CMOS Logic Gates. University of Connecticut 172

Size: px
Start display at page:

Download "CMOS Logic Gates. University of Connecticut 172"

Transcription

1 CMOS Logic Gates University of Connecticut 172

2 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and P O is linear. V OH. If V IN, N O is linear but P O is cut off. V OL 0. In either state, the DC power dissipation is negligible. CMOS is therefore very important for battery-powered applications such as watches, calculators, palmtops and laptops. In addition to the extremely low power dissipation, CMOS also exhibits better noise margins than NMOS with nearly as high packing density. University of Connecticut 173

3 CMOS Load Curve Analysis V IN 2.5V V T -0.6V K 0.5mA/V 2 P O I DD (ma) V IN 0V V IN 2.5V N O V T 0.6V K 0.5mA/V V IN 0.5V V IN 2V 0.4 The graphical load curve approach may be applied as with NMOS, but now the load curve is a function of V IN V IN 1V V IN 1.5V (V) University of Connecticut 174

4 CMOS Load Curve Analysis V IN P O N O I I DN DP University of Connecticut 175

5 CMOS Load Curve Analysis V IN 2.5V P O N O V T -0.6V K 0.5mA/V 2 V T 0.6V K 0.5mA/V 2 I DD (ma) V IN 1.5V e.g. if V IN 1.5V, then V V I V GSN GSP DD OUT 15. V 10. V 0. 04mA V University of Connecticut V IN 1.5V (V)

6 CMOS VTC V IN 2.5V P O N O V T -0.6V K 0.5mA/V 2 V T 0.6V K 0.5mA/V 2 (V) For the case of perfectlymatched transistors, i. e. V TP V TN and K P K N, the VTC is symmetric: V V V + V V V M DD IL IH DD NML V / 2 NMH University of Connecticut V IN (V)

7 CMOS VTC: Analytic Determination For V IN < V TN, the n-mosfet is cut off but the p-mosfet is linear, so For V TN < V IN < + V TN and V IN < - V TP, the n-mosfet is saturated but the p-mosfet is linear. Hence V I D OUT University of Connecticut 178

8 CMOS VTC: Analytic Determination In the vicinity of V IN V M, both MOSFET s are saturated. Thus, versus V IN cannot be determined without the knowledge of the channel length modulation parameters. For + V TN < V IN and + V TP < V IN < - V TP, the n-mosfet is linear but the p-mosfet is saturated. Hence V I D OUT Finally, for V IN > - V TP, the n-mosfet is linear but the p-mosfet is cut off so University of Connecticut 179

9 DC Current in CMOS 120 V IN 2.5V P O N O V T -0.6V K 0.5mA/V 2 V T 0.6V K 0.5mA/V 2 I DD (µa) For V IN < V TN, N O is cut off and I DD 0. For V TN < V IN < /2, N O is saturated. For /2 < V IN < +V TP, P O is saturated. For V IN > + V TP, P O is cut off and I DD V IN (V) Even though CMOS exhibits negligible DC dissipation in either logic state, appreciable power is dissipated during switching. University of Connecticut 180 0

10 Design of CMOS Transistors Suppose the minimum feature size is 0.5 µ m, t OX 70 Angstroms, and we want K P K N 0.5 ma/ V 2. k ' P ( W / L) P k ' N ( W / L) N University of Connecticut 181

11 CMOS Switching Speed Consider a symmetric CMOS inverter with a lumped capacitive load C L. Suppose the input voltage rises abruptly from 0 to. N O is saturated until drops to - V T. During this time, constant current flows in N O : I DN N O becomes linear when - V T at t T D1. T D1 University of Connecticut 182

12 CMOS Switching Speed Once drops to - V T, N O moves into the linear region of operation. To a first approximation, I DN VOUT 1 I where average value of R R V DN Now if N O is linear, then DN DN OUT I DN I V DN OUT University of Connecticut 183

13 CMOS Switching Speed If starts at - V T and ends up at zero, then the average value of the partial derivative is approximately 1 R DN Using the ohmic approximation for N O, we have a simple RC circuit: VOUT ( t) Then reaches the 50% point ( /2) at t T D1 + T D2, where T D 2 University of Connecticut 184

14 CMOS Switching Speed The high-to-low propagation time is t PHL T D1 + T D2. Moreover, if the gate is perfectly symmetric, then t PLH t PHL. Thus t P Therefore the propagation delay is proportional to the load capacitance and inversely proportional to the K values for the (matched) transistors. For a fixed capacitive load, we need to scale up the K values to improve the switching speed. University of Connecticut 185

15 Loading of CMOS V IN 2.5V P O N O V T -0.6V 2.2µ m/ 0.5µ m V T 0.6V 0.9µ m/ 0.5µ m Suppose that K N K P 0.5 ma / V 2. 2 W KP 05. ma / V ' 2 L k ma / V P P W KN 0. 5mA / V ' L k mA / V C OXP C OXN C IN C L University of Connecticut 186

16 SPICE Transient Response V 2.5V P O V IN N O C L 2. 5V K K 05. ma / V V V 0. 6 V C t DD P P TP L N TN 78 f F ps 150 (SPICE) 120ps (calculated) 2 output voltage input voltage time (ns) University of Connecticut 187

17 CMOS Power Dissipation Under static (DC) conditions, the power dissipation is minimal (typically < 10 µw / gate). Under switching conditions, there is significant power dissipation. This is because the load capacitance is charged and discharged through dissipating elements (MOSFETs). During a low-to-high transition, current flows from as the load capacitance is charged from 0V to. The total integrated current is equal to C L, in coulombs. During a high-to-low transition, current flows to ground as the load capacitance is discharged from to 0V. The total integrated current is equal to C L, in coulombs. To avoid double counting, we should consider either current but not both. We will consider the ground current here. University of Connecticut 188

18 CMOS Power Dissipation V IN 2.5V P O N O C L Consider a symmetric CMOS inverter with a lumped capacitive load C L. Suppose the input voltage rises abruptly from 0 to. During T D1, N O is saturated until drops to - V T, and constant current flows in N O : I DN The total dissipation for 0 < t < T D1 is thus J 1 University of Connecticut 189

19 CMOS Power Dissipation Once drops to - V T, N O moves into the linear region of operation. J 2 But if the input voltage increases abruptly, the p-channel device switches off at t 0. Then, so that I DN J 2 University of Connecticut 190

20 CMOS Power Dissipation Therefore, the total energy dissipated for one cycle including a lowto-high transition and a high-to-low transition is J 1 + J 2 : J TOTAL The total dissipation is therefore P In the case of CMOS, the AC term is almost always dominant. For this reason, we can only talk about the PDP for CMOS if we specifiy the switching frequency. Note also that the switching frequency is generally less than the system clock frequency. University of Connecticut 191

21 CMOS Power Dissipation Consider a CMOS gate with a 2.5V supply, a 1 pf load, and 1 µ W DC dissipation 2.5V 1 mw 100 mw V IN P O 10 mw N O C L 1 mw 1k 10k 100k 1M 10M 100M switching frequency (Hz) Without an external load, the dissipation increases with switching frequency due to internal capacitance. This effect is quantized by the dissipation capacitance. University of Connecticut 192

22 CMOS Power Delay Product If we neglect the DC dissipation, then V IN P O P V C f 2 DD L The propagation delay is approximately N O C L t P C 2 KV L DD Therefore the PDP is frequency dependent and approximately VDDCL f PDP 2 2 K Thus it is important to decrease but it is extremely important to decrease the load capacitance. University of Connecticut 193

23 CMOS Power Delay Product In terms of the device design parameters, V IN P O K N O C L If C L comprises N on-chip loads, then C L Therefore the PDP is approximately PDP Now we know how to make better CMOS! University of Connecticut 194

24 CMOS Fan-out Increasing the fan-out increases t P. If C L comprises N on-chip loads, then V IN P O C L N O C L The K values are both equal to K Therefore t P N MAX University of Connecticut 195

25 CMOS NAND Gate 4011 NAND (ca 1965 A.D.) V B 25/5 25/5 V 3 to 15V 20/5 DD t 85 to 330ns P aluminum 50 pf L 5µ m t 1000 Angst roms min OX V A 20/5 Function: If any input goes low, then the associated p-mosfet turns on, the associated n-mosfet turns off, and the output goes high. Form: CMOS requires two MOSFETs per input, so the packing density is slightly less than for NMOS. University of Connecticut 196

26 CMOS NOR Gate 4001 NOR (ca 1965 A.D.) V A V B 50/5 50/5 V 3 to 15V DD t 85 to 330ns P aluminum 50 pf L 5µ m t 1000 Angstroms min OX 10/5 10/5 Function: If any input goes high, then the associated p-mosfet turns off, the associated n-mosfet turns on, and the output goes low. Form: There are still two transistors per input. However, the NOR gate requires 1/3 more chip area than the NAND gate. University of Connecticut 197

27 74HCxx CMOS Family 1/4 74HC00 NAND V A V A V B V B 9/3 9/3 35/3 90/3 7/3 7/3 15/3 35/3 V 4. 5 to 5. 5V t DD L 3µ m t P 600 Angstroms polysilicon gates P min OX DC 2.5µ W 15 pf V T 1V University of Connecticut 198

28 74HCxx CMOS Family: VTC 5V 9/3 35/3 90/3 V IN 3.5/3 15/3 35/3 1/6 74HC04 HEX INVERTER Double buffering makes the VTC very sharp, thus increasing the external noise margins. Do you see why? 2.3V 2.5V 2.7V 4.33V 0.00V 2.50V 2.50V 0.67V 5.00V 5.00V 2.50V 0.00V University of Connecticut 199

29 74HCxx CMOS Family: VTC /6 74HC04 HEX INVERTER The external noise margins are both essentially 2.5 V. The noise margins for the first stage alone are both 1.9 V University of Connecticut V IN 200

30 74HC CMOS Dynamic Response For all three stages, the process transconductance parameters are k ' N 2 k ' P 2 The oxide capacitance per unit area is C OX A University of Connecticut 201

31 74HC CMOS Dynamic Response 5V 9/3 35/3 90/3 V IN 3.5/3 15/3 35/3 C L 15 pf For stage A, K PA K C t NA LA PA University of Connecticut 202

32 74HC CMOS Dynamic Response 5V 9/3 35/3 90/3 V IN 3.5/3 15/3 35/3 C L 15 pf For stage B, K PB K C t NB LB PB University of Connecticut 203

33 74HC CMOS Dynamic Response 5V 9/3 35/3 90/3 V IN 3.5/3 15/3 35/3 C L 15 pf For stage C, K PC K C t NB LC PB University of Connecticut 204

34 74HC CMOS Dynamic Response 5V 9/3 35/3 90/3 V IN 3.5/3 15/3 35/3 C L 15 pf For the double-buffered gate, the total propagation delay is the sum of the individual delays: t P 0.8 ns 0.5 ns 13.8 ns University of Connecticut 205

35 74HC CMOS Dissipation 5V 9/3 35/3 90/3 V IN 3.5/3 15/3 35/3 C L 15 pf For the double-buffered gate, the energy dissipated per switching cycle is J TOT University of Connecticut 206

36 CMOS IC Fabrication polysilicon gate n+ n+ p+ p+ p well n well phosphosilicate glass (PSG) metal thick field oxide n- substrate or epitaxial layer thin gate oxide The twin well (or twin tub) process is used for state-of-the-art CMOS fabrication. Modern improvements in the process include trench isolation, silicided gates, and the use of n+ buried layers. In BICMOS, NPN bipolar transistors are fabricated alongside p- MOSFETs and n-mosfets. University of Connecticut 207

37 Latchup in CMOS polysilicon gate thin gate oxide phosphosilicate glass (PSG) n+ n+ p+ p+ p well n well metal thick field oxide n- substrate or epitaxial layer There are parasitic bipolar junction transistors inherent in the CMOS structure. Worse yet, the combination of a PNP and an NPN can form a PNPN device, which is a thyristor (or silicon controlled rectifier, SCR). Once turned on, the thyristor latches, and does not turn off after external bias is removed from the inner P and N regions. Once latched, the parasitic thyristor carries a large, steady, and usually destructive current from to ground. University of Connecticut 208

38 Latchup in CMOS n+ n+ p+ p+ Q 1 p well Q 2 Q 3 n well Q 4 CMOS inverter circuit with parasitics: P O n- substrate or epitaxial layer Q 2 Q 4 With a low output, Q 2 and Q 4 can latch on. With a high output, Q 1 and Q 3 can latch on. Latchup can be prevented by reducing the parasitic resistances and by reducing the betas of the parasitic bipolar transistors. V IN N O Q 3 Q 1 University of Connecticut 209

39 CMOS and Static Discharge diode protection circuitry bonding pad to CMOS circuitry Destructive oxide breakdown occurs at 5V for t OX 50 Angstroms. For a 0.25 µm x 1 µm gate, this corresponds to a charge of 1.7 femto coulombs, or about 10,000 electrons! Casual contact with humans or between leads can permanently damage CMOS if proper precautions are not taken. Diode protection circuitry, conductive packaging, and grounding straps have minimized this problem. University of Connecticut 210

40 Full Scaling of CMOS Full Scaling means that all voltages and dimensions are scaled by a factor of 1/s, where s > 1. C K OX t P ε µ n ε t OX t OX 2C KV 2 DD WL OX OX W L L DD P V C f L Power Density is scaled by is scaled by is scaled by is scaled by is scaled by Full scaling provides a DRAMATIC improvement in performance for CMOS, and even reduces the power density in watts per square centimeter. University of Connecticut 211

41 CMOS Constant Voltage Scaling Constant Voltage Scaling means that all dimensions are scaled by a factor of 1/s, where s > 1, but the voltages are unchanged. C K OX t P ε µ n ε t OX t OX 2C KV 2 DD WL OX OX W L L DD P V C f L Power Density is scaled by is scaled by is scaled by is scaled by is scaled by Constant voltage scaling is easier for the customer, but increases the power density. University of Connecticut 212

42 CMOS: Complex Logic Functions 20/2 20/2 20/2 20/2 V C 8/2 V D 8/2 V A 8/2 V B 8/2 The AND-OR-INVERT function can be achieved easily in CMOS using 2N transistors for N inputs. A C B D AC + BD University of Connecticut 213

43 CMOS: Complex Logic Design CIRCUIT DESIGN ANDing is achieved by series stacks of n-mosfets and parallel connection of p-mosfets. ORing is achieved by paralleling n-mosfets and the series stacking of p-mosfets. MOSFET DESIGN For the inverter, (W P / L P ) 2.5(W N / L N ). (e.g., 10 / 2 and 4 / 2) For the AOI gate, W L N N m W N L AOI N INVERTER where m is the number of series n-mosfets in the longest pull-down path and n is the number of series p-mosfets in the longest pull-up path. (in the example pictured, m 2, and n 2) University of Connecticut 214 W L P P n W P L AOI P INVERTER

44 Pseudo NMOS Logic Similar to NMOS, w/ p-mosfet pull-up X M PL pull-down network OUT Efficient realization of complex logic functions Improved packing density Disadvantage? University of Connecticut 215

45 Dynamic CMOS M PPRE CLK precharge evaluate precharge evaluate OUT IN M NO V IN CLK M NEVAL Dynamic CMOS Inverter t University of Connecticut 216

46 Dynamic CMOS M PPRE M PPRE X pulldown network OUT X pullup network OUT CLK M NEVAL CLK M NEVAL University of Connecticut 217

47 Dynamic CMOS Can t be Cascaded! CLK M PPREA M PPREB OUT A A M NOA B M NOB B CLK M NEVALA M NEVALB OUT t University of Connecticut 218

48 Domino Logic M PPRE M PPRE M PPRE A pulldown network B pullup network C pulldown network OUT CLK M NEVAL CLK M NEVAL CLK M NEVAL University of Connecticut 219

CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates. University of Connecticut 181 CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1 5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M - 0 > V M - V Tn V SDp = V DD - V M = (V DD - V M ) V Tp Equate drain

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

High-to-Low Propagation Delay t PHL

High-to-Low Propagation Delay t PHL High-to-Low Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (n-channel) immediately switches from cutoff to saturation; the p-channel pull-up switches from triode to

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information

EE 434 Lecture 33. Logic Design

EE 434 Lecture 33. Logic Design EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The two-inverter loop X Y X

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS 2 -> ESD PROTECTION CIRCUITS (INPUT PADS) -> ON-CHIP CLOCK GENERATION & DISTRIBUTION -> OUTPUT PADS -> ON-CHIP NOISE DUE TO PARASITIC INDUCTANCE -> SUPER BUFFER

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

Digital Integrated Circuits

Digital Integrated Circuits Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter :

More information

5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics CS755 5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

COMBINATIONAL LOGIC. Combinational Logic

COMBINATIONAL LOGIC. Combinational Logic COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino np-cmos Combinational vs. Sequential Logic In Logic

More information

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS 1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS The IN74AC138 is identical in pinout to the LS/ALS138, HC/HCT138. The device inputs are compatible with standard CMOS outputs; with pullup resistors,

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

NTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate

NTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate NTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate Description: The NTE4501 is a triple gate device in a 16 Lead DIP type package constructed with MOS P

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

ECE321 Electronics I

ECE321 Electronics I ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman Zarkesh-Ha Office: ECE Bldg. 30B Office hours: Tuesday :00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 CMOS

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

More information

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V

More information

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS 1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS The IN74ACT138 is identical in pinout to the LS/ALS138, HC/HCT138. The IN74ACT138 may be used as a level converter for interfacing TTL or NMOS

More information

BCD-TO-DECIMAL DECODER HIGH-VOLTAGE SILICON-GATE CMOS IW4028B TECHNICAL DATA

BCD-TO-DECIMAL DECODER HIGH-VOLTAGE SILICON-GATE CMOS IW4028B TECHNICAL DATA TECHNICAL DATA BCD-TO-DECIMAL DECODER HIGH-OLTAGE SILICON-GATE CMOS IW4028B The IW4028B types are BCD-to-decimal or binary-tooctal decoders consisting of buffering on all 4 inputs, decoding-logic gates,

More information

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

2 Input NAND Gate L74VHC1G00

2 Input NAND Gate L74VHC1G00 Input NAND Gate The is an advanced high speed CMOS input NAND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining

More information

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) SYLLABUS UNIT II VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 m CMOS Design

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM

More information

Lecture 4: CMOS review & Dynamic Logic

Lecture 4: CMOS review & Dynamic Logic Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full rail-to-rail swing high noise margins Logic levels not dependent

More information

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr. DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full rail-to-rail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

EECS 141 F01 Lecture 17

EECS 141 F01 Lecture 17 EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

NTE4514B & NTE4515B Integrated Circuit CMOS, 4 Bit Latch/4 to 16 Line Decoder

NTE4514B & NTE4515B Integrated Circuit CMOS, 4 Bit Latch/4 to 16 Line Decoder NTE4514B & NTE4515B Integrated Circuit CMOS, 4 Bit Latch/4 to 16 Line Decoder Description: The NTE4514B (output active high option) and NTE4515B (output active low option) are two output options of a 4

More information

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

More information

Features Y Wide supply voltage range 3 0V to 15V. Y High noise immunity 0 45 VDD (typ ) Y Low power TTL fan out of 2 driving 74L

Features Y Wide supply voltage range 3 0V to 15V. Y High noise immunity 0 45 VDD (typ ) Y Low power TTL fan out of 2 driving 74L CD4025 CD4023BM CD4023BC Buffered Triple 3-Input NAND Gate CD4025BM CD4025BC Buffered Triple 3-Input NOR Gate General Description These triple gates are monolithic complementary MOS (CMOS) integrated circuits

More information

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 08 MOS Inverters - III Hello, and welcome to today

More information

NTE74HC165 Integrated Circuit TTL High Speed CMOS, 8 Bit Parallel In/Serial Out Shift Register

NTE74HC165 Integrated Circuit TTL High Speed CMOS, 8 Bit Parallel In/Serial Out Shift Register NTE74HC165 Integrated Circuit TTL High Speed CMOS, 8 Bit Parallel In/Serial Out Shift Register Description: The NTE74HC165 is an 8 bit parallel in/serial out shift register in a 16 Lead DIP type package

More information

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

Dual D Flip-Flop with Set and Reset High-Speed Silicon-Gate CMOS

Dual D Flip-Flop with Set and Reset High-Speed Silicon-Gate CMOS TECHNICAL DATA IN74ACT74 Dual D Flip-Flop with Set and Reset High-Speed Silicon-Gate CMOS The IN74ACT74 is identical in pinout to the LS/ALS74, HC/HCT74. The IN74ACT74 may be used as a level converter

More information

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16] Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

More information

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

Circuit A. Circuit B

Circuit A. Circuit B UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Last modified on November 19, 2006 by Karl Skucha (kskucha@eecs) Borivoje Nikolić Homework #9

More information

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs Description: The NTE74HC173 is an high speed 3 State Quad D Type Flip Flop in a 16 Lead DIP type package that

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an N-Switch, the

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

CMOS Inverter. Performance Scaling

CMOS Inverter. Performance Scaling Announcements Exam #2 regrade requests due today. Homework #8 due today. Final Exam: Th June 12, 8:30 10:20am, CMU 120 (extension to 11:20am requested). Grades available for viewing via Catalyst. CMOS

More information

MODULE III PHYSICAL DESIGN ISSUES

MODULE III PHYSICAL DESIGN ISSUES VLSI Digital Design MODULE III PHYSICAL DESIGN ISSUES 3.2 Power-supply and clock distribution EE - VDD -P2006 3:1 3.1.1 Power dissipation in CMOS gates Power dissipation importance Package Cost. Power

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by

More information

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties. CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

DC & Transient Responses

DC & Transient Responses ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = -> = When = -> = In between, depends on transistor size and current

More information

Octal 3-State Noninverting Transparent Latch

Octal 3-State Noninverting Transparent Latch SL74HC73 Octal 3-State Noninverting Traparent Latch High-Performance Silicon-Gate CMOS The SL74HC73 is identical in pinout to the LS/ALS73. The device inputs are compatible with standard CMOS outputs;

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

More information

Digital Integrated Circuits 2nd Inverter

Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

Lecture 12 Circuits numériques (II)

Lecture 12 Circuits numériques (II) Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter First-Order DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p

More information

Properties of CMOS Gates Snapshot

Properties of CMOS Gates Snapshot MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

More information