1/30/11. Astro 300B: Jan. 26, Thermal radia+on and Thermal Equilibrium. Thermal Radia0on, and Thermodynamic Equilibrium

Size: px
Start display at page:

Download "1/30/11. Astro 300B: Jan. 26, Thermal radia+on and Thermal Equilibrium. Thermal Radia0on, and Thermodynamic Equilibrium"

Transcription

1 Astro 300B: Jan. 26, 2011 Thermal radia+on and Thermal Equilibrium Thermal Radia0on, and Thermodynamic Equilibrium 1

2 Thermal radiation is radiation emitted by matter in thermodynamic equilibrium. When radiation is in thermal equilibrium, I ν is a universal function of frequency ν and temperature T the Planck function, B ν. Blackbody Radiation: In a very optically thick media, recall the SOURCE FUNCTION So thermal radiation has And the equation of radiative transfer becomes THERMODYNAMIC EQUILIBRIUM When astronomers speak of thermodynamic equilibrium, they mean a lot more than dt/dt = 0, i.e. temperature is a constant. DETAILED BALANCE: rate of every reaction = rate of inverse reaction on a microprocess level If DETAILED BALANCE holds, then one can describe (1) The radiation field by the Planck function (2) The ionization of atoms by the SAHA equation (3) The excitation of electroms in atoms by the Boltzman distribution (4) The velocity distribution of particles by the Maxwell-Boltzman distribution ALL WITH THE SAME TEMPERATURE, T When (1)-(4) are described with a single temperature, T, then the system is said to be in THERMODYNAMIC EQUILIBRIUM. 2

3 In thermodynamic equilibrium, the radiation and matter have the same temperature, i.e. there is a very high level of coupling between matter and radiation Very high optical depth By contrast, a system can be in statistical equilibrium, or in a steady state, but not be in thermodynamic equilibrium. So it could be that measurable quantities are constant with time, but there are 4 different temperatures: T(ionization) T(excitation) T(radiation) T(kinetic) given by the Saha equation given by the Boltzman equation given by the Planck Function given by the Maxwell-Boltzmann distribution Where T(ionization) T(excitation) T(radiation) T(kinetic) LOCAL THERMODYNAMIC EQUILIBRIUM (LTE) If locally, T(ion) = T(exc) = T(rad) = T(kinetic) Then the system is in LOCAL THERMODYNAMIC EQUILIBRIUM, or LTE This can be a good approximation if the mean free path for particle-photon interactions << scale upon which T changes 3

4 Example: H II Region (e.g. Orion Nebula, Eagle Nebula, etc) Ionized region of interstellar gas around a very hot star Radiation field is essentially a black-body at the temperature of the central Star, T~50, ,000 K However, the gas cools to T e ~ 10,000 K (T e = kinetic temperature of electrons) O star H I H II Q.: Is this room in thermodynamic equilibrium? 4

5 FYI, we write down the following functions, without deriving them: (1) The Boltzman Equation Boltzman showed that the probability of finding an atom with an electron, e -, in an excited state with energy χ n above the ground state decreases exponentially with χ n increases exponentially with temperature T and Where N n = # atoms in excited state n / volume N 1 = # atoms in ground state /volume g n = 2n 2 the statistical weight of level n = number of different angular momentum quantum numbers in energy level n (2) The Planck Function 5

6 (3) The Maxwell-Boltzman distribution of speeds of electrons = fraction of electrons with velocity between v, v+dv where m e = mass of the electron T e = temperature of the electrons (4) The Saha Equation Where n e = number density of free electrons N m = number density of atoms in the m th ionization state Z m = partition function of the m th ionization state 6

7 Thermodynamics of Blackbody Radiation: The Stefan-Boltzman Law Consider a piston containing black-body radiation: Inside the piston: T, v, p u Move blue wall extract or perform work First Law of Thermodynamics: dq = du + p dv where dq = change in heat du = total change in energy p = pressure dv = change in volume Second Law of Thermodynamics: ds = dq/t S = entropy 7

8 Recall, U = uv u = energy density energy/volume p = 1/3 u p = radiation pressure in piston So (substitute dq=du+pdv) (substitute U=uV, p=1/3 u) So... Differentiate these. 8

9 Combining (1) and (2) Multiply by T a=constant of integration Energy density ~T 4 u can be related to the Planck Function For isotropic radiation, So 9

10 Where B(T) = the integrated Planck function For a uniform, isotropically emitting surface, we showed that the flux OR. Stefan-Boltzmann Law Where = 5.67x10-5 ergs cm -2 deg -4 sec -1 [flux] = ergs cm -2 sec -1 flux integrated over frequency, per area per sec also = 7.56x10-15 ergs cm -3 deg -4 10

11 Blackbody Radia0on; The Planck Spectrum The spectrum of thermal radia0on, i.e. radia0on in equilibrium with material at temperature T, was known experimentally before Planck Rayleigh & Jeans derived their rela0on for the blackbody spectrum for long wavelengths, Wien derived the spectrum at short wavelengths But, classical physics failed to explain the shape of the spectrum. Planck s deriva0on involved the considera0on of quan0zed electromagne0c oscillators, which are in equilibrium with the radia0on field inside a cavity the deriva0on launched Quantum Mechanics See Feynmann Lectures, Vol. III, Chapt.4; R&L pp Result: Or in terms of B λ recall ergs s -1 cm -2 Hz -1 ster -1 ergs s -1 cm -2 A -1 ster -1 11

12 The Cosmic Microwave Background The most famous (and perfect) blackbody spectrum is the Cosmic Microwave Background. Until a few hundred thousand years after the Big Bang, the Universe was extremely hot, all hydrogen was ionized, and because of Thomson scattering by free electrons, the Universe was OPAQUE. Then hydrogen recombined and the Universe became transparent. The relict radiation, which was last in thermodynamic equilibrium with matter at the surface of last scattering is the CMB. Currently the CMB radiation has the spectrum of a blackbody with T=2.73 K. It is cooling as the Universe expands. The first accurate measurement of the spectrum of the CMB was obtained with the FIRAS instrument aboard the Cosmic Background Explorer (COBE), from space: See Mather ApJLetters 354, L37 The smooth curve is the theoretical Planck Law. This plot was made using the first year of data; in subsequent plots the error bars are smaller than the width of the lines! 12

13 Proper0es of the Planck Law Two limits simplify the Planck Law (and make it simpler to integrate): Rayleigh-Jeans: hν << kt Wien hν >> kt (Radio Astronomy) 13

14 Rayleigh-Jeans Law so becomes The Ultraviolet Catastrophe If the Rayleigh-Jean s form for the spectrum of a blackbody held for all frequencies, then And the total energy in the radiation field 14

15 Wien s Law Very steep decrease in brightness for Monotonicity with Temperature If T 1 > T 2, then B ν (T 1 ) > B ν (T 2 ) for all frequencies Of 2 blackbody curves, the one with higher temperature lies entirely above the other. >0 always 15

16 Wien Displacement Law At what frequency does the Planck Law B ν (T) peak? B ν (T) peaks at ν max, given by ( e hν / kt 1) 6hν 2 = 2hν 3 h c 2 c 2 ( ) kt ehν / kt Divide by exp(hν/kt), cancel some terms Let Need to solve Solution is x=2.82. Need to solve graphically or iteratively. 16

17 Similarly, one can find the wavelength λ max at which B λ (T) peaks 17

18 NOTE: That is to say, B ν and B λ don t peak at the same wavelength, or frequency. For the Sun s spectrum, λ max for I λ is at about 4500 Å whereas λ max for I ν is at about 8000 Å Why? recall So equal intervals in wavlength correspond to very different intervals of frequency across the spectrum With increasing l, constant dl (the I l case) corresponds to smaller and smaller dn so these smaller dn intervals contain smaller energy, compared to constant dn intervals (the I n case) Radiation constants in terms of physical constants Recall the Stefan-Boltzman law for flux of a black body So 18

19 Also, since As an example of the kind of things you can model with the Planck radiation formulae, consider the following: (see (1) How much radiant energy comes from a nickel at room temperature per second? Measured properties of the nickel are diameter = 2.14 cm, thickness 0.2 cm, mass 5.1 grams. This gives a volume of cm 3 and a surface area of 8.54 cm 2. 19

20 The radiation from the nickel's surface can be calculated from the Stefan-Boltzman Law F= σt 4 The room temperature will be taken to be 22 C = 295 K. Assuming an ideal radiator for this estimate, the radiated power is P = σat 4 A=surface area of nickel = (5.67 x 10-8 W/m 2 K 4 )x(8.54 x 10-4 m 2 )x(295 K) 4 = watts. So the radiated power from a nickel at room temperature is about 0.37 watts 2. How many photons per second leave the nickel? Since we know the energy, we can divide it by the average photon energy. We don't know a true average, but the wavelength of the peak of the blackbody radiation curve is a representative value which can be used as an estimate. This may be obtained from the Wien displacement law. l peak = m K/295 K = 9.83 x 10-6 m = 9830 nm, in the infrared. The energy per photon at this peak can be obtained from the Planck relationship. E photon = hν = hc/λ = 1240 ev nm/ 9830 nm = ev Then the number of photons per second is very roughly N = (0.367 J)/(0.126 ev x 1.6 x J/eV) = 1.82 x photons 20

21 Characteristic Temperatures for Blackbodies 1. BRIGHTNESS TEMPERATURE, T b Instead of stating I ν, one can state T b, where i.e. T b is the temperature of the blackbody having the same specific intensity as the source, at a particular frequency. Notes: 1. T B is often used in radio astronomy, and so you can assume that the Rayleigh-Jeans Law holds, so 2. The source need not be a blackbody, despite being described as a source with brightness temperature T B. 3. Units of T B are easier to remember than units of I ν 21

22 T B and the equation of Radiative Transfer: Assume Rayleigh-Jeans, So the equation of radiative transfer becomes: The brightness temperature = The actual temperature at large optical depth Otherwise, 22

23 The brightness temperature = The actual temperature at large optical depth Otherwise, (2) Color Temperature, T c Often one can measure the spectrum of a source, and it is more or less a blackbody of some temperature, Tc. We may not know I ν, but only F ν, if for example the source is unresolved. T c can be estimated from λ(max), the peak of the spectrum, or the ratio of the spectrum at 2 wavelengths. e.g. B-V colors of stars 23

24 The solar spectrum vs. blackbody from Caroll & Ostlie 24

25 (3) Antenna Temperature, T A A radio telescope mearures the brightness of a source, Often described by Where η = the beam efficiency of the telescope, typically ~ Ω s = solid angle subtended by the source Ω A = solid angle from which the antenna receives radiation ( beam ) (4) Effective Temperature, T eff If a source has total flux F, integrated over all frequencies we can define T eff such that 25

26 The Einstein Coefficients Einstein (1917) related α ν and j ν to microscopic processes, by considering how a photon interacts with a 2- level atom: E 2 emission E 1 absorp0on Level 2, sta0s0cal weight g 2 Level 1, sta0s0cal weight g 1 Absorp+on: system goes from Level 1 to Level 2 by absorbing a photon with energy hν 0 Emission: system goes from Level 2 to Level 1 and a photon is emiked. Three processes can occur: 1. Spontaneous Emission 2. Absorp0on 3. S0mulated Emission 26

27 1. Spontaneous Emission An atom in Level 2 drops to Level 1, emilng a photon, even in the absence of a radia0on field 2 1 Einstein A coefficient A 21 transi0on probability per unit 0me for spontaneous emission [A 21 ]= sec - 1 Examples: permiked, dipole transi0ons A 21 ~ 10 8 sec - 1 magne0c dipole, forbidden transi0ons A 21 ~10 3 sec - 1 electric quadrupole, forbidden transi0ons A 21 ~1 sec Absorp+on An atom in level 1 absorbs a photon and ends up in level Due to the Heisenberg uncertainty principle, ΔE Δt > ħ, the energy levels are not precisely sharp Each level has a spread in energy, called the natural Line width, a Lorentzian. So let s parameterize the line profile as φ(ν), Centered on frequency ν o. φ(ν) We define φ(ν) so that 27

28 Einstein B- coefficients B 12 transi0on probability per unit 0me for absorp8on Where S0mulated Emission The presence of a radia0on field will s0mulate an atom to go from level 2 level 1 Transi0on probability, per unit 0me for s8mulated emission 28

29 Equa0on of Sta0s0cal Equilibrium If detailed balance holds Number of transi0ons/sec from Level 1 Level 2 = Number of transi0ons/sec from Level 2 Level 1 Let n 1 = # of atoms / volume in Level 1 n 2 = # of atoms / volume in Level 2 Then: Absorp+on Spontaneous emission S+mulated emission hence In thermodynamic equilibrium, the Boltzman equa0on gives n 1 /n 2 So (1) 29

30 In thermodynamic equilibrium, Since the Lorentzian is narrow, we can approximate (2) Comparing (1) and (2), we get the EINSTEIN RELATIONS 30

31 Comments: There s no T in the Einstein Rela0ons, they relate atomic constants only. Hence, they must be true even if T.E. doesn t hold. Some0mes people derive the Einstein rela0ons in terms of energy density, u ν instead of Jnu, so there s an extra factor of 4π/c: The Milne Rela0on Another example of using detailed balance to derive rela0ons which are independent of the LTE assump0on Relate photo- ioniza0on cross- sec0on at frequency nu, with cross- sec0on for recombina0on for electrom with velocity v: See deriva0on in Osterbrock & Ferland 31

Interstellar Medium Physics

Interstellar Medium Physics Physics of gas in galaxies. Two main parts: atomic processes & hydrodynamic processes. Atomic processes deal mainly with radiation Hydrodynamics is large scale dynamics of gas. Start small Radiative transfer

More information

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents: Radiation Processes Black Body Radiation Heino Falcke Radboud Universiteit Nijmegen Contents: Planck Spectrum Kirchoff & Stefan-Boltzmann Rayleigh-Jeans & Wien Einstein Coefficients Literature: Based heavily

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Equilibrium Properties of Matter and Radiation

Equilibrium Properties of Matter and Radiation Equilibrium Properties of Matter and Radiation Temperature What is it? A measure of internal energy in a system. Measure from (1) velocities of atoms/molecules () population of excited/ionized states (3)

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

1 Radiative transfer etc

1 Radiative transfer etc Radiative transfer etc Last time we derived the transfer equation dτ ν = S ν I v where I ν is the intensity, S ν = j ν /α ν is the source function and τ ν = R α ν dl is the optical depth. The formal solution

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond The formation of stars and planets Day 1, Topic 2: Radiation physics Lecture by: C.P. Dullemond Astronomical Constants CGS units used throughout lecture (cm,erg,s...) AU = Astronomical Unit = distance

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 431 Lecture 1 Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation NC State University Overview Quantum Mechanics Failure of classical physics Wave equation Rotational,

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν 1 2. NOTES ON RADIATIVE TRANSFER 2.1. The specific intensity I ν Let f(x, p) be the photon distribution function in phase space, summed over the two polarization states. Then fdxdp is the number of photons

More information

Collisionally- excited emission Lines

Collisionally- excited emission Lines Collisionally- excited emission Lines Excita9on and emission in a 2- level atom Emission Lines Emission lines result from photon- emi@ng downward transi9ons, and provide key informa9on on the emi@ng objects,

More information

de = j ν dvdωdtdν. (1)

de = j ν dvdωdtdν. (1) Transfer Equation and Blackbodies Initial questions: There are sources in the centers of some galaxies that are extraordinarily bright in microwaves. What s going on? The brightest galaxies in the universe

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J =

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J = Ask about final Saturday, December 14 (avoids day of ASTR 100 final, Andy Harris final). Decided: final is 1 PM, Dec 14. Rate Equations and Detailed Balance Blackbodies arise if the optical depth is big

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

Astronomy 1 Winter 2011

Astronomy 1 Winter 2011 Astronomy 1 Winter 2011 Lecture 8; January 24 2011 Previously on Astro 1 Light as a wave The Kelvin Temperature scale What is a blackbody? Wien s law: λ max (in meters) = (0.0029 K m)/t. The Stefan-Boltzmann

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

The term black body was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation. Black body (Redirected from Black-body radiation) As the temperature decreases, the peak of the black body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

With certain caveats (described later) an object absorbs as effectively as it emits

With certain caveats (described later) an object absorbs as effectively as it emits Figure 1: A blackbody defined by a cavity where emission and absorption are in equilibrium so as to maintain a constant temperature Blackbody radiation The basic principles of thermal emission are as follows:

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019 AST 301, Lecture 2 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University January 29, 2019 Cosmic Catastrophes (AKA Collisions) james.lattimer@stonybrook.edu Properties of

More information

Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13. Phys 322 Lecture 34. Modern optics Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

Photoionized Gas Ionization Equilibrium

Photoionized Gas Ionization Equilibrium Photoionized Gas Ionization Equilibrium Ionization Recombination H nebulae - case A and B Strömgren spheres H + He nebulae Heavy elements, dielectronic recombination Ionization structure 1 Ionization Equilibrium

More information

Lecture 3: Specific Intensity, Flux and Optical Depth

Lecture 3: Specific Intensity, Flux and Optical Depth Lecture 3: Specific Intensity, Flux and Optical Depth We begin a more detailed look at stellar atmospheres by defining the fundamental variable, which is called the Specific Intensity. It may be specified

More information

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter garret.cotter@physics.ox.ac.uk Office 756 in the DWB & Exeter College Radiative

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

Set 3: Thermal Physics

Set 3: Thermal Physics Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation why do hot things glow? The cosmic microwave background The electromagnetic

More information

A 21 spontaneous radia:ve decay (s - 1 ) B 12 induced excita:on (via photons) [B 12 U ν s - 1 ]

A 21 spontaneous radia:ve decay (s - 1 ) B 12 induced excita:on (via photons) [B 12 U ν s - 1 ] Collisionally- excited emission Lines Excita:on and emission in a - level atom Emission Lines Emission lines result from photon- emiang downward transi:ons, and provide key informa:on on the emiang objects,

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Quantum Physics Lecture 6

Quantum Physics Lecture 6 Quantum Physics Lecture 6 Thermal Phenomena Specific Heats - Classical model, failure at low temperature - Einstein model Black Body radiation - Classical model, UV catastrophe - Planck model - Wien &

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation Recap Lecture + Thomson Scattering Thermal radiation Blackbody radiation Bremsstrahlung radiation LECTURE 1: Constancy of Brightness in Free Space We use now energy conservation: de=i ν 1 da1 d Ω1 dt d

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Lecture 4: Absorption and emission lines

Lecture 4: Absorption and emission lines Lecture 4: Absorption and emission lines Senior Astrophysics 2018-03-13 Senior Astrophysics () Lecture 4: Absorption and emission lines 2018-03-13 1 / 35 Outline 1 Absorption and emission line spectra

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

- HH Photons and Planck Radiation Law Hsiu-Hau Lin (Oct 23, 2012)

- HH Photons and Planck Radiation Law Hsiu-Hau Lin (Oct 23, 2012) - HH64 - Photons and Planck Radiation Law Hsiu-Hau Lin hsiuhau.lin@gmail.com (Oct 23, 212) Quantum theory begins with the Planck radiation law for thermal radiation at di erent frequencies, u! = ~ 2 c

More information

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities for continuum processes - recombination - brehmsstrahlung

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

More information

[10] Spectroscopy (9/28/17)

[10] Spectroscopy (9/28/17) 1 [10] Spectroscopy (9/28/17) Upcoming Items 1. Homework #5 due on Tuesday 2. Midterm #1 October 10 3. Read Ch. 6.2 & 6.3 by next class (skim the rest of Ch. 6). Do the selfstudy quizzes APOD 9/28/16 2

More information

Quantum Physics Lecture 5

Quantum Physics Lecture 5 Quantum Physics Lecture 5 Thermal Phenomena - continued Black Body radiation - Classical model, UV catastrophe - Planck model, Wien & Stefan laws - Photoelectric effect revisited The hydrogen atom Planetary

More information

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids I. Radiation 2. Energy Balance 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids radiate at many Click frequencies, to edit

More information

Class 11: Thermal radiation

Class 11: Thermal radiation Class : Thermal radiation By analyzing the results from a number of eperiments, Planck found the energy density of the radiation emitted by a black body in wavelength interval (, d + was well described

More information

The Black Body Radiation

The Black Body Radiation The Black Body Radiation = Chapter 4 of Kittel and Kroemer The Planck distribution Derivation Black Body Radiation Cosmic Microwave Background The genius of Max Planck Other derivations Stefan Boltzmann

More information

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities L = 3.9 x 10 33 erg s 1 M = 2 x 10 33 g M bol = 4.74 R = 7 x 10 10 cm 1 A.U. = 1.5 x 10 13 cm 1 pc = 3.26 l.y. = 3.1 x 10 18 cm a = 7.56 x 10 15 erg cm 3 K 4 c= 3.0 x 10 10 cm s 1 σ = ac/4 = 5.7 x 10 5

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Physics 2020 Exam 3 Constants and Formulae

Physics 2020 Exam 3 Constants and Formulae Physics 2020 Exam 3 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 e = 1.60219 10 19 C h = h/2π = 1.05459 10 34 J s h = 6.62620 10 34 J s m p = m H = 1.672 10 27 kg m e = 9.110 10 31

More information

CHAPTER 22. Astrophysical Gases

CHAPTER 22. Astrophysical Gases CHAPTER 22 Astrophysical Gases Most of the baryonic matter in the Universe is in a gaseous state, made up of 75% Hydrogen (H), 25% Helium (He) and only small amounts of other elements (called metals ).

More information

The Light of Your Life. We can see the universe because atoms emit photons

The Light of Your Life. We can see the universe because atoms emit photons The Light of Your Life We can see the universe because atoms emit photons Astronomy is an observational science Our messengers are Light (electromagnetic waves) Gravitational waves Cosmic rays (particles)

More information

Atomic Physics ASTR 2110 Sarazin

Atomic Physics ASTR 2110 Sarazin Atomic Physics ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements John Mather Visit Nobel Prize in Physics 006 for Cosmic Microwave Background measurements NEXT WEEK Wednesday :0-:00 BPS 00 BS session with astro students & faculty. Wednesday 8PM BPS 0 (refreshments at

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

Lecture 2: Transfer theory. Credit: Kees Dullemond

Lecture 2: Transfer theory. Credit: Kees Dullemond Lecture 2: Transfer theory Credit: Kees Dullemond What is radia:ve transfer? Radia:ve transfer is the physical phenomenon of energy transfer in the form of electromagne:c radia:on The propaga:on of radia:on

More information

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics 1 Modern physics 2 Gustav Kirchhoff (1824-1887) Surprisingly, the path to quantum mechanics begins with the work of German physicist Gustav Kirchhoff in 1859. Electron was discovered by J.J.Thomson in

More information

Lecture 6: Continuum Opacity and Stellar Atmospheres

Lecture 6: Continuum Opacity and Stellar Atmospheres Lecture 6: Continuum Opacity and Stellar Atmospheres To make progress in modeling and understanding stellar atmospheres beyond the gray atmosphere, it is necessary to consider the real interactions between

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Lecture Outline: Spectroscopy (Ch. 4)

Lecture Outline: Spectroscopy (Ch. 4) Lecture Outline: Spectroscopy (Ch. 4) NOTE: These are just an outline of the lectures and a guide to the textbook. The material will be covered in more detail in class. We will cover nearly all of the

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

Bohr Atom and Specific Heats of Gases and Liquids

Bohr Atom and Specific Heats of Gases and Liquids Bohr Atom and Specific Heats of Gases and Liquids S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) Lecture-3 1 August 2016 1 / 25 Kirschhoff s

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

10 May 2018 (Thursday) 2:30-4:30 pm

10 May 2018 (Thursday) 2:30-4:30 pm THE UNIVERSITY OF HONG KONG DEPARTMENT OF PHYSICS PHYS3652 Principles of Astronomy 10 May 2018 (Thursday) 2:30-4:30 pm A. Answer all FOUR questions (Marks for each question are listed) B. Define every

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

Modern physics. Historical introduction to quantum mechanics

Modern physics. Historical introduction to quantum mechanics 2012-0-08 Modern physics dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, C-1, office 17, rd floor, phone 617 29 01, mobile phone 0 601 51 5 e-mail: zak@agh.edu.pl, Internet site http://home.agh.edu.pl/~zak

More information

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester.

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester. Chapter 13 Phys 322 Lecture 34 Modern optics Note: 10 points will be given for attendance today and for the rest of the semester. Presentation schedule Name Topic Date Alip, Abylaikhan lasers Nov. 30th

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information