Example 2 (new version): the generators are. Example 4: the generators are

Size: px
Start display at page:

Download "Example 2 (new version): the generators are. Example 4: the generators are"

Transcription

1 First, let us quickly dismiss Example 3 (and Example 6): the second generator may be removed (being the square of the third or, respectively, the fourth one), and then the quotient is clearly the simplest case of a flat Klein bottle. This leaves us with seven examples: 1, 2, 4, 5, 7, 8 and 9. Second, in the three five-generator examples (7, 8, 9), one generator (the fifth in the first two of them, the fourth in the last) is redundant and should be removed, Specifically, in Example 7 the third generator followed by the fourth yields the fifth; in Example 8 the second generator followed by the fourth and then by the third yields the fifth; in Example 9 the third generator followed by the fifth yields the fourth. Third, Examples 8 and 9, now reduced to four generators, are essentially identical: Example 9 becomes Example 8 if one uses (x a/4, y) as the new coordinates. From now on we are just considering six examples: 1 2, 4 5, 7 8, each with only four generators. Next, in all six examples, one of the generators is a reflection about a point or a line, and a simple coordinate change turns that point or line into the origin or, respectively, one of the coordinate axes. Specifically, the new coordinates are (x, y b/4) in Examples 5 and 8; in the other four examples we leave the coordinates unchanged. Using the old symbols x, y for the new coordinates, we see that the new version of Example 8 (with the fifth generator removed, and with the entry y b/2 changed to y + b/2, which is achieved when the fourth generator is followed by the second) is the same as Example 7 (also with the fifth generator removed). We are thus left with five examples: 1, 2, 4, new version of 5, and 7. Let us further modify Examples 2, 5 and 7, switching, in all three, the names of x and y as well as those of a and b. Thus, we obtain: Example 1: the generators are ψ 4 : (x, y) (x + a/2, y). Example 2 (new version): the generators are Example 4: the generators are ψ 3 : (x, y) ( x, y) ψ 4 : (x, y) ( x, y + b/2). ψ 4 : (x, y) (x + a/2, y + b/2). 1

2 2 Example 5 (new version): the generators are ψ 3 : (x, y) ( x, y) ψ 4 : (x, y) ( x + a/2, y + b/2). Example 7 (new version): the generators are ψ 4 : (x, y) ( x + a/2, y + b/2). Remark 0.1. For each of the above examples the image H of G under the linear-part homomorphism is contained in the matrix group {diag(δ, ε) : δ, ε {1, 1}}, isomorphic to Z 2 Z 2. Examples 2 and 5 have H = {diag(1,1), diag(1, 1)}. On the other hand, H = {diag(1,1), diag( 1, 1)} in Example 4. Lemma 0.2. Every G-orbit intersects the rectangle Q given by Q = [0, a/2] [0, b/2] in Example 2, and Q = [0, a/4] [ b/2, b/2] in Examples 1, 4, 5, 7. Proof. If a group G of affine transformations of a real vector space contain the translations by all elements of a basis e 1,..., e n, then every orbit of G intersects the set {µ 1 e µ n e n : µ 1,..., µ n [ 1/2, 1/2]}. In fact, any x IR differs by an integer from some y [ 1/2, 1/2]. This fact, applied to n = 2 and e 1 = (a, 0), e 2 = (0, b), shows that all G-orbits intersect the rectangle R = [ a/2, a/2] [ b/2, b/2]. Let the phrase we use ψ to eliminate S now mean that a transformation ψ G sends a set S R onto a subset of R S (and so the stated property still holds when R is replaced by R S). First, in Examples 1, 4, 5, 7 (or, Example 2), ψ 3 (or, ψ 4 ) may be used to eliminate [ a/2, 0) [ b/2, b/2]. Similarly, in Example 1 (or, 2) the set (a/4, a/2) [ b/2, b/2] (or, (0, a/2] [ b/2, 0)) is eliminated with the aid of ψ 4 ψ 3 (or, respectively, ψ 3 ). Next, in Example 4, we eliminate (a/4, a/2) [0, b/2] (or, (a/4, a/2) [ b/2, 0]) using ψ 4 ψ 3 (or, respectively, ψ2 1 ψ 4 ψ 3 ). Finally, in both Examples 5 and 7, we use ψ2 1 ψ 4 (or, ψ 4 ) to eliminate (a/4, a/2) [0, b/2] or, respectively, (a/4, a/2) [ b/2, 0]. Lemma 0.3. In Examples 1, 2, 4, 5, 7, every ψ G is given by (0.1) ψ(x, y) = (δx + ka/2, εy + lb/2) with some δ, ε {1, 1} and k, l Z,

3 3 for all (x, y) IR 2. Furthermore, whenever ψ G is of the form (0.1), we have (0.2) i) in Example 1 : ( 1) k δε = ( 1) l = 1, ii) in Example 2 : ε = ( 1) k = 1, iii) in Example 4 : δε = ( 1) k+l = 1, iv) in Example 5 : ε = ( 1) k+l = 1, v) in Example 7 : ( 1) k δε = ( 1) k+l = 1. Proof. Affine transformations of type (0.1) form a group, and each of the mappings assigning to ψ with (0.1) the value δ, or ε, or ( 1) k, or ( 1) l, is a group homomorphisms into {1, 1}. (This is immediate since, expressing (0.1) as ψ (δ, ε, k, l), we have ψ ˆψ (δˆδ, εˆε, k + ˆk, l + εˆl) and ψ 1 (δ, ε, δk, εl) whenever ψ (δ, ε, k, l) and ˆψ (ˆδ, ˆε, ˆk, ˆl), while Id (1, 1, 0, 0).) Each of the terms equated to 1 in (0.2) thus represents a group homomorphism, and G is, in each case, contained in its kernel, since so is, clearly, the generator set for each G, specified above. We can now describe the quotient space IR 2 /G of the action of G. Proposition 0.4. In Example 2, two different points of Q = [0, a/2] [0, b/2] lie in one G-orbit if and only if these points are (x, 0) and (x, b/2) with some x [0, a/2]. In the other four examples, a two-element subset of Q = [0, a/4] [ b/2, b/2] is contained in a single orbit of G if and only if it equals {(x, b/2), (x, b/2)}, where x [0, a/4], or has one of the following additional forms. (a) Examples 1, 4 and 7 only: {(0, y), (0, y)} for some y (0, b/2]. (b) Example 4 only: {(a/4, y), (a/4, y + b/2)} for some y [0, b/4). (c) Example 4 only: {(a/4, y), (a/4, y b/2)} for some y ( b/4, 0]. (d) Examples 5 and 7 only: {(a/4, y), (a/4, y + b/2)} for some y [ b/2, 0]. Proof. The if part of our assertion follows if one uses: ψ 4 ψ 3 and ψ 2 in the first or, respectively, second paragraph of the lemma; ψ 3 for (a); ψ 4 ψ 3 and ψ2 1 ψ 4 ψ 3 in (b) (c); ψ 4 and ψ2 1 ψ 4 for (d) (e). Let Q now contain both (x, y) and (ˆx, ŷ) = ψ(x, y) (x, y). Note that (ˆx, ŷ) = (δx + ka/2, εy + lb/2) by (0.1). We will repeatedly invoke the following obvious fact: (0.3) p q c whenever p and q lie in a closed interval of length c, with equality only if p and q are the endpoints. In Example 2, Q = [0, a/2] [0, b/2]. Thus, 2x/a and k + 2δx/a lie in [0, 1], while k is even by (0.2.ii), and so (0.3) gives k = 0. Therefore ˆx = x (as δ = 1 unless x = 0. The resulting relation y ŷ = y + lb/2 (with ε = 1, cf. (0.2.ii)) means that l 0, while 2y/b and l + 2y/b lie in [0, 1]. Our claim about Example 2 is now obvious from (0.3).

4 4 In Examples 1, 4, 5, 7, our assumption that Q = [0, a/4] [ b/2, b/2] contains both (x, y) and (ˆx, ŷ) (x, y) has an immediate consequence: (0.4) ˆx = x, and (δ, k) = (1, 0) or (δ, k, x) = ( 1, 0, 0) or (δ, k, x) = ( 1, 1, a/4). (Namely, both 4x/a and 2k + 4δx/a lie in [0, 1], and so, due to (0.3), k = 0 if δ = 1, while the case δ = 1 allows just two possibilities: (x, k) = (0, 0) or (x, k) = (a/4, 1)).) The relation (x, y) (ˆx, ŷ) must thus be realized by the y components, that is, y and εy + lb/2 are two different numbers in [ b/2, b/2] or, equivalently, (0.5) 2y/b is different from l + 2εy/b and both lie in [ 1, 1], while 2 l 2, the last conclusion being obvious from (0.3). First, if l = 2, (0.3) yields the case mentioned in the second paragraph of the lemma. We may therefore assume from now on that l 1. Next, suppose that l = 0, and so ε = 1 by (0.5). In view of (0.2.iv), this excludes Example 5. In the remaining Examples 1, 4 and 7, (0.2) gives ( 1) k δ = 1 which, combined with (0.4) and (0.1), shows that ˆx = x = 0 and ŷ = y. Hence (a) follows. Finally, let l = 1, so that (0.2) excludes Example 1, and implies oddness of k in Examples 4, 5, 7. Thus, by (0.4), (δ, k, x) = ( 1, 1, a/4), while (0.2) provides a specific value of ε in each case. Using (0.4) and (0.1) again, we obtain (b), (c), (d) or (e). We refer to a set as a triangle if it has a fixed bijectrive identification with a Euclidean triangle. A nonempty set Σ will be called a triangulated compact surface if it is a union of finitely many such triangles, any two of which, if different and non-disjoint, intersect along a common edge, while any edge can be shared by no more than two of the triangles. With the vertices removed, Σ then becomes a flat C Riemannian manifold, the Riemannian metric and the manifold structure being extended across the edges in the obvious way. Any given Σ as above may or may not admit an embedding in a Euclidean space, isometric on each of its triangles. Even if it does, speaking of isometries involving Σ we will always mean its intrinsic metric rather than the Euclidean distance restricted to Σ. Remark 0.5. Let Σ be the triangulated compact surface obtained from four mutually isometric Euclidean isosceles triangles by gluing them along edges so as to obtain a tetrahedron. Clearly, Σ can be realized in a Euclidean 3-space (or, any inner-product space) if and only if the vertex angle θ of its triangles is less than π/2. (When θ π/2, the long-base edge joining two verices is not, or not the only, shortest path joining them, as another such path joins the two vertices to the midpoints of their opposite bases.) Remark 0.6. The translational identification of two parallel sides in a Euclidean rectangle obviously gives rise to a cylinder with a flat (product) Riemannian metric. Remark 0.7. If, in Remark 0.6, the two halves of one of remaining sides are additionally glued together with the aid of a translation, the resulting quotient space is a Möbius strip

5 with boundary, carrying a (smooth) flat Riemannian metric. In fact, up to an isometry, the cylinder of Remark 0.6 may be treated as the surface S r [0, q] C IR, for the circle S r = {z C : z = r} and some r, q (0, ), the additional gluing taking place between (z, 0) and ( z, 0). The quotient is clearly the same as that of S r [ q, q] under the free isometric action of Z 2 genertated by (z, t) ( z, t) (which yields the required flat metric), but also arises from the standard Möbius-strip identifications (r, t) ( r, t) in the subset S + r [ q, q], where S + r = {z S r : Re z 0}. 5

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Changes or additions made in the past twelve months are dated. Page 29, statement of Lemma 2.11: The

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Periodic geodesics on translation surfaces

Periodic geodesics on translation surfaces Periodic geodesics on translation surfaces Yaroslav Vorobets 1 Introduction Let M be a compact connected oriented surface. The surface M is called a translation surface if it is equipped with a translation

More information

Note: all spaces are assumed to be path connected and locally path connected.

Note: all spaces are assumed to be path connected and locally path connected. Homework 2 Note: all spaces are assumed to be path connected and locally path connected. 1: Let X be the figure 8 space. Precisely define a space X and a map p : X X which is the universal cover. Check

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

PICARD S THEOREM STEFAN FRIEDL

PICARD S THEOREM STEFAN FRIEDL PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A

More information

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU 1. Introduction These are notes to that show

More information

Discrete groups and the thick thin decomposition

Discrete groups and the thick thin decomposition CHAPTER 5 Discrete groups and the thick thin decomposition Suppose we have a complete hyperbolic structure on an orientable 3-manifold. Then the developing map D : M H 3 is a covering map, by theorem 3.19.

More information

Cutting and pasting. 2 in R. 3 which are not even topologically

Cutting and pasting. 2 in R. 3 which are not even topologically Cutting and pasting We begin by quoting the following description appearing on page 55 of C. T. C. Wall s 1960 1961 Differential Topology notes, which available are online at http://www.maths.ed.ac.uk/~aar/surgery/wall.pdf.

More information

Partial cubes: structures, characterizations, and constructions

Partial cubes: structures, characterizations, and constructions Partial cubes: structures, characterizations, and constructions Sergei Ovchinnikov San Francisco State University, Mathematics Department, 1600 Holloway Ave., San Francisco, CA 94132 Abstract Partial cubes

More information

7.3 Singular Homology Groups

7.3 Singular Homology Groups 184 CHAPTER 7. HOMOLOGY THEORY 7.3 Singular Homology Groups 7.3.1 Cycles, Boundaries and Homology Groups We can define the singular p-chains with coefficients in a field K. Furthermore, we can define the

More information

Fibre Bundles: Trivial or Not?

Fibre Bundles: Trivial or Not? Rijksuniversiteit Groningen Bachelor thesis in mathematics Fibre Bundles: Trivial or Not? Timon Sytse van der Berg Prof. Dr. Henk W. Broer (first supervisor) Prof. Dr. Jaap Top (second supervisor) July

More information

Assignment 6; Due Friday, February 24

Assignment 6; Due Friday, February 24 Assignment 6; Due Friday, February 24 The Fundamental Group of the Circle Theorem 1 Let γ : I S 1 be a path starting at 1. This path can be lifted to a path γ : I R starting at 0. Proof: Find a covering

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Kähler configurations of points

Kähler configurations of points Kähler configurations of points Simon Salamon Oxford, 22 May 2017 The Hesse configuration 1/24 Let ω = e 2πi/3. Consider the nine points [0, 1, 1] [0, 1, ω] [0, 1, ω 2 ] [1, 0, 1] [1, 0, ω] [1, 0, ω 2

More information

LECTURE 10: THE PARALLEL TRANSPORT

LECTURE 10: THE PARALLEL TRANSPORT LECTURE 10: THE PARALLEL TRANSPORT 1. The parallel transport We shall start with the geometric meaning of linear connections. Suppose M is a smooth manifold with a linear connection. Let γ : [a, b] M be

More information

(1) Let π Ui : U i R k U i be the natural projection. Then π π 1 (U i ) = π i τ i. In other words, we have the following commutative diagram: U i R k

(1) Let π Ui : U i R k U i be the natural projection. Then π π 1 (U i ) = π i τ i. In other words, we have the following commutative diagram: U i R k 1. Vector Bundles Convention: All manifolds here are Hausdorff and paracompact. To make our life easier, we will assume that all topological spaces are homeomorphic to CW complexes unless stated otherwise.

More information

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS by J. Szenthe Abstract. In case of Riemannian manifolds isometric actions admitting submanifolds

More information

Lecture 6 SPHERICAL GEOMETRY

Lecture 6 SPHERICAL GEOMETRY 1 Lecture 6 SPHERICAL GEOMETRY So far we have studied finite and discrete geometries, i.e., geometries in which the main transformation group is either finite or discrete. In this lecture, we begin our

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS Key Problems 1. Compute π 1 of the Mobius strip. Solution (Spencer Gerhardt): MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS In other words, M = I I/(s, 0) (1 s, 1). Let x 0 = ( 1 2, 0). Now

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

arxiv: v1 [math.dg] 12 Jun 2018

arxiv: v1 [math.dg] 12 Jun 2018 ON INFINITELY GENERATED FUCHSIAN GROUPS OF SOME INFINITE GENUS SURFACES JOHN A ARREDONDO AND CAMILO RAMÍREZ MALUENDAS arxiv:80604492v mathdg 2 Jun 208 ABSTRACT In this paper for a non compact and orientable

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold.

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold. Recollections from finite group theory. The notion of a group acting on a set is extremely useful. Indeed, the whole of group theory arose through this route. As an example of the abstract power of this

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

MATH8808: ALGEBRAIC TOPOLOGY

MATH8808: ALGEBRAIC TOPOLOGY MATH8808: ALGEBRAIC TOPOLOGY DAWEI CHEN Contents 1. Underlying Geometric Notions 2 1.1. Homotopy 2 1.2. Cell Complexes 3 1.3. Operations on Cell Complexes 3 1.4. Criteria for Homotopy Equivalence 4 1.5.

More information

class # MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS

class # MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS class # 34477 MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS [DG] stands for Differential Geometry at https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf [DFT]

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

REGULAR TRIPLETS IN COMPACT SYMMETRIC SPACES

REGULAR TRIPLETS IN COMPACT SYMMETRIC SPACES REGULAR TRIPLETS IN COMPACT SYMMETRIC SPACES MAKIKO SUMI TANAKA 1. Introduction This article is based on the collaboration with Tadashi Nagano. In the first part of this article we briefly review basic

More information

The Minimal Element Theorem

The Minimal Element Theorem The Minimal Element Theorem The CMC Dynamics Theorem deals with describing all of the periodic or repeated geometric behavior of a properly embedded CMC surface with bounded second fundamental form in

More information

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Zdeněk Dvořák Daniel Král Robin Thomas Abstract We show that the size of a 4-critical graph of girth at least five is bounded by

More information

A PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE FROM THE ACTION ON THE COMPLEX OF CURVES

A PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE FROM THE ACTION ON THE COMPLEX OF CURVES Szepietowski, B. Osaka J. Math. 45 (008), 83 36 A PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE FROM THE ACTION ON THE COMPLEX OF CURVES BŁAŻEJ SZEPIETOWSKI (Received June 30, 006,

More information

Contents. 1. Introduction

Contents. 1. Introduction DIASTOLIC INEQUALITIES AND ISOPERIMETRIC INEQUALITIES ON SURFACES FLORENT BALACHEFF AND STÉPHANE SABOURAU Abstract. We prove a new type of universal inequality between the diastole, defined using a minimax

More information

Commensurability between once-punctured torus groups and once-punctured Klein bottle groups

Commensurability between once-punctured torus groups and once-punctured Klein bottle groups Hiroshima Math. J. 00 (0000), 1 34 Commensurability between once-punctured torus groups and once-punctured Klein bottle groups Mikio Furokawa (Received Xxx 00, 0000) Abstract. The once-punctured torus

More information

Math 215B: Solutions 3

Math 215B: Solutions 3 Math 215B: Solutions 3 (1) For this problem you may assume the classification of smooth one-dimensional manifolds: Any compact smooth one-dimensional manifold is diffeomorphic to a finite disjoint union

More information

1 Spaces and operations Continuity and metric spaces Topological spaces Compactness... 3

1 Spaces and operations Continuity and metric spaces Topological spaces Compactness... 3 Compact course notes Topology I Fall 2011 Professor: A. Penskoi transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Spaces and operations 2 1.1 Continuity and metric

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Holomorphic line bundles

Holomorphic line bundles Chapter 2 Holomorphic line bundles In the absence of non-constant holomorphic functions X! C on a compact complex manifold, we turn to the next best thing, holomorphic sections of line bundles (i.e., rank

More information

NOTES FOR MATH 5520, SPRING Outline

NOTES FOR MATH 5520, SPRING Outline NOTES FOR MATH 5520, SPRING 2011 DOMINGO TOLEDO 1. Outline This will be a course on the topology and geometry of surfaces. This is a continuation of Math 4510, and we will often refer to the notes for

More information

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture:

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture: Samuel Lee Algebraic Topology Homework #6 May 11, 2016 Problem 1: ( 2.1: #1). What familiar space is the quotient -complex of a 2-simplex [v 0, v 1, v 2 ] obtained by identifying the edges [v 0, v 1 ]

More information

Handlebody Decomposition of a Manifold

Handlebody Decomposition of a Manifold Handlebody Decomposition of a Manifold Mahuya Datta Statistics and Mathematics Unit Indian Statistical Institute, Kolkata mahuya@isical.ac.in January 12, 2012 contents Introduction What is a handlebody

More information

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2 Transversality Abhishek Khetan December 13, 2017 Contents 1 Basics 1 2 The Transversality Theorem 1 3 Transversality and Homotopy 2 4 Intersection Number Mod 2 4 5 Degree Mod 2 4 1 Basics Definition. Let

More information

Topological properties of Z p and Q p and Euclidean models

Topological properties of Z p and Q p and Euclidean models Topological properties of Z p and Q p and Euclidean models Samuel Trautwein, Esther Röder, Giorgio Barozzi November 3, 20 Topology of Q p vs Topology of R Both R and Q p are normed fields and complete

More information

Killing Vector Fields of Constant Length on Riemannian Normal Homogeneous Spaces

Killing Vector Fields of Constant Length on Riemannian Normal Homogeneous Spaces Killing Vector Fields of Constant Length on Riemannian Normal Homogeneous Spaces Ming Xu & Joseph A. Wolf Abstract Killing vector fields of constant length correspond to isometries of constant displacement.

More information

MATH 223A NOTES 2011 LIE ALGEBRAS 35

MATH 223A NOTES 2011 LIE ALGEBRAS 35 MATH 3A NOTES 011 LIE ALGEBRAS 35 9. Abstract root systems We now attempt to reconstruct the Lie algebra based only on the information given by the set of roots Φ which is embedded in Euclidean space E.

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

General Topology. Summer Term Michael Kunzinger

General Topology. Summer Term Michael Kunzinger General Topology Summer Term 2016 Michael Kunzinger michael.kunzinger@univie.ac.at Universität Wien Fakultät für Mathematik Oskar-Morgenstern-Platz 1 A-1090 Wien Preface These are lecture notes for a

More information

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p.

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p. 13. Riemann surfaces Definition 13.1. Let X be a topological space. We say that X is a topological manifold, if (1) X is Hausdorff, (2) X is 2nd countable (that is, there is a base for the topology which

More information

4.7 The Levi-Civita connection and parallel transport

4.7 The Levi-Civita connection and parallel transport Classnotes: Geometry & Control of Dynamical Systems, M. Kawski. April 21, 2009 138 4.7 The Levi-Civita connection and parallel transport In the earlier investigation, characterizing the shortest curves

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

Covering Invariants and Cohopficity of 3-manifold Groups

Covering Invariants and Cohopficity of 3-manifold Groups Covering Invariants and Cohopficity of 3-manifold Groups Shicheng Wang 1 and Ying-Qing Wu 2 Abstract A 3-manifold M is called to have property C if the degrees of finite coverings over M are determined

More information

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS DIFFERENTIAL GEOMETRY PROBLEM SET SOLUTIONS Lee: -4,--5,-6,-7 Problem -4: If k is an integer between 0 and min m, n, show that the set of m n matrices whose rank is at least k is an open submanifold of

More information

121B: ALGEBRAIC TOPOLOGY. Contents. 6. Poincaré Duality

121B: ALGEBRAIC TOPOLOGY. Contents. 6. Poincaré Duality 121B: ALGEBRAIC TOPOLOGY Contents 6. Poincaré Duality 1 6.1. Manifolds 2 6.2. Orientation 3 6.3. Orientation sheaf 9 6.4. Cap product 11 6.5. Proof for good coverings 15 6.6. Direct limit 18 6.7. Proof

More information

1 Compact Riemann surfaces and algebraic curves

1 Compact Riemann surfaces and algebraic curves 1 Compact Riemann surfaces and algebraic curves 1.1 Basic definitions 1.1.1 Riemann surfaces examples Definition 1.1 A topological surface X is a Hausdorff topological space provided with a collection

More information

LECTURE 16: CONJUGATE AND CUT POINTS

LECTURE 16: CONJUGATE AND CUT POINTS LECTURE 16: CONJUGATE AND CUT POINTS 1. Conjugate Points Let (M, g) be Riemannian and γ : [a, b] M a geodesic. Then by definition, exp p ((t a) γ(a)) = γ(t). We know that exp p is a diffeomorphism near

More information

CW-complexes. Stephen A. Mitchell. November 1997

CW-complexes. Stephen A. Mitchell. November 1997 CW-complexes Stephen A. Mitchell November 1997 A CW-complex is first of all a Hausdorff space X equipped with a collection of characteristic maps φ n α : D n X. Here n ranges over the nonnegative integers,

More information

δ-hyperbolic SPACES SIDDHARTHA GADGIL

δ-hyperbolic SPACES SIDDHARTHA GADGIL δ-hyperbolic SPACES SIDDHARTHA GADGIL Abstract. These are notes for the Chennai TMGT conference on δ-hyperbolic spaces corresponding to chapter III.H in the book of Bridson and Haefliger. When viewed from

More information

SIMPLICIAL COMPLEXES WITH LATTICE STRUCTURES GEORGE M. BERGMAN

SIMPLICIAL COMPLEXES WITH LATTICE STRUCTURES GEORGE M. BERGMAN This is the final preprint version of a paper which appeared at Algebraic & Geometric Topology 17 (2017) 439-486. The published version is accessible to subscribers at http://dx.doi.org/10.2140/agt.2017.17.439

More information

Cobordant differentiable manifolds

Cobordant differentiable manifolds Variétés différentiables cobordant, Colloque Int. du C. N. R. S., v. LII, Géométrie différentielle, Strasbourg (1953), pp. 143-149. Cobordant differentiable manifolds By R. THOM (Strasbourg) Translated

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Math 215a Homework #1 Solutions. π 1 (X, x 1 ) β h

Math 215a Homework #1 Solutions. π 1 (X, x 1 ) β h Math 215a Homework #1 Solutions 1. (a) Let g and h be two paths from x 0 to x 1. Then the composition sends π 1 (X, x 0 ) β g π 1 (X, x 1 ) β h π 1 (X, x 0 ) [f] [h g f g h] = [h g][f][h g] 1. So β g =

More information

Chapter One. Affine Coxeter Diagrams

Chapter One. Affine Coxeter Diagrams Chapter One Affine Coxeter Diagrams By the results summarized in Chapter VI, Section 43, of [3], affine Coxeter groups can be characterized as groups generated by reflections of an affine space (by which

More information

UNIVERSAL DERIVED EQUIVALENCES OF POSETS

UNIVERSAL DERIVED EQUIVALENCES OF POSETS UNIVERSAL DERIVED EQUIVALENCES OF POSETS SEFI LADKANI Abstract. By using only combinatorial data on two posets X and Y, we construct a set of so-called formulas. A formula produces simultaneously, for

More information

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher On the Diffeomorphism Group of S 1 S 2 Allen Hatcher This is a revision, written in December 2003, of a paper of the same title that appeared in the Proceedings of the AMS 83 (1981), 427-430. The main

More information

Billiards With Pockets: A Separation Principle and Bound for the Number of Orbit Types

Billiards With Pockets: A Separation Principle and Bound for the Number of Orbit Types Commun. Math. Phys., (2002) Communications in Digital Object Identifier (DOI) 10.1007/s00220-002-0696-1 Mathematical Physics Billiards With Pockets: A Separation Principle and Bound for the Number of Orbit

More information

DISCRETE SUBGROUPS, LATTICES, AND UNITS.

DISCRETE SUBGROUPS, LATTICES, AND UNITS. DISCRETE SUBGROUPS, LATTICES, AND UNITS. IAN KIMING 1. Discrete subgroups of real vector spaces and lattices. Definitions: A lattice in a real vector space V of dimension d is a subgroup of form: Zv 1

More information

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 An introduction to arithmetic groups Lizhen Ji CMS, Zhejiang University Hangzhou 310027, China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 June 27, 2006 Plan. 1. Examples of arithmetic groups

More information

BOUNDARY AND LENS RIGIDITY OF FINITE QUOTIENTS

BOUNDARY AND LENS RIGIDITY OF FINITE QUOTIENTS BOUNDARY AND LENS RIGIDITY OF FINITE QUOTIENTS CHRISTOPHER CROKE + Abstract. We consider compact Riemannian manifolds (M, M, g) with boundary M and metric g on which a finite group Γ acts freely. We determine

More information

6. Constructing hyperbolic manifolds

6. Constructing hyperbolic manifolds 6. Constructing hyperbolic manifolds Recall that a hyperbolic manifold is a (G, X)-manifold, where X is H n and G = Isom(H n ). Since G is a group of Riemannian isometries, G acts rigidly. Hence, the pseudogroup

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 14, 2011 Problem: Let Z = {a G ax = xa, x G} be the center of a group G. Prove that Z is a normal subgroup of G. Solution: First we prove Z is

More information

Exercises for Algebraic Topology

Exercises for Algebraic Topology Sheet 1, September 13, 2017 Definition. Let A be an abelian group and let M be a set. The A-linearization of M is the set A[M] = {f : M A f 1 (A \ {0}) is finite}. We view A[M] as an abelian group via

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

2.5 Excision implies Simplicial = Singular homology

2.5 Excision implies Simplicial = Singular homology 2.5 Excision implies Simplicial = Singular homology 1300Y Geometry and Topology 2.5 Excision implies Simplicial = Singular homology Recall that simplicial homology was defined in terms of a -complex decomposition

More information

Winter Braids Lecture Notes

Winter Braids Lecture Notes Winter Braids Lecture Notes Luis Paris Mapping class groups of non-orientable surfaces for beginners Vol. 1 (2014), Course n o III, p. 1-17. cedram Texte

More information

THE VOLUME OF A HYPERBOLIC 3-MANIFOLD WITH BETTI NUMBER 2. Marc Culler and Peter B. Shalen. University of Illinois at Chicago

THE VOLUME OF A HYPERBOLIC 3-MANIFOLD WITH BETTI NUMBER 2. Marc Culler and Peter B. Shalen. University of Illinois at Chicago THE VOLUME OF A HYPERBOLIC -MANIFOLD WITH BETTI NUMBER 2 Marc Culler and Peter B. Shalen University of Illinois at Chicago Abstract. If M is a closed orientable hyperbolic -manifold with first Betti number

More information

ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE I

ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE I Li, L., Ohshika, K. and Wang, X. Osaka J. Math. 46 (2009), 1097 1141 ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE I LIULAN LI, KEN ICHI OHSHIKA and XIANTAO WANG (Received August 21, 2007, revised August

More information

Linear Algebra I. Ronald van Luijk, 2015

Linear Algebra I. Ronald van Luijk, 2015 Linear Algebra I Ronald van Luijk, 2015 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents Dependencies among sections 3 Chapter 1. Euclidean space: lines and hyperplanes 5 1.1. Definition

More information

Euler Characteristic of Two-Dimensional Manifolds

Euler Characteristic of Two-Dimensional Manifolds Euler Characteristic of Two-Dimensional Manifolds M. Hafiz Khusyairi August 2008 In this work we will discuss an important notion from topology, namely Euler Characteristic and we will discuss several

More information

MATH5011 Real Analysis I. Exercise 1 Suggested Solution

MATH5011 Real Analysis I. Exercise 1 Suggested Solution MATH5011 Real Analysis I Exercise 1 Suggested Solution Notations in the notes are used. (1) Show that every open set in R can be written as a countable union of mutually disjoint open intervals. Hint:

More information

Neighbourhoods of Randomness and Independence

Neighbourhoods of Randomness and Independence Neighbourhoods of Randomness and Independence C.T.J. Dodson School of Mathematics, Manchester University Augment information geometric measures in spaces of distributions, via explicit geometric representations

More information

Math 215B: Solutions 1

Math 215B: Solutions 1 Math 15B: Solutions 1 Due Thursday, January 18, 018 (1) Let π : X X be a covering space. Let Φ be a smooth structure on X. Prove that there is a smooth structure Φ on X so that π : ( X, Φ) (X, Φ) is an

More information

Solutions to homework problems

Solutions to homework problems Solutions to homework problems November 25, 2015 Contents 1 Homework Assignment # 1 1 2 Homework assignment #2 6 3 Homework Assignment # 3 9 4 Homework Assignment # 4 14 5 Homework Assignment # 5 20 6

More information

Initial-Value Problems in General Relativity

Initial-Value Problems in General Relativity Initial-Value Problems in General Relativity Michael Horbatsch March 30, 2006 1 Introduction In this paper the initial-value formulation of general relativity is reviewed. In section (2) domains of dependence,

More information

Exercises for Unit V (Introduction to non Euclidean geometry)

Exercises for Unit V (Introduction to non Euclidean geometry) Exercises for Unit V (Introduction to non Euclidean geometry) V.1 : Facts from spherical geometry Ryan : pp. 84 123 [ Note : Hints for the first two exercises are given in math133f07update08.pdf. ] 1.

More information

DIFFERENTIAL GEOMETRY. LECTURE 12-13,

DIFFERENTIAL GEOMETRY. LECTURE 12-13, DIFFERENTIAL GEOMETRY. LECTURE 12-13, 3.07.08 5. Riemannian metrics. Examples. Connections 5.1. Length of a curve. Let γ : [a, b] R n be a parametried curve. Its length can be calculated as the limit of

More information

A Crash Course in Topological Groups

A Crash Course in Topological Groups A Crash Course in Topological Groups Iian B. Smythe Department of Mathematics Cornell University Olivetti Club November 8, 2011 Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 1 / 28 Outline 1

More information

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013 Smooth Dynamics 2 Problem Set Nr. 1 University of Chicago Winter 2013 Instructor: Submitted by: Prof. Wilkinson Clark Butler Problem 1 Let M be a Riemannian manifold with metric, and Levi-Civita connection.

More information

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009 [under construction] 8 Parallel transport 8.1 Equation of parallel transport Consider a vector bundle E B. We would like to compare vectors belonging to fibers over different points. Recall that this was

More information

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and Mostow Rigidity W. Dison June 17, 2005 0 Introduction Lie Groups and Symmetric Spaces We will be concerned with (a) semi-simple Lie groups with trivial centre and no compact factors and (b) simply connected,

More information

arxiv: v1 [math.dg] 25 Jan 2016

arxiv: v1 [math.dg] 25 Jan 2016 April 15, 2018 Embeddedness of spheres in homogeneous three-manifolds William H. Meeks III, Pablo Mira, and Joaquín Pérez arxiv:1601.06619v1 [math.dg] 25 Jan 2016 ABSTRACT. Let X denote a metric Lie group

More information

arxiv: v2 [math.mg] 18 Sep 2018

arxiv: v2 [math.mg] 18 Sep 2018 Farthest points on flat surfaces arxiv:1807.03507v2 [math.mg] 18 Sep 2018 1 Introduction Joël Rouyer Costin Vîlcu September 19, 2018 This note is an elementary example of the reciprocal influence between

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8 LECTURE 11: SYMPLECTIC TORIC MANIFOLDS Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8 1. Symplectic toric manifolds Orbit of torus actions. Recall that in lecture 9

More information