure that the short sides do not contribute significantly to the integral in Ampere s law, we might wish to make L very long (perhaps longer than the length

13 44. (a) The ideal solenoid is long enough (and we are evaluating the field at a point far enough inside) such that the open ends of the solenoid are out of sight and the situation displays a horizontaltranslational symmetry (assuming the axis of the cylindrical shape of the solenoid is horizontal). A view of a slice of, say, the bottom of the solenoid would therefore appear similar to that shown in Fig , where point P is in the interior of the solenoid and point P is outside the coil. Now, Fig differs in at least one respect from our slice view of the solenoid in that the field at P would be zero instead of what is shown in that figure. The field vanishes there because the top of the solenoid (similar to that shown in Fig , in slice view, but with the currents and field directions reversed) would contribute an equal and opposite field to any exterior point, thus canceling it. For interior points, the top and bottom slices each contribute 1 2 µ 0λ (in the same direction) [this is shown in the solution to problem 39] and thus produce an interior field equal to B = µ 0 λ. (b) Applying Ampere s law to a rectangular path which passes through points P (interior) and P (exterior) similar to that described in the solution to part (b) of problem 39, we are not surprised to find B d s = ( BP B P ) î x = µ 0 λ x just as we found in part (b) of problem 39 (except that we are now taking the +x directioninthe same direction as the field ( at P, to avoid confusion with signs). The difference with the previous solution is that in 39, BP B P ) î wasequaltob ( B) =2B, whereas in this case we have B( 0=B. Although the value of B is different in the two problems, we see that the change BP B P ) î isthesame:µ 0 λ.

14 51. (a) The magnitude of the magnetic dipole moment is given by µ = NiA,whereN is the number of turns, i is the current, and A is the area. We use A = πr 2,whereR is the radius. Thus, µ = NiπR 2 = (300)(4.0A)π(0.025 m) 2 =2.4 A m 2. (b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq : B = µ 0 µ 2π z 3. We solve for z: z = ( µ0 2π µ B ) ( 1/3 (4π 10 7 T m/a)(2.36 A m 2 ) 1/3 ) = 2π( =46cm. T)

Physics 4B. Question 28-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged)

Physics 4B. Question 28-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged) Physics 4B Solutions to Chapter 8 HW Chapter 8: Questions: 4, 6, 10 Problems: 4, 11, 17, 33, 36, 47, 49, 51, 60, 74 Question 8-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged)

More information

CHAPTER 30. Answer to Checkpoint Questions. 1. (a), (c), (b) 2. b, c, a 3. d, tie of a and c, then b 4. (d), (a), tie of (b) and (c) (zero)

CHAPTER 30. Answer to Checkpoint Questions. 1. (a), (c), (b) 2. b, c, a 3. d, tie of a and c, then b 4. (d), (a), tie of (b) and (c) (zero) 800 CHAPTER 30 AMPERE S LAW CHAPTER 30 Answer to Checkpoint Questions. (a), (c), (b). b, c, a 3. d, tie of a and c, then b. (d), (a), tie of (b) and (c) (zero) Answer to Questions. (c), (d), then (a) and

More information

PHY Fall HW6 Solutions

PHY Fall HW6 Solutions PHY249 - Fall 216 - HW6 Solutions Allen Majewski Department Of Physics, University of Florida 21 Museum Rd. Gainesville, FL 32611 October 11, 216 These are solutions to Halliday, Resnick, Walker Chapter

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1.

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1. 33.3. Model: The magnetic field is that of a moving charged particle. Visualize: The first point is on the x-axis, with θ a = 90. The second point is on the y-axis, with θ b = 180, and the third point

More information

Exam 2 Solutions. ε 3. ε 1. Problem 1

Exam 2 Solutions. ε 3. ε 1. Problem 1 Exam 2 Solutions Problem 1 In the circuit shown, R1=100 Ω, R2=25 Ω, and the ideal batteries have EMFs of ε1 = 6.0 V, ε2 = 3.0 V, and ε3 = 1.5 V. What is the magnitude of the current flowing through resistor

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Forces and Fields What creates a magnetic field? Answer: MOVING CHARGES What is affected by a magnetic field? Answer: MOVING CHARGES We have a formula for magnetic force on a moving

More information

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

More information

b mg (b) This is about one-sixth the magnitude of the Earth s field. It will affect the compass reading.

b mg (b) This is about one-sixth the magnitude of the Earth s field. It will affect the compass reading. Chapter 9 (a) The magnitude of the magnetic field due to the current in the wire, at a point a distance r from the wire, is given by i = μ p r With r = ft = 6 m, we have = c4p TmA hbag p6 b mg 6 = 33 T=

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

Homework (lecture 11): 3, 5, 9, 13, 21, 25, 29, 31, 40, 45, 49, 51, 57, 62

Homework (lecture 11): 3, 5, 9, 13, 21, 25, 29, 31, 40, 45, 49, 51, 57, 62 Homework (lecture ): 3, 5, 9, 3,, 5, 9, 3, 4, 45, 49, 5, 57, 6 3. An electron that has velocity: moves through the uniform magnetic field (a) Find the force on the electron. (b) Repeat your calculation

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 13, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 13, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 6.1 Magnetic Field Stationary charges experienced an electric force in an electric field Moving charges experienced a magnetic force in a magnetic

More information

Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring Solutions: Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents Observation: a current of moving charged particles produces a magnetic field around the current. Chapter 29 Magnetic Fields due to Currents Magnetic field due to a current in a long straight wire a current

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

Magnets and Electromagnetism

Magnets and Electromagnetism Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire

More information

Physics 2212 GH Quiz #4 Solutions Spring 2016

Physics 2212 GH Quiz #4 Solutions Spring 2016 Physics 2212 GH Quiz #4 Solutions Spring 2016 I. (18 points) A bar (mass m, length L) is connected to two frictionless vertical conducting rails with loops of wire, in the presence of a uniform magnetic

More information

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2006 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)

More information

B r Solved Problems Magnetic Field of a Straight Wire

B r Solved Problems Magnetic Field of a Straight Wire (4) Equate Iencwith d s to obtain I π r = NI NI = = ni = l π r 9. Solved Problems 9.. Magnetic Field of a Straight Wire Consider a straight wire of length L carrying a current I along the +x-direction,

More information

Lecture 32: MON 09 NOV Review Session A : Midterm 3

Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling Lecture 32: MON 09 NOV Review Session A : Midterm 3 EXAM 03: 6PM WED 11 NOV in Cox Auditorium The exam will cover: Ch.27.4 through Ch.30 The exam will be based on: HW08 11

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An

More information

Solve: From Example 33.5, the on-axis magnetic field of a current loop is

Solve: From Example 33.5, the on-axis magnetic field of a current loop is 33.10. Solve: From Example 33.5, the on-axis magnetic field of a current loop is B loop ( z) μ0 = We want to find the value of z such that B( z) B( 0) 0 0 3 = 3 ( z + R ) ( R ) =. 3 R R ( z R ) z R z R(

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Every magnet has a north pole and south pole.

Every magnet has a north pole and south pole. Magnets - Intro The lodestone is a naturally occurring mineral called magnetite. It was found to attract certain pieces of metal. o one knew why. ome early Greek philosophers thought the lodestone had

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

Physics H. Instructor: Dr. Alaa Mahmoud

Physics H. Instructor: Dr. Alaa Mahmoud Physics 202 1436-1437 H Instructor: Dr. Alaa Mahmoud E-mail: alaa_y_emam@hotmail.com Chapter 28 magnetic Field Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would not

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x Magnetic Fields 3. A particle (q = 4.0 µc, m = 5.0 mg) moves in a uniform magnetic field with a velocity having a magnitude of 2.0 km/s and a direction that is 50 away from that of the magnetic field.

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set University of the Philippines College of Science PHYSICS 72 Summer 2012-2013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change

More information

Exam 3 November 19, 2012 Instructor: Timothy Martin

Exam 3 November 19, 2012 Instructor: Timothy Martin PHY 232 Exam 3 October 15, 2012 Exam 3 November 19, 2012 Instructor: Timothy Martin Student Information Name and section: UK Student ID: Seat #: Instructions Answer the questions in the space provided.

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? Magnetic Force A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? (a) left (b) right (c) zero (d) into the page (e) out of the page B

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PHYS102 Previous Exam Problems CHAPTER 29 Magnetic Fields Due to Currents Calculating the magnetic field Forces between currents Ampere s law Solenoids 1. Two long straight wires penetrate the plane of

More information

Physics 8.02 Exam Two Equation Sheet Spring 2004

Physics 8.02 Exam Two Equation Sheet Spring 2004 Physics 8.0 Exam Two Equation Sheet Spring 004 closed surface EdA Q inside da points from inside o to outside I dsrˆ db 4o r rˆ points from source to observer V moving from a to b E ds 0 V b V a b E ds

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

Chapter 30 Solutions

Chapter 30 Solutions Chapter 30 Solutions 30.1 B µ 0I R µ 0q(v/π R) R 1.5 T *30. We use the Biot-Savart law. For bits of wire along the straight-line sections, ds is at 0 or 180 to ~, so ds ~ 0. Thus, only the curved section

More information

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions PSI AP Physics C Sources of Magnetic Field Multiple Choice Questions 1. Two protons move parallel to x- axis in opposite directions at the same speed v. What is the direction of the magnetic force on the

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Ch. 28: Sources of Magnetic Fields

Ch. 28: Sources of Magnetic Fields Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 24-14 Biot-Savart Law Current produces a magnetic field The Biot-Savart

More information

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 28 Magnetic Fields Copyright 28-2 What Produces a Magnetic Field? 1. Moving electrically charged particles ex: current in a wire makes an electromagnet. The current produces a magnetic field that

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is ragsdale (zdr8) HW7 ditmire (585) This print-out should have 8 questions. Multiple-choice questions ma continue on the net column or page find all choices efore answering. 00 0.0 points A wire carring

More information

Problems set # 7 Physics 169 March 31, 2015

Problems set # 7 Physics 169 March 31, 2015 Prof. Anchordoqui Problems set # 7 Physics 69 March 3, 05. (i) Determine the initial direction of the deflection of charged particles as they enter the magnetic fields as shown in Fig.. (ii) At the Equator

More information

Physics 8.02 Exam Two Mashup Spring 2003

Physics 8.02 Exam Two Mashup Spring 2003 Physics 8.0 Exam Two Mashup Spring 003 Some (possibly useful) Relations: closedsurface da Q κ d = ε E A inside points from inside to outside b V = V V = E d s moving from a to b b a E d s = 0 V many point

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

force per unit length

force per unit length Physics 153 Sample Examination for Fourth Unit As you should know, this unit covers magnetic fields, how those fields interact with charged particles, how they are produced, how they can produce electric

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

1-1 Magnetism. q ν B.(1) = q ( ) (2)

1-1 Magnetism. q ν B.(1) = q ( ) (2) 1-1 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric

More information

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8) Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires Biot-Savart Law Examples: ring,

More information

Magnetism II. Physics 2415 Lecture 15. Michael Fowler, UVa

Magnetism II. Physics 2415 Lecture 15. Michael Fowler, UVa Magnetism II Physics 2415 Lecture 15 Michael Fowler, UVa Today s Topics Force on a charged particle moving in a magnetic field Path of a charged particle moving in a magnetic field Torque on a current

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Phys102 Final-132 Zero Version Coordinator: A.A.Naqvi Wednesday, May 21, 2014 Page: 1

Phys102 Final-132 Zero Version Coordinator: A.A.Naqvi Wednesday, May 21, 2014 Page: 1 Coordinator: A.A.Naqvi Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R =105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? A).3 V

More information

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01 Final Exam: Physics2331 - Spring, 2017 May 8, 2017 Version 01 NAME (Please Print) Your exam should have 11 pages. This exam consists of 18 multiple-choice questions (2 points each, worth 36 points), and

More information

Physics 2212 G Quiz #4 Solutions Spring 2018 = E

Physics 2212 G Quiz #4 Solutions Spring 2018 = E Physics 2212 G Quiz #4 Solutions Spring 2018 I. (16 points) The circuit shown has an emf E, three resistors with resistance, and one resistor with resistance 3. What is the current through the resistor

More information

week 8 The Magnetic Field

week 8 The Magnetic Field week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is

More information

Physics 25 Chapter 21 Dr. Alward

Physics 25 Chapter 21 Dr. Alward Physics 25 Chapter 21 Dr. Alward Magnetism and Magnetic Forces Magnetic Field of a Bar Magnet Magnetic field lines flow away from the north pole and sink on the south pole. Like Poles Repel Unlike Poles

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD

CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD 1 CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD 7.1 Introduction In Chapter 6 we showed that when an electric current is situated in an external magnetic field it experiences a force at right angles

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Magnetic Forces and Fields (Chapters 29-30)

Magnetic Forces and Fields (Chapters 29-30) Magnetic Forces and Fields (Chapters 29-30) Magnetism Magnetic Materials and Sources Magnetic Field, Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications

More information

Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam III Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

More information

Electromagnetics in Medical Physics

Electromagnetics in Medical Physics Electromagnetics in Medical Physics Part 4. Biomagnetism Tong In Oh Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea tioh@khu.ac.kr Dot Product (Scalar

More information

Computer Algebra for Physics Examples

Computer Algebra for Physics Examples Computer Algebra for Physics Examples Electrostatics, Magnetism, Circuits and Mechanics of Charged Particles Part Magnetic Field Leon Magiera and Josef Böhm III. Magnetic Field A magnetic field can be

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

Lecture 31: MON 30 MAR Review Session : Midterm 3

Lecture 31: MON 30 MAR Review Session : Midterm 3 Physics 2113 Jonathan Dowling Lecture 31: MON 30 MAR Review Session : Midterm 3 EXAM 03: 8PM MON 30 MAR in Cox Auditorium The exam will cover: Ch.26 through Ch.29 The exam will be based on: HW07 HW10.

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

PHYS 1444 Section 003 Lecture #15

PHYS 1444 Section 003 Lecture #15 PHYS 1444 Section 003 Lecture #15 Monday, Oct. 24, 2005 Magnetic field Earth s magnetic field Magnetic field by electric current Magnetic force on electric current Magnetic force on a moving charge Today

More information

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

More information

Transmission line demo to illustrate why voltage along transmission lines is high

Transmission line demo to illustrate why voltage along transmission lines is high Transmission line demo to illustrate why voltage along transmission lines is high Connect to step down transformer 120V to 12V to lightbulb 12 V 6.5 A Lights up brightly Connect it to long fat wires Lights

More information

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek.

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek. Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek. 1900 Maxwell combine the theory of electric and magnetic to

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

(a) zero. B 2 l 2. (c) (b)

(a) zero. B 2 l 2. (c) (b) 1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

More information

Gravity Electromagnetism Weak Strong

Gravity Electromagnetism Weak Strong 19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N

More information

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Force on a Current Carrying Wire! The magnitude of the magnetic force on a wire of length L carrying a current i is F = il

More information

PHYS 1444 Section 003 Lecture #17

PHYS 1444 Section 003 Lecture #17 PHYS 1444 Section 003 Lecture #17 Tuesday, Nov. 1, 2011 Electric Current and Magnetism Magnetic Forces on Electric Current About Magnetic Field Magnetic Forces on a Moving Charge Charged Particle Path

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

nrt V dv = nrt ln(3) = P AV A ln(3) P A dv = P A V 5/ / /3

nrt V dv = nrt ln(3) = P AV A ln(3) P A dv = P A V 5/ / /3 Problem. a For an isothermal process: W iso = VA 3V A PdV = VA 3V A nrt V dv = nrt ln3 = P AV A ln3 For the adiabatic leg, PV γ =const. Thus, I get that P = P A VA V γ. Since the gas is monatomic, γ =

More information

March 11. Physics 272. Spring Prof. Philip von Doetinchem

March 11. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 32 Summary Magnetic

More information

Name (Last, First): You may use only scientific or graphing calculators. In particular you may not use the calculator app on your phone or tablet!

Name (Last, First): You may use only scientific or graphing calculators. In particular you may not use the calculator app on your phone or tablet! Final Exam : Physics 2113 Fall 2014 5:30PM MON 8 DEC 2014 Name (Last, First): Section # Instructor s name: Answer all 6 problems & all 8 questions. Be sure to write your name. Please read the questions

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information