SECTION 4: STEADY STATE ERROR

Size: px
Start display at page:

Download "SECTION 4: STEADY STATE ERROR"

Transcription

1 SECTION 4: STEADY STATE ERROR MAE 4421 Control of Aerospace & Mechanical Systems

2 2 Introduction

3 Steady State Error Introduction 3 Consider a simple unity feedback system The error is the difference between the reference and the output The input to the controller, Consider a case where: Reference input is a step Plant has no poles at the origin finite DC gain Controller is a simple gain block In steady state, the forward path reduces to a constant gain:

4 Steady State Error Introduction 4 In steady state, we d like: Output to be equal to the input: Zero steady state error: 0 Is that the case here? 1 1 No, if 0, then 0 Non zero steady state error to a step input for finite steady state forward path gain Finite DC gain implies no poles at the origin in or

5 Steady State Error Introduction 5 Now, allow a single pole at the origin An integrator in the forward path Now the error is For a step input 1 1 Applying the final value theorem gives the steady state error lim lim 0 Zero steady state error to a step input when there is an integrator in the forward path

6 Steady State Error Introduction 6 Next, consider a ramp input to the same system 1 and Now the error is 1 The steady state error is 1 lim lim 1 Non zero, but finite, steady state error to a ramp input when there is an integrator in the forward path

7 Steady State Error Introduction 7 Two key observations from the preceding example involving unity feedback systems: Steady state error is related to the number of integrators in the open loop transfer function Steady state error is related to the type of input We ll now explore both of these observations more thoroughly First, we ll introduce the concept of system type

8 8 System Type and Steady State Error

9 System Type 9 System Type The degree of the input polynomial for which the steadystate error is a finite, non zero constant Type 0: finite, non zero error to a step input Type 1: finite, non zero error to a ramp input Type 2: finite, non zero error to a parabolic input For the remainder of this sub section, and the one that follows, we ll consider only the special case of unity feedback systems

10 System Type Unity Feedback Systems 10 For unity feedback systems, system type is determined by the number of integrators in the forward path Type 0: no integrators in the open loop TF, e.g.: Type 1: one integrator in the open loop TF, e.g.: Type 2: two integrators in the open loop TF, e.g.: 5 3 7

11 Types of Inputs 11 When characterizing a control system s error performance we focus on three main inputs: Step Ramp Parabola We will derive expressions for the steady state error due to each Step: 1 For a positioning system, this represents a constant position

12 Types of Inputs 12 Ramp: 1 For a positioning system, this represents a constant velocity Parabola: 1 For a positioning system, this represents a constant acceleration

13 Steady State Error Unity Feedback 13 For unity feedback systems steady state error can be expressed in terms of the open loop transfer function, 1 Steady state error is found by applying the final value theorem lim lim 1 We ll now consider this expression for each of the three inputs of interest

14 Steady State Error Step Input 14 For a step input 1 1 Steady state error to a step input is lim lim lim

15 Steady State Error Step Input lim In order to have 0, as we d like, we must have lim That is, the DC gain of the open loop system must be infinite If has the following form then lim and we ll have non zero steady state error

16 Steady State Error Step Input 16 However, consider of the following form where That is, includes integrators It is a type system lim and 0 A type 1 or greater system will exhibit zero steadystate error to a step input

17 Steady State Error Ramp Input 17 For a ramp input 1 1 Steady state error to a ramp input is lim lim lim lim

18 Steady State Error Ramp Input 18 1 lim In order to have 0, the following must be true lim If there are no integrators in the forward path, then and lim lim 0 A type 0 system has infinite steady state error to a ramp input

19 Steady State Error Ramp Input 19 If there is a single integrator in the forward path, i.e. a type 1 system then and lim A type 1 system has non zero, but finite, steadystate error to a ramp input

20 Steady State Error Ramp Input 20 If there are two or more integrators in the forward path, i.e. a type 2 or greater system then and, 2 lim lim 0 A type 2 or greater system has zero steady state error to a ramp input

21 Steady State Error Parabolic Input 21 For a Parabolic input Steady state error to a parabolic input is lim lim lim lim

22 Steady State Error Parabolic Input 22 1 lim In order to have 0, the following must be true lim If there are no integrators in the forward path, then and lim lim 0 A type 0 system has infinite steady state error to a parabolic input

23 Steady State Error Parabolic Input 23 If there is a single integrator in the forward path, i.e. a type 1 system then and lim 0 A type 1 system has infinite steady state error to a parabolic input

24 Steady State Error Parabolic Input 24 If there are two integrators in the forward path, i.e. a type 2 system then and lim lim A type 2 system has non zero, but finite, steady state error to a parabolic input

25 Steady State Error Parabolic Input 25 If there are three or more integrators in the forward path, i.e. a type 3 or greater system then and, 3 lim lim 0 A type 3 or greater system has zero steady state error to a parabolic input

26 26 Static Error Constants

27 Static Error Constants Unity Feedback 27 We ve seen that the steady state error to each of the inputs considered is Step: Ramp: Parabola: The limit term in each expression is the static error constant associated with that particular input: Position constant: Velocity constant: Acceleration constant: lim lim lim

28 Steady State Error vs. System Type 28 Steady state error vs. input and system type System Input Type Step Ramp Parabola Note that the given steady state error is for inputs of unit magnitude Actual error is scaled by the magnitude of the reference input 1

29 29 Non Unity Feedback Systems

30 Non Unity Feedback Systems 30 So far, we ve focused on the special case of unityfeedback systems System type determined by # of integrators in the forward path i.e., # of open loop poles at the origin Steady state error determined using static error constants Static error constants determined from the open loop transfer function

31 Non Unity Feedback Systems 31 More general approach to determining steady state error is to use the closed loop transfer function Applicable to non unity feedback systems, e.g.: 1 The error is

32 Non Unity Feedback Systems 32 Apply the final value theorem to determine the steady state error: Here, system type is determined by using the more general definition: System type is the degree of the input polynomial for which the steady state error is a finite, non zero constant

33 Non Unity Feedback Systems 33 Alternatively, find steady state error by converting to a unity feedback configuration, e.g.: Add and subtract unity feedback paths:

34 Non Unity Feedback Systems 34 Combine the two upper parallel feedback paths: Collapsing the inner feedback form leaves a unityfeedback system Can now apply unityfeedback error analysis techniques

35 35 Steady State Error Examples

36 Steady State Error Example 1 36 What is the steady state error to a constant reference input, 3 1, for the following feedback positioning system? A type 0 system Non zero error to a constant reference Position constant: lim 10 Steady state error:

37 Steady State Error Example

38 Steady State Error Example 1 38 What is the same system s steady state error to a unit ramp input, 1? A type 0 system, so error to a ramp reference will be infinite Verify using closed loop transfer function Steady state error is lim 1 lim lim 1 11

39 Steady State Error Example 1 39

40 Steady State Error Example 2 40 Design the controller,, for error of 0.05 to a unit ramp input Plant is type 0 Forward path must be type 1 for finite error to a ramp input must be type 1, so one very simple option is: Forward path transfer function is 2 1 5

41 Steady State Error Example 2 41 The velocity constant is Steady state error is For error of 0.05: lim lim

42 Steady State Error Example

43 Steady State Error Example 3 43 Next, consider a non unity feedback system: Determine controller gain,, to provide a 2% steady state error to a constant reference input First, convert to a unityfeedback system Combine forward path blocks Simultaneously add and subtract unity feedback paths

44 Steady State Error Example 3 44 Combine the top two parallel feedback paths Simplifying the inner feedback form leaves a unity feedback system

45 Steady State Error Example 3 45 Steady state error for this type 0 system is 1 1 where For 2% steady state error The controller gain is lim

46 Steady State Error Example 3 46 Note that the controller gain has been set to satisfy a steady state error requirement only Closed loop poles are very lightlydamped Dynamic response is likely unacceptable 0.02

47 Steady State Error Example 4 47 Now, consider a unity feedback system with a disturbance input where and Determine the controller gain,, such that error due to a constant disturbance is 1% of For this value of, what is the steady state error to a constant reference input?

48 Steady State Error Example 4 48 The total error is given by Substituting in controller and plant transfer functions gives

49 Steady State Error Example 4 49 Error due to a constant disturbance can be found by applying the final value theorem, lim 1 5, lim We can calculate the required gain for 1% error, At this gain value, the error due to a constant reference is, lim %

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

Steady State Errors. Recall the closed-loop transfer function of the system, is

Steady State Errors. Recall the closed-loop transfer function of the system, is Steady State Errors Outline What is steady-state error? Steady-state error in unity feedback systems Type Number Steady-state error in non-unity feedback systems Steady-state error due to disturbance inputs

More information

Automatic Control Systems (FCS) Lecture- 8 Steady State Error

Automatic Control Systems (FCS) Lecture- 8 Steady State Error Automatic Control Systems (FCS) Lecture- 8 Steady State Error Introduction Any physical control system inherently suffers steady-state error in response to certain types of inputs. A system may have no

More information

SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

More information

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

More information

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can

More information

Chapter 6 Steady-State Analysis of Continuous-Time Systems

Chapter 6 Steady-State Analysis of Continuous-Time Systems Chapter 6 Steady-State Analysis of Continuous-Time Systems 6.1 INTRODUCTION One of the objectives of a control systems engineer is to minimize the steady-state error of the closed-loop system response

More information

Last week: analysis of pinion-rack w velocity feedback

Last week: analysis of pinion-rack w velocity feedback Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

More information

SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS

SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS MAE 4421 Control of Aerospace & Mechanical Systems 2 Block Diagram Manipulation Block Diagrams 3 In the introductory section we saw examples of block diagrams

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Lecture 4 Classical Control Overview II. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 4 Classical Control Overview II. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 4 Classical Control Overview II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Stability Analysis through Transfer Function Dr. Radhakant

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

PID controllers. Laith Batarseh. PID controllers

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Dynamic Compensation using root locus method

Dynamic Compensation using root locus method CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

More information

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems EE451/551: Digital Control Chapter 3: Modeling of Digital Control Systems Common Digital Control Configurations AsnotedinCh1 commondigitalcontrolconfigurations As noted in Ch 1, common digital control

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

7.1 Introduction. Apago PDF Enhancer. Definition and Test Inputs. 340 Chapter 7 Steady-State Errors

7.1 Introduction. Apago PDF Enhancer. Definition and Test Inputs. 340 Chapter 7 Steady-State Errors 340 Chapter 7 Steady-State Errors 7. Introduction In Chapter, we saw that control systems analysis and design focus on three specifications: () transient response, (2) stability, and (3) steady-state errors,

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Root Locus Design Example #4

Root Locus Design Example #4 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

Digital Control Systems

Digital Control Systems Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist

More information

Essence of the Root Locus Technique

Essence of the Root Locus Technique Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

Digital Control: Summary # 7

Digital Control: Summary # 7 Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)

More information

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

More information

MAE143 B - Linear Control - Spring 2018 Midterm, May 3rd

MAE143 B - Linear Control - Spring 2018 Midterm, May 3rd MAE143 B - Linear Control - Spring 2018 Midterm, May 3rd Instructions: 1. This exam is open book. You can consult any printed or written material of your liking. 2. You have 70 minutes. 3. Most questions

More information

CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

More information

Chapter 5 HW Solution

Chapter 5 HW Solution Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, time-invariant system. Let s see, I

More information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

More information

Control Systems. University Questions

Control Systems. University Questions University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

More information

Note. Design via State Space

Note. Design via State Space Note Design via State Space Reference: Norman S. Nise, Sections 3.5, 3.6, 7.8, 12.1, 12.2, and 12.8 of Control Systems Engineering, 7 th Edition, John Wiley & Sons, INC., 2014 Department of Mechanical

More information

Linear Control Systems

Linear Control Systems Linear Control Systems Project session 3: Design in state-space 6 th October 2017 Kathleen Coutisse kathleen.coutisse@student.ulg.ac.be 1 Content 1. Closed loop system 2. State feedback 3. Observer 4.

More information

1 Chapter 9: Design via Root Locus

1 Chapter 9: Design via Root Locus 1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

IC6501 CONTROL SYSTEMS

IC6501 CONTROL SYSTEMS DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems

Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems Ultimate State MEM 355 Performance Enhancement of Dnamical Sstems Harr G. Kwatn Department of Mechanical Engineering & Mechanics Drexel Universit Outline Design Criteria two step process Ultimate state

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #14 Wednesday, February 5, 2003 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Chapter 7 Synthesis of SISO Controllers

More information

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501

More information

C 0 U R S E A N. Problems

C 0 U R S E A N. Problems C 0 U R S E A N Problems S 0 L U T I 0 N S Introduction and Basic Concepts Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. Following the example

More information

Module 6: Deadbeat Response Design Lecture Note 1

Module 6: Deadbeat Response Design Lecture Note 1 Module 6: Deadbeat Response Design Lecture Note 1 1 Design of digital control systems with dead beat response So far we have discussed the design methods which are extensions of continuous time design

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

More information

BASIC PROPERTIES OF FEEDBACK

BASIC PROPERTIES OF FEEDBACK ECE450/550: Feedback Control Systems. 4 BASIC PROPERTIES OF FEEDBACK 4.: Setting up an example to benchmark controllers There are two basic types/categories of control systems: OPEN LOOP: Disturbance r(t)

More information

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1 Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

More information

CONTROL * ~ SYSTEMS ENGINEERING

CONTROL * ~ SYSTEMS ENGINEERING CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control

More information

Figure 1: Unity Feedback System

Figure 1: Unity Feedback System MEM 355 Sample Midterm Problem Stability 1 a) I the following ytem table? Solution: G() = Pole: -1, -2, -2, -1.5000 + 1.3229i, -1.5000-1.3229i 1 ( + 1)( 2 + 3 + 4)( + 2) 2 A you can ee, all pole are on

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

Chapter 7 - Solved Problems

Chapter 7 - Solved Problems Chapter 7 - Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

More information

EEL2216 Control Theory CT1: PID Controller Design

EEL2216 Control Theory CT1: PID Controller Design EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportional-integral-derivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

NPTEL Online Course: Control Engineering

NPTEL Online Course: Control Engineering NPTEL Online Course: Control Engineering Ramkrishna Pasumarthy Assignment-11 : s 1. Consider a system described by state space model [ ] [ 0 1 1 x + u 5 1 2] y = [ 1 2 ] x What is the transfer function

More information

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD 206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

More information

An Introduction to Control Systems

An Introduction to Control Systems An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a

More information

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

Design of Nonlinear Control Systems with the Highest Derivative in Feedback

Design of Nonlinear Control Systems with the Highest Derivative in Feedback SERIES ON STAB1UTY, VIBRATION AND CONTROL OF SYSTEMS SeriesA Volume 16 Founder & Editor: Ardeshir Guran Co-Editors: M. Cloud & W. B. Zimmerman Design of Nonlinear Control Systems with the Highest Derivative

More information

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

More information

Root Locus Design Example #3

Root Locus Design Example #3 Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll

More information

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared

More information

Formal Verification of Steady-State Errors in Unity-Feedback Control Systems

Formal Verification of Steady-State Errors in Unity-Feedback Control Systems Formal Verification of Steady-State Errors in Unity-Feedback Control Systems Muhammad Ahmad and Osman Hasan School of Electrical Engineering and Computer Science (SEECS), National University of Sciences

More information

Introduction. TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems. Time function. Physical interpretation

Introduction. TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems. Time function. Physical interpretation Chapter 7 Steady-State Errors Introduction In Chapter 1, we saw that control systems analysis and design focus on three specifications: (1) transient response, (2) stability, and (3) steady-state errors,

More information

First Order System Types

First Order System Types First Order System Types 1. Introduction: First order systems are, by definition, systems whose input-output relationship is a first order differential equation. A first order differential equation contains

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Equilibrium, Positive and Negative Feedback

Equilibrium, Positive and Negative Feedback Equilibrium, Positive and Negative Feedback Most ecosystems are very complex. There are many flows and storages. A high level of complexity makes for a more stable system which can withstand stress and

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

ECE 388 Automatic Control

ECE 388 Automatic Control Controllability and State Feedback Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage:

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

Feedback design for the Buck Converter

Feedback design for the Buck Converter Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation

More information

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2

More information

CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS

CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS 54 CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS 4.1 INTRODUCTION In control theory, a controller is a device which monitors and affects the operational conditions of a given dynamic system.

More information

Control 2. Proportional and Integral control

Control 2. Proportional and Integral control Control 2 Proportional and Integral control 1 Disturbance rejection in Proportional Control Θ i =5 + _ Controller K P =20 Motor K=2.45 Θ o Consider first the case where the motor steadystate gain = 2.45

More information

Task 1 (24%): PID-control, the SIMC method

Task 1 (24%): PID-control, the SIMC method Final Exam Course SCE1106 Control theory with implementation (theory part) Wednesday December 18, 2014 kl. 9.00-12.00 SKIP THIS PAGE AND REPLACE WITH STANDARD EXAM FRONT PAGE IN WORD FILE December 16,

More information

Compensator Design to Improve Transient Performance Using Root Locus

Compensator Design to Improve Transient Performance Using Root Locus 1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

More information