Supporting Information for

Size: px
Start display at page:

Download "Supporting Information for"

Transcription

1 Supporting Information for Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer Kun Zheng,,+ Fangyuan Sun,,+ Jie Zhu, *,, Yongmei Ma, *, Xiaobo Li, Dawei Tang, Fosong Wang, Xiaojia Wang S-1

2 1. Ellipsometry of silane layer on silicon As shown in Figure S1, the thicknesses of the silane layers on silicon ranges from 0.7 to 1.0 nm, which is consist with the thickness of mono layer reported in literatures, 1-3 indicating the monolayer SAMs of our samples had been formed. Figure S1. The ellipsometric signals and their best fits for silane layers. The obtained thicknesses are listed under each plot. 2. TDTR measurements and uncertainty analysis Time-domain thermoreflectance (TDTR) method is used to measure the thermal conductivities and interfacial thermal conductance of all the samples involved in this paper. TDTR method is a well-accepted pump-probe measurement technique for characterizing thermal properties of bulk and thin film materials. During the measurement, sample surface is heated by a serial of pump laser pulses and the surface temperature is monitored with picosecond resolution based on thermoreflectance phenomenon. The pump pulses are modulated at 1 MHz with an S-2

3 electro-optic modulator. A lock-in amplifier is used to detect the intensity change of the reflected probe beam. The ratio of the in-plane to out-of-plane signal (-V in /V out ) is fitted to a thermal diffusion model to extract unknown thermal properties. Usually, one or two unknown parameters can be obtained if all the other parameters are known accurately. For our system, a ~100 nm Al film is deposited on the top of the samples as a transducer layer, which heat the sample surface by converting the absorbed pump laser energy and monitor the surface temperature due to the reflectivity change with the temperature. Since acoustic waves travel at a few nanometers per picosecond, the depth resolution of TDTR is approximately the same as the SAM thickness (~1 nm). Thus, we treat the SAM layer as an abrupt interface in the thermal model and its conductance is assumed to be the interfacial thermal conductance (G) at the PS/sapphire interface. To extract the interfacial thermal conductance between PS and sapphire, the thickness, thermal conductivity, and heat capacity for all other layers and must be known. The heat capacity for Al, 4 PS 5 and sapphire 6 is taken from literature values. The thickness of Al transducer layer is measured by AFM, and TDTR acoustic echo method and the thickness of PS films is measured by ellipsometry, please refer to thickness measurement part in this SI for further information. All the thermal conductivities and interfacial thermal conductance of the samples are measured by TDTR method. We summarize the modeling parameters in Table S1, and the superscript number represent the thermal property extract order. S-3

4 Table S1: Parameters used in thermal conductivity model to fit TDTR data. Al transducer layer Layer thickness (d) Measured by AFM/TDTR Thermal conductivity or interfacial thermal conductance (k or G) Heat capacity (C p ) Four probe type measurement J/cm 3 K Al/PS interface - Fitting parameter 3 - PS PS/SAM/Sapphire interface Measured by ellipsometry Fitting parameter J/cm 3 K - Fitting parameter 4 - Sapphire Semi-infinite Fitting parameter J/cm 3 K 2.1 Thickness of Al transducer layer TDTR signals usually contain information beyond thermal properties, such as the acoustic echoes generated by stress pulses induced in the metal film by the laser pulse. When the reflected pulses reach the surface of the Al, they produce a bump in the signal, and if the pulse makes multiple trips through the film then multiple echo bumps will be visible in the signal. Figure S2 shows the acoustic echoes in a 100 nm Al film on one of the samples. Each echo results from the sound pulse making one round trip through the Al film, and so the film thickness can be determined from: = (S1) where is the film thickness, is the time between echoes and is the longitudinal sound speed in the medium, 7-9 which is 6260 m/s for Al. The typical S-4

5 TDTR signals contains picosecond acoustic echoes are shown in Figure S2 where the averaged is ps, thus the calculated Al thickness is nm for this transducer layer. All the Al thicknesses are measured by TDTR picosecond acoustic echo method, and used in the TDTR data fitting process. As shown in Figure S3, the discrepancy of the thicknesses obtained from AFM and TDTR picosecond acoustic echo methods is within 2 nm. Figure S2. Measurement of the round-trip time of a sound pulse in an Al film on PS sample. Figure S3 Al transducer thicknesses measured by both AFM and picosecond acoustic methods S-5

6 2.2 Thermal conductivity of Al transducer layer In-plane electrical conductivity of the Al transducer layer is measured by 4-point probes method and then used to calculate the thermal conductivity by the Wiedemann-Franz law. And this thermal conductivity is considered as the know parameter in the following TDTR fitting process. 2.3 Thermal conductivity of sapphire substrate An Al/sapphire sample is used to measure the thermal conductivity of the sapphire substrate. In this step, the thermal conductivity of sapphire substrate and the interfacial thermal conductance is the fitting parameter. The measured thermal conductivity is about 35.5 W m -1 K -1 and used in the following TDTR fitting process as a known parameter. 2.4 Thermal conductivity of PS and interfacial thermal conductance of Al/PS interface In order to calibrate the thermal conductivity of PS films and the ITC of Al/PS, thicker PS films are good references since the PS/sapphire ITC will not affect the measurement signal significantly enough. On the other hand, since the thermal penetration depth decreases with increased modulation frequency in TDTR, we do the measurements and analysis at 8 MHz to achieve a relatively smaller thermal S-6

7 penetration depth (~60 nm). Figure S4 shows the maximum sensitivity (This maximum sensitivity is the peak value during the entire delay time between 200 ps to 4 ns in our TDTR measurements.) of interfacial thermal conductance as a function of PS thicknesses. Both the sensitivities of Al/PS and PS/sapphire interfaces decrease with the increase of the PS thickness, and maintain a constant when the PS is thicker than ~200 nm. In addition, the sensitivity of PS/sapphire interface drops to zero after ~200 nm, which mean the excitation heat cannot reach the interface and the PS can be considered as a bulk substrate without significant error. A series of Al/PS/sapphire (without SAMs) samples with the thickness of PS films between 50 and 500 nm have been prepared, and several samples with PS thickness between 250 and 500 nm are measured to extract the PS thermal conductivity and Al/PS interfacial thermal conductance. The result shows that the PS thermal conductivity falls into a narrow range between 0.14 to 0.16 W m -1 K -1 and the Al/PS interfacial thermal conductance falls into a narrow range between 18 to 20 MW/m 2 K. Since the PS thermal conductivity is nearly constant when thicker than its radius gyration (~7 nm in the this work), 10 which means all the samples used in this paper has almost the same PS thermal conductivity. We take the average value for PS thermal conductivity (0.15 W m -1 K -1 ) and Al/PS interfacial thermal conductance (20 MW m -2 K -1 ) as known parameters in the data analysis for other measurements. S-7

8 Figure S4. -V in /V out signal sensitivity for an Al/PS/sapphire sample. The blue line and the green line represent the interfacial thermal conductance sensitivity of the Al/PS and PS/sapphire ITC, respectively. 2.5 Interfacial thermal conductance of PS/SAM/sapphire interface Now in the thermal modeling, all the parameters except the PS/SAM/sapphire ITC are known after step 1. To achieve a higher sensitivity, we are seeking an optimized modulation frequency with the highest signal sensitivity to the PS/SAM/sapphire ITC. Figure S5. -V in /V out signal sensitivity for an Al/PS/SAM/sapphire sample, ITC Al/PS = 20 MW m -2 K -1 and ITC PS/sapphire = 30 MW m -2 K -1 are used in the calculation here. The blue line represent the interfacial thermal conductance sensitivity of the PS/SAM/sapphire interface. As shown in Figure S5, the calculated sensitivity to PS/SAM/sapphire ITC (at 2 S-8

9 ns delay time) reaches its highest value around 1 MHz, which is thus applied in this step for the ITC measurement of PS/SAM/sapphire. 2.6 Uncertainty analysis The largest uncertainty source of the experiments comes from the Al thickness, PS thickness and Al thermal conductivity. As shown in Figure S6, we exam the relative error of PS/sapphire interfacial thermal conductance caused by these parameters, and the results shows that the relative errors increase with the PS/sapphire interfacial thermal conductance and the uncertainty of Al thermal conductivity is the main error source. We calculate the total relative error by propagation of uncertainty which is between 5.1% and 26.4%. Figure S6. Relative error of PS/sapphire interfacial thermal conductance considering the uncertainty of Al thickness, PS thickness and Al thermal conductivity. TDTR measurements are repeated 3 times on difference locations for each sample and the results are average to remove the uncertainty comes from the uniformity of the interfaces and surfaces of the samples. S-9

10 Reference: (1) Luzinov, I.; Julthongpiput, D.; Liebmann-Vinson, A.; Cregger, T.; Foster, M. D.; Tsukruk, V. V. Epoxy-Terminated Self-Assembled Monolayers: Molecular Glues for Polymer Layers. Langmuir 2000, 16, (2) Lee, M. H.; Brass, D. A.; Morris, R.; Composto, R. J.; Ducheyne, P. The Effect of non-specific Interactions on Cellular Adhesion Using Model Surfaces. Biomaterials 2005, 26, (3) Siqueira Petri, D. F.; Wenz, G.; Schunk, P.; Schimmel, T. An improved Method for the Assembly of Amino-Terminated Monolayers on SiO 2 and the Vapor Deposition of Gold Layers. Langmuir 1999, 15, (4) Shackelford, J. F.; Alexander, W. Thermal Properties of Materials. In Materials Science and Engineering Handbook; CRC Press LLC: Boca Raton, FL, 2001; pp 398. (5) Wen, J. Heat Capacities of Polymer. In Physical Properties of Polymers Handbook; Mark, J. E., Eds.; Springer: New York, 2007; pp 147. (6) Archer, D. G. Thermodynamic Properties of Synthetic Sapphire (α-al 2 O 3 ), Standard Reference Material 720 and the Effect of Temperature-Scale Differences on Thermodynamic Properties. J. Phys. Chem. Ref. Data 1993, 22, (7) Rethfeld, B.; Kaiser, A.; Vicanek, M.; Simon, G. Femtosecond Laser-Induced Heating of Electron Gas in Aluminium. Appl. Phys. A-Mater 1999, 69, S109-S112. (8) Thomsen, C.; Grahn, H. T.; Maris, H. J.; Tauc, J. Surface Generation and Detection of Phonons by Picosecond Light Pulses. Phys. Rev. B 1986, 34, (9) Hohensee, G. T.; Hsieh, W. P.; Losego, M. D.; Cahill, D. G. Interpreting Picosecond Acoustics in the Case of Low Interface Stiffness. Rev. Sci. Instrum. 2012, 83, (10) Liu, J.; Ju, S.; Ding, Y.; Yang, R. Size Effect on the Thermal Conductivity of Ultrathin Polystyrene Films. Appl. Phys. Lett. 2014, 104, S-10

Structure-Thermal Property Correlation of Aligned Silicon. Dioxide Nanorod Arrays

Structure-Thermal Property Correlation of Aligned Silicon. Dioxide Nanorod Arrays Supplementary Material for Structure-Thermal Property Correlation of Aligned Silicon Dioxide Nanorod Arrays S. Dynamic shadowing growth (DSG) technique Figure S depicts a schematic of the DSG setup. For

More information

Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2

Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2 Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2 crystal. The three polarizations (TL1 TL2 and TA) are named following the isoenergydecomposition process described

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. The effect of window size. The phonon MFP spectrum of intrinsic c-si (T=300 K) is shown for 7-point, 13-point, and 19-point windows. Increasing the window

More information

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin

More information

Electronic thermal transport in nanoscale metal layers

Electronic thermal transport in nanoscale metal layers Electronic thermal transport in nanoscale metal layers David Cahill, Richard Wilson, Wei Wang, Joseph Feser Department of Materials Science and Engineering Materials Research Laboratory University of Illinois

More information

Thermal conductance of weak and strong interfaces

Thermal conductance of weak and strong interfaces Thermal conductance of weak and strong interfaces David G. Cahill, Wen-Pin Hsieh, Mark Losego, Paul Braun, Dong-Wook Oh, Seok Kim, Eric Pop, Sanjiv Sinha, Paul Braun, and John Rogers Department of Materials

More information

Comparison of the 3ω method and time-domain

Comparison of the 3ω method and time-domain Comparison of the 3ω method and time-domain thermoreflectance David G. Cahill, Shawn Putnam, Yee Kan Koh Materials Research Lab and Department of Materials Science and Engineering, U. of Illinois, Urbana,

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Time-resolved magneto-optical Kerr effect for studies of phonon thermal transport

Time-resolved magneto-optical Kerr effect for studies of phonon thermal transport Time-resolved magneto-optical Kerr effect for studies of phonon thermal transport David G. Cahill, Jun Liu, Judith Kimling, Johannes Kimling, Department of Materials Science and Engineering University

More information

Effects of chemical bonding on heat transport across interfaces

Effects of chemical bonding on heat transport across interfaces Effects of chemical bonding on heat transport across interfaces Mark D. Losego 1,2*, Martha E. Grady 3, Nancy R. Sottos 1,2,3, David G. Cahill 1,3, and Paul V. Braun 1,2 1 Department of Materials Science

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

Phonon and Electron Transport through Ge 2 Sb 2 Te 5 Films and Interfaces Bounded by Metals

Phonon and Electron Transport through Ge 2 Sb 2 Te 5 Films and Interfaces Bounded by Metals Supporting Online Material for Phonon and Electron Transport through Ge 2 Sb 2 Te 5 Films and Interfaces Bounded by Metals Jaeho Lee 1, Elah Bozorg-Grayeli 1, SangBum Kim 2, Mehdi Asheghi 1, H.-S. Philip

More information

Plasmonic sensing of heat transport and phase change near solid-liquid interfaces

Plasmonic sensing of heat transport and phase change near solid-liquid interfaces Plasmonic sensing of heat transport and phase change near solid-liquid interfaces David G. Cahill and Jonglo Park Department of Materials Science and Engineering University of Illinois at Urbana-Champaign

More information

Characterization of ultrathin films by laser-induced sub-picosecond photoacoustics with coherent extreme ultraviolet detection

Characterization of ultrathin films by laser-induced sub-picosecond photoacoustics with coherent extreme ultraviolet detection Characterization of ultrathin films by laser-induced sub-picosecond photoacoustics with coherent extreme ultraviolet detection Qing Li 1, Kathleen Hoogeboom-Pot 1, Damiano Nardi 1, Chris Deeb 2, Sean King

More information

On the Steady-State Temperature Rise During Laser Heating of Multilayer Thin Films in Optical Pump Probe Techniques

On the Steady-State Temperature Rise During Laser Heating of Multilayer Thin Films in Optical Pump Probe Techniques Jeffrey L. Braun Department of Mechanical and Aerospace Engineering, Charlottesville, VA 22904 Chester J. Szwejkowski Department of Mechanical and Aerospace Engineering, Charlottesville, VA 22904 Ashutosh

More information

CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS. Vimal Deepchand.

CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS. Vimal Deepchand. CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS By Vimal Deepchand Thesis Submitted to the Faculty of the Graduate School of

More information

Ultrafast laser-based metrology for micron-scale measurements of thermal transport, coefficient of thermal expansion, and temperature

Ultrafast laser-based metrology for micron-scale measurements of thermal transport, coefficient of thermal expansion, and temperature Ultrafast laser-based metrology for micron-scale measurements of thermal transport, coefficient of thermal expansion, and temperature David G. Cahill, Xuan Zheng, Chang-Ki Min, Ji-Yong Park Materials Research

More information

Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus

Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus DOI: 10.1002/adma.201503466 Article type: Communication Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus Hyejin Jang, Joshua D. Wood, Christopher R. Ryder, Mark C. Hersam, and David G. Cahill*

More information

Simultaneous Measurement of Thermophysical and Mechanical Properties of Thin Films 1

Simultaneous Measurement of Thermophysical and Mechanical Properties of Thin Films 1 International Journal of Thermophysics, Vol. 19, No. 2, 1998 Simultaneous Measurement of Thermophysical and Mechanical Properties of Thin Films 1 J. L. Hosteller, 2 A. N. Smith, 2 and P. M. Morris 2,3

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Nanoscale thermal transport and the thermal conductance of interfaces

Nanoscale thermal transport and the thermal conductance of interfaces Nanoscale thermal transport and the thermal conductance of interfaces David G. Cahill Scott Huxtable, Zhenbin Ge, Paul Bruan Materials Research Laboratory and Department of Materials Science Zhaohui Wang,

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

Density Dependence of the Room Temperature Thermal Conductivity of Atomic Layer Deposition-Grown Amorphous Alumina (Al 2 O 3 )

Density Dependence of the Room Temperature Thermal Conductivity of Atomic Layer Deposition-Grown Amorphous Alumina (Al 2 O 3 ) Gorham et al. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Density Dependence of the Room Temperature Thermal Conductivity of Atomic Layer Deposition-Grown Amorphous Alumina (Al 2 O 3 ) Caroline S. Gorham,

More information

Thermal conductance of interfaces with amorphous SiO 2 measured by time-resolved magneto-optic Kerr-effect thermometry. Abstract

Thermal conductance of interfaces with amorphous SiO 2 measured by time-resolved magneto-optic Kerr-effect thermometry. Abstract Thermal conductance of interfaces with amorphous SiO 2 measured by time-resolved magneto-optic Kerr-effect thermometry Judith Kimling,, André Philippi-Kobs, 2, 3 Jonathan Jacobsohn, 2 Hans Peter Oepen,

More information

Supporting information for: Hot electron thermoreflectance coefficient of. gold during electron-phonon nonequilibrium

Supporting information for: Hot electron thermoreflectance coefficient of. gold during electron-phonon nonequilibrium Supporting information for: Hot electron thermoreflectance coefficient of gold during electron-phonon nonequilibrium Elizabeth L. Radue,, John A. Tomko,, Ashutosh Giri, Jeffrey L. Braun, Xin Zhou,, Oleg

More information

JOURNAL OF APPLIED PHYSICS 121, (2017)

JOURNAL OF APPLIED PHYSICS 121, (2017) JOURNAL OF APPLIED PHYSICS 11, 1510 (01) Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study Jeffrey

More information

Patrick E. Hopkins Assistant Professor Dept. Mech. & Aero. Eng.

Patrick E. Hopkins Assistant Professor Dept. Mech. & Aero. Eng. Stephen R. Lee, Doug Medlin, Harlan Brown- Shaklee, Jon F. Ihlefeld Sandia NaConal Labs Strain field and coherent domain wall effects on the thermal conducevity and Kapitza conductance in Bismuth Ferrite

More information

Thermal characterization of Au-Si multilayer using 3- omega method

Thermal characterization of Au-Si multilayer using 3- omega method Thermal characterization of Au-Si multilayer using 3- omega method Sunmi Shin Materials Science and Engineering Program Abstract As thermal management becomes a serious issue in applications of thermoelectrics,

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial carrier concentrations: (a) N0 = 4.84 10 18 cm -3 ; (c)

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6.1. Introduction In this outlook oriented chapter the applicability of the multilayered system used in chapter 4.1., for the study

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

A TWO-LAYER MODEL FOR THE LASER GENERATION OF ULTRASOUND IN

A TWO-LAYER MODEL FOR THE LASER GENERATION OF ULTRASOUND IN A TWO-LAYER MODEL FOR THE LASER GENERATION OF ULTRASOUND IN GRAPHITE-EPOXY LAMINATES M. Dubois, F. Enguehard, L. Bertrand Ecole Polytechnique de Montreal, Departement de Genie Physique c.p. 6079, succ.

More information

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics 1 Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics Chang-Hua Liu, You-Chia Chang, Seunghyun Lee, Yaozhong Zhang, Yafei Zhang, Theodore B. Norris,*,, and

More information

Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials

Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials Xinwei Wang Hanping Hu 1 Xianfan Xu School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials The

More information

Photoacoustic metrology of nanoimprint polymers

Photoacoustic metrology of nanoimprint polymers Photoacoustic metrology of nanoimprint polymers T. Kehoe a, J. Bryner b, J. Vollmann b, C. Sotomayor Torres a, L. Aebi b and J. Dual b a Tyndall National Institute, Lee Maltings, University College Cork,

More information

Chapter 11. Structures and Dynamics of Self-Assembled Surface Monolayers

Chapter 11. Structures and Dynamics of Self-Assembled Surface Monolayers 325 Chapter 11 Structures and Dynamics of Self-Assembled Surface Monolayers adapted from C.-Y. Ruan, D.-S. Yang, A. H. Zewail, J. Am. Chem. Soc. 126, 12797 (2004). 326 Introduction When a beam of ultrashort

More information

Beyond the Fourier equation: Quantum hyperbolic heat transport

Beyond the Fourier equation: Quantum hyperbolic heat transport arxiv:cond-mat/0304052v [cond-mat.mtrl-sci] 2 Apr 2003 Beyond the Fourier equation: Quantum hyperbolic heat transport Miroslaw Kozlowski Institute of Experimental Physics Warsaw University Hoża 69, 00-68

More information

Picosecond spin caloritronics

Picosecond spin caloritronics Picosecond spin caloritronics David Cahill, Johannes Kimling, and Gyung-Min Choi Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign

More information

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport Keren M. Freedy 1, Ashutosh Giri 2, Brian M. Foley 2, Matthew R. Barone 1, Patrick

More information

Title. Author(s)Matsuda, O.; Wright, O. B.; Hurley, D. H.; Gusev, V. CitationPhysical Review Letters, 93(9): Issue Date Doc URL.

Title. Author(s)Matsuda, O.; Wright, O. B.; Hurley, D. H.; Gusev, V. CitationPhysical Review Letters, 93(9): Issue Date Doc URL. Title Coherent Shear Phonon Generation and Detection with Author(s)Matsuda, O.; Wright, O. B.; Hurley, D. H.; Gusev, V. CitationPhysical Review Letters, 93(9): 9551 Issue Date 24 Doc URL http://hdl.handle.net/2115/14637

More information

Transient Thermal Measurement and Behavior of Integrated Circuits

Transient Thermal Measurement and Behavior of Integrated Circuits Transient Thermal Measurement and Behavior of Integrated Circuits Dustin Kendig¹*, Kazuaki Kazawa 1,2, and Ali Shakouri 2 ¹Microsanj LLC 3287 Kifer Rd, Santa Clara, CA 95051, USA ² Birck Nanotechnology

More information

Probing limits of acoustic nanometrology using coherent extreme ultraviolet light

Probing limits of acoustic nanometrology using coherent extreme ultraviolet light Probing limits of acoustic nanometrology using coherent extreme ultraviolet light Damiano Nardi 1*, Kathleen M. Hoogeboom-Pot 1, Jorge N. Hernandez-Charpak 1, Marie Tripp 2, Sean W. King 2, Erik H. Anderson

More information

Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation

Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation Supporting information Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation Jungwoo Shin, Minjee Kang, Tsunghan Tsai, Cecilia Leal, Paul V. Braun and David G. Cahill*,

More information

Title. CitationJournal of Applied Physics, 100: Issue Date Doc URL. Rights. Type. File Information

Title. CitationJournal of Applied Physics, 100: Issue Date Doc URL. Rights. Type. File Information Title In situ monitoring of the growth of ice films by las Author(s)Kashiwada, Saori; Matsuda, Osamu; Baumberg, Jeremy J CitationJournal of Applied Physics, 100: 073506 Issue Date 2006-10-01 Doc URL http://hdl.handle.net/2115/15423

More information

Thermoelectricity: From Atoms to Systems

Thermoelectricity: From Atoms to Systems Thermoelectricity: From Atoms to Systems Week 3: Thermoelectric Characterization Lecture 3.6: Summary of Week 3 By Ali Shakouri Professor of Electrical and Computer Engineering Birck Nanotechnology Center

More information

Cathodoluminescence spectroscopy of nitrided SiO 2 Si interfaces

Cathodoluminescence spectroscopy of nitrided SiO 2 Si interfaces Cathodoluminescence spectroscopy of nitrided SiO 2 Si interfaces A. P. Young a) Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210-1272 R. Bandhu Department of Physics,

More information

Spatial Symmetry of Superconducting Gap in YBa 2 Cu 3 O 7-δ Obtained from Femtosecond Spectroscopy

Spatial Symmetry of Superconducting Gap in YBa 2 Cu 3 O 7-δ Obtained from Femtosecond Spectroscopy Spatial Symmetry of Superconducting Gap in YBa Cu 3 O 7-δ Obtained from Femtosecond Spectroscopy C. W. Luo, M. H. Chen, S. P. Chen, K. H. Wu, J. Y. Juang, J.-Y. Lin, T. M. Uen and Y. S. Gou Department

More information

Mesoscale Science and Technology

Mesoscale Science and Technology Mesoscale Science and Technology Classical Sciences Atomistic & Molecular Sciences Applications: - Lubrication - Photonics - Fuel Cells - Data Storage The realm of the Mesoscale fosters new perceptions

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons

Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons Acoustic Velocity The equation of motion in a solid is (1) T = ρ 2 u t 2 (1) where T is the stress tensor, ρ is

More information

Ultrasonics 50 (2010) Contents lists available at ScienceDirect. Ultrasonics. journal homepage:

Ultrasonics 50 (2010) Contents lists available at ScienceDirect. Ultrasonics. journal homepage: Ultrasonics 5 (21) 167 171 Contents lists available at ScienceDirect Ultrasonics journal homepage: www.elsevier.com/locate/ultras Solitary surface acoustic waves and bulk solitons in nanosecond and picosecond

More information

OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY.

OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY. OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY Katarína Bombarová 1, Juraj Chlpík 1,2, Soňa Flickyngerová 3, Ivan Novotný 3, Július Cirák 1 1 Institute of Nuclear

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers David G. Cahill, Greg Hohensee, and Gyung-Min Choi Department of Materials Science and Engineering University of

More information

Probing Thin Film Thermophysical Properties using the Femtosecond Transient ThermoReflectance Technique

Probing Thin Film Thermophysical Properties using the Femtosecond Transient ThermoReflectance Technique Probing Thin Film Thermophysical Properties using the Femtosecond Transient ThermoReflectance Technique Pamela M. Norris Director of the Microscale Heat Transfer Laboratory and The Aerogel Research Lab

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered doping of organic semiconductors for enhanced thermoelectric efficiency G.-H. Kim, 1 L. Shao, 1 K. Zhang, 1 and K. P. Pipe 1,2,* 1 Department of Mechanical Engineering, University of Michigan,

More information

Picosecond Transient Thermoreflectance for Thermal Conductivity Characterization. and Yaguo Wang 1,5,*

Picosecond Transient Thermoreflectance for Thermal Conductivity Characterization. and Yaguo Wang 1,5,* Picosecond Transient Thermoreflectance for Thermal Conductivity Characterization Jihoon Jeong 1, Xianghai Meng 1, Ann Kathryn Rockwell 2, Seth R Bank 2, Wen-Pin Hsieh 3, Jung-fu Lin 4,5* and Yaguo Wang

More information

Ultralow thermal conductivity and the thermal conductance of interfaces

Ultralow thermal conductivity and the thermal conductance of interfaces Ultralow thermal conductivity and the thermal conductance of interfaces David G. Cahill, C. Chiritescu, Y.-K. Koh, X. Zheng, W.-P. Hsieh Materials Research Lab and Department of Materials Science, U. of

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

ACOUSTIC WAVE VELOCITY IN Ag/Fe NANOLAYERS. Mikołaj ALEKSIEJUK, Feliks REJMUND

ACOUSTIC WAVE VELOCITY IN Ag/Fe NANOLAYERS. Mikołaj ALEKSIEJUK, Feliks REJMUND ARCHIVES OF ACOUSTICS 32, 4 (Supplement), 47 51 (2007) ACOUSTIC WAVE VEOCITY IN Ag/Fe NANOAYERS Mikołaj AEKSIEJUK, Feliks REJMUND Institute of Fundamental Technological Research Polish Academy of Sciences

More information

Laser processing of materials. Temperature distributions

Laser processing of materials. Temperature distributions Laser processing of materials Temperature distributions Prof. Dr. Frank Mücklich Dr. Andrés Lasagni Lehrstuhl für Funktionswerkstoffe Sommersemester 7 Contents: Temperature distributions 1. Definitions.

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V. SUPPLEMENTARY INFORMATION for Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films Tianle Guo, Siddharth Sampat, Kehao Zhang, Joshua

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique

Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique Journal of Physics: Conference Series Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique To cite this article: P V Zinin et al 2010 J. Phys.: Conf. Ser. 215 012053

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Probing and Driving Molecular Dynamics with Femtosecond Pulses Miroslav Kloz Probing and Driving Molecular Dynamics with Femtosecond Pulses (wavelengths above 200 nm, energies below mj) Why femtosecond lasers in biology? Scales of size and time are closely rerated!

More information

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons

More information

Measuring the Thermal Conductivity of Porous, Transparent SiO 2 Films With Time Domain Thermoreflectance

Measuring the Thermal Conductivity of Porous, Transparent SiO 2 Films With Time Domain Thermoreflectance Patrick E. Hopkins 1 Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185 e-mail: pehopki@sandia.gov Bryan Kaehr Engineering Sciences Center, Sandia National Laboratories, Albuquerque,

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

Thermal Transport across Surfactant Layers on Gold Nanorods

Thermal Transport across Surfactant Layers on Gold Nanorods Supporting Information for Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution Xuewang Wu, Yuxiang Ni, Jie Zhu, Nathan D. Burrows, Catherine J. Murphy, Traian Dumitrica, Xiaojia

More information

Thermal Transport in Nanostructured Polymers

Thermal Transport in Nanostructured Polymers University of Colorado, Boulder CU Scholar Mechanical Engineering Graduate Theses & Dissertations Mechanical Engineering Spring 1-1-201 Thermal Transport in Nanostructured Polymers Jun Liu University of

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Charlottesville, Virginia, USA Version of record first published: 16 Aug 2006.

Charlottesville, Virginia, USA Version of record first published: 16 Aug 2006. This article was downloaded by: [University of Virginia, Charlottesville] On: 28 December 2012, At: 14:07 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954

More information

Thermal conductivity of symmetrically strained Si/Ge superlattices

Thermal conductivity of symmetrically strained Si/Ge superlattices Superlattices and Microstructures, Vol. 28, No. 3, 2000 doi:10.1006/spmi.2000.0900 Available online at http://www.idealibrary.com on Thermal conductivity of symmetrically strained Si/Ge superlattices THEODORIAN

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

Harvesting Heat through Seebeck Spin Tunneling Effect

Harvesting Heat through Seebeck Spin Tunneling Effect Harvesting Heat through Seebeck Spin Tunneling Effect Costel Constantin James Madison University Science Enabled by Photon Source, May 2012 Outline 1. Spintronics vs. Spin Caloritronics. 2. Novel Spin

More information

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Hyunung Yu Selezion A. Hambir School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory University of Illinois

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

Thermal Conductivity in Superlattices

Thermal Conductivity in Superlattices 006, November Thermal Conductivity in Superlattices S. Tamura Department of pplied Physics Hokkaido University Collaborators and references Principal Contributors: K. Imamura Y. Tanaka H. J. Maris B. Daly

More information

In-situ Multilayer Film Growth Characterization by Brewster Angle Reflectance Differential Spectroscopy

In-situ Multilayer Film Growth Characterization by Brewster Angle Reflectance Differential Spectroscopy In-situ Multilayer Film Growth Characterization by Brewster Angle Reflectance Differential Spectroscopy N. Dietz, D.J. Stephens, G. Lucovsky and K.J. Bachmann North Carolina State University, Raleigh,

More information

Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation

Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation Quanming Lu* School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China

More information

On the beam deflection method applied to ultrasound absorption measurements

On the beam deflection method applied to ultrasound absorption measurements On the beam deflection method applied to ultrasound absorption measurements K. Giese To cite this version: K. Giese. On the beam deflection method applied to ultrasound absorption measurements. Journal

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Suppporting Information for Electrochemical Effects in Thermoelectric Polymers

Suppporting Information for Electrochemical Effects in Thermoelectric Polymers Suppporting Information for Electrochemical Effects in Thermoelectric Polymers William B. Chang 1, Haiyu Fang 2, Jun Liu 3, Christopher M. Evans 2, Boris Russ 4, Bhooshan C. Popere 2, Shrayesh N. Patel

More information

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Supporting Information Cyclic Electroplating and Stripping of Silver on Au@SiO 2 Core/Shell Nanoparticles for Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Dan Li a, Da-Wei Li

More information

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Guillermo E. Villanueva, Claudio J. Oton Michael B. Jakubinek, Benoit Simard,, Jaques Albert, Pere Pérez-Millán Outline Introduction CNT-coated

More information

Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA

Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method Puqing Jiang, Xin Qian

More information

Measurement of Water Vapor Diffusion in Nanoscale Polymer Films by Frequency-Domain Probe Beam Deflection

Measurement of Water Vapor Diffusion in Nanoscale Polymer Films by Frequency-Domain Probe Beam Deflection Measurement of Water Vapor Diffusion in Nanoscale Polymer Films by Fruency-Domain Probe Beam Deflection Xu Xie, 1* Jordan M. Dennison, Jungwoo Shin, 1 Zhu Diao, 1 David G. Cahill 1* 1 Department of Materials

More information