Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting normation Quantiication o the Depolarization and Anisotropy o Fluorophore Stokes-Shited Fluorescence, On- Resonance-Fluorescence, and Rayleigh-Scattering Kumudu Siriwardana, Buddhini C.N. Vithanage, Shengli Zou, and Dongmao Zhang,* Department o Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, United States Department o Chemistry, University o Central Florida, Orlando, Florida 32816, United States * Corresponding author: Dongmao@chemistry.msstate.edu Fax: S1

2 Contents Page S1. Determination o eective excitation and emission path lengths d x and d m... S3 S2. Justiication o eqs. 39 and 40 in the main text.... S4 S3. Excitation wavelength and emission wavelengths or luorophore SSF spectrum... S6 S4. Cuvette Resonance Synchronous Background Spectra... S7 S5. Experimental Validation o the nstrument G-actor Spectrum... S8 S6. Experimental spectra or quantiication o the luorophore SSF depolarization and Anisotropy... S9 S7. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or AOH... S10 S8. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or FTC S11 S9. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or Eosin Y... S12 S10. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or QD S13 S11. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or R6G...S14 S12. RS2 spectra obtained or R6G with dierent excitation and emission polarization combinations...s15 S13. Reerence.....S16 S2

3 S1. Determination o eective excitation and emission path lengths d x and d m Figure S1. Determination o eective excitation and emission path lengths. (A) UV-vis spectra o series o Ni(NO 3 ) 2 and K 2 Cr 2 O 7 mixture solutions. The Ni(NO 3 ) 2 concentration was held constant and K 2 Cr 2 O 7 concentration was varied orm 0, 0.05, 0.1, 0.2, 0.3, and 0.4 mm. Red dashed and red solid lines indicate the excitation and water Raman photon wavelengths or the Raman spectra acquired with an excitation wavelength o 300 nm. (B) As-acquired Raman spectra with 300 nm excitation. (C) Curve-itting determination o eective excitation and emission path lengths using previously reported method. 1 (D) FE-corrected Raman spectra o the solutions. S3

4 S2 Justiication o Eqs. 39 and 40 in the main text. To acilitate the discussion, we use the X-, Y-, Z- axes shown in Figure 1 in the main text to discuss the photon propagation and polarization direction. We assume that the light propagates along X-axis in all spectral acquisitions. Taking light ttering as an example, the ttering cross-section derived rom UV-vis measurement is based on plane polarized light excitation that excitation photons can be viewed as the sum o equal amount o photons polarized perectly along the Y- and Z-axis. The total ttered photon intensity can be viewed as the sum o ttered photons with polarization along X,Y, and Z-directions. Mathematically the intensity o photons ttered by can be expressed with Eq. S1. ( ) (J, K=X, Y, or, JK Z) reers to intensity o the ttered photons with polarization along K axis that is excited with light with polarization along the J axis. = ( ) (S1) (, ZZ, ZX, ZY, YY, YX, YZ Assuming that has a depolarization o P (, the above equation can be simpliied into Eq. S2 and urther to Eq. S3. n this simpliication, we considered the act that, =, and = = = ( ). This is because YY, ZZ, ZX (, ZY, YX, YZ s in solution are uniormly distributed and the depolarization rom Z to X, Z to Y, and Y to X, and Y to Z must be identical. = 2 + 4P ( ) (S2) (, ZZ, ZZ = (2+ 4P ), (S3) ZZ Same arguments are applicable or calculating total luorophore photon ttering (Eq. S4) and photons (Eq. S5) excited with plane polarized photons. = (2+ 4P ), (S4) ZZ = (2+ 4P ), (S5) The experimentally measured ( ), ( ), and ( ) spectra are related to, VV, VV ZZ, VV ( ), ( ), and ( ) as expressed with Eq. S6, S7, and S8, respectively. δ ( is an, ZZ, ZZ, ZZ instrument parameter that is related to the detector acceptance angle and sampling volume. = δ ( ) (S6), VV (, ZZ = δ ( ) (S7), VV (, ZZ S4

5 = δ ( ) (S8), VV (, ZZ Dividing Eq. S7 and S8 by Eq. S6 leads to Eq. S9 and Eq. S10, respectively., VV, VV, VV, VV, ZZ( = (S9), ZZ, ZZ( = (S10), ZZ Using the expression o, ZZ and, ZZ( derived rom Eq. S4 and Eq. S5, respectively, one can derive the Eq. S11 and Eq. S12, respectively Since, VV, VV, VV, VV C σ = and C σ PNSP PNSP C with σ C σ and C σ C (2+ 4P ) = (S11) (2+ 4P ) (2+ 4P ) = (S12) (2+ 4P ) σ PNSP PNSP C σ =, replacing C σ in Eq. S11 and S12 and with simple and rearrangement leads to Eq. S13 and S14, respectively. Eq. S13 and S14 are Eqs 39 and 40, respectively in the main text. σ (1+ 2P = (1+ 2P ) C ) C, VV, VV σ σ (S13) (1+ 2P ) C, VV = σ ( (S14) (1+ 2P ) C, VV S5

6 S3. Excitation wavelength and emission wavelengths or luorophore SSF spectrum Table S1. Excitation and emission wavelengths o luorophores. Fluorophore Excitation wavelength (nm) QD QD AOH R6G FTC Eosin Y Emission wavelength range (nm) S6

7 S4. Cuvette Resonance Synchronous Background Spectra Figure S2. Resonance synchronous background spectra or empty cuvette. Background PRS 2 PRS 2 PRS 2 spectra were acquired as (red) ( ), (black) ( ), (blue) ( ), bg, NN bg, VV bg, VH PRS 2 PRS 2 (magenta) ( ), and (green) ( ). The spectrum with NN is acquired with bg, HV bg, HH neither excitation nor detection polarizer. S7

8 S5. Experimental Validation o the nstrument G-actor Spectrum Figure S3. Experimental data or G( validation. (top row) The as-acquired (black) SSF and (red) SSF spectra or the speciied validation luorophore. HV HH (Bottom row) comparison o the (black) SSF and (red) G( SSF spectra or the HV validation spectra. The act that the SSF and (red) G( SSF spectra overlapped HV near perectly or all the luorophore indicates the G( is valid or correcting the detection polarization bias o the instrument. t is noted that the luorophores used in this validation are all dierent rom those used or the G-actor spectrum determination. HH HH S8

9 S6. Experimental spectra or quantiication o the luorophore SSF depolarization and Anisotropy Figure S4. (Top) Solution polarized SSF emission spectra, (Bottom) SSF (black) depolarization and (red) anisotropy spectra obtained or the speciied model luorophores. S9

10 S7. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or AOH Figure S5. Experimental data obtained with luorophore AOH in water. (A) as-acquired (black) solution, VH( and (red) solution, VV(. (B) as-acquired solvent spectrum (black) PRS 2 Solv, VH and (red) PRS 2 Solv, VV. (C) the ttering spectra (black), VH and (red), VV. (D) The sample-fe-corrected solution spectra (black) solution, VH and (red) solution, VV. (E) luorophore-speciic polarized spectra (black) PRS 2, VH and (red) PRS 2, VV. (F) Comparison o the luorophore (blue) multiplication spectrum, VH G / P( with (red) PRS 2, VV. (G) The, VV spectrum obtained by subtracting PRS 2 2, VV with PRS, VH G / P(. (H) (red) luorophore polarized and (black) photon ttering cross-section spectra calculated using the polarized as the external reerence. S10

11 S8. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or FTC Figure S6. Experimental data obtained with luorophore FTC in water. (A) as-acquired (black) solution, VH( and (red) solution, VV(. (B) as-acquired solvent spectrum (black) PRS 2 Solv, VH and (red) PRS 2 Solv, VV. (C) the ttering spectra (black), VH and (red), VV. (D) The sample-fe-corrected solution spectra (black) solution, VH and (red) solution, VV. (E) luorophore-speciic polarized spectra (black) PRS 2, VH and (red) 2, VV. (F) Comparison o the luorophore (blue) multiplication spectrum PRS 2, VH G / P( with (red) PRS 2, VV. (G) The, VV spectrum obtained by subtracting PRS PRS 2 2, VV with PRS, VH G / P(. (H) (red) luorophore polarized and (black) photon ttering cross-section spectra calculated using the polarized as the external reerence. S11

12 S9. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or eosin Y Figure S7. Experimental data obtained with luorophore eosin Y in water. (A) as-acquired (black) solution, VH( and (red) solution, VV(. (B) as-acquired solvent spectrum (black) PRS 2 Solv, VH and (red) PRS 2 Solv, VV. (C) the ttering spectra (black), VH and (red), VV. (D) The sample-fe-corrected solution spectra (black) solution, VH and (red) solution, VV. (E) luorophore-speciic polarized spectra (black) PRS 2, VH and (red) PRS 2, VV. (F) Comparison o the luorophore (blue) multiplication spectrum, VH G / P( with (red) PRS 2, VV. (G) The, VV spectrum obtained by subtracting PRS 2 2, VV with PRS, VH G / P(. (H) (red) luorophore polarized and (black) photon ttering cross-section spectra calculated using the polarized as the external reerence. S12

13 S10. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or QD570 Figure S8. Experimental data obtained with luorophore QD570 in water. (A) as-acquired (black) solution, VH( and (red) solution, VV(. (B) as-acquired solvent spectrum (black) PRS 2 Solv, VH and (red) PRS 2 Solv, VV. (C) the ttering spectra (black), VH and (red), VV. (D) The sample-fe-corrected solution spectra (black) solution, VH and (red) solution, VV. (E) luorophore-speciic polarized spectra (black) PRS 2, VH and (red) PRS 2, VV. (F) Comparison o the luorophore (blue) multiplication spectrum, VH G / P( with (red) PRS 2, VV. (G) The, VV spectrum obtained by subtracting PRS 2 2, VV with PRS, VH G / P(. (H) (red) luorophore polarized and (black) photon ttering cross-section spectra calculated using the polarized as the external reerence. S13

14 S11. Experimental quantiication o luorophore ttering and depolarization and anisotropy and cross-sections or R6G Figure S9. Experimental data obtained with luorophore R6G in water. (A) as-acquired (black), and (red),. (B) as-acquired solvent spectra solution VH solution VV (black) PRS 2 Solv, VH and (red) PRS 2 Solv, VV. (C) the ttering spectra (black), VH and (red), VV. (D) The sample-fe-corrected solution spectra (black) solution, VH and (red) solution, VV. (E) luorophore-speciic polarized spectra (black) PRS 2, VH and (red) PRS 2, VV. (F) Comparison o the luorophore (blue) multiplication spectrum, VH G / P( with (red) PRS 2, VV. (G) The, VV spectrum obtained by subtracting PRS 2 2, VV with PRS, VH G / P(. (H) (red) luorophore polarized and (black) photon ttering cross-section spectra calculated using the polarized as the external reerence. S14

15 S12. RS2 spectra obtained or R6G with dierent excitation and emission polarization combinations Figure S10. RS 2 spectra obtained or R6G by changing excitation and emission polarizer. E (Black) NN and (red) VV. S15

16 S13. Reerences 1. Nettles, C. B.; Hu, J.; Zhang, D. Anal. Chem. 2015, 87, S16

THE I Establiifrad June, 1893

THE I Establiifrad June, 1893 89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium

More information

Singlet. Fluorescence Spectroscopy * LUMO

Singlet. Fluorescence Spectroscopy * LUMO Fluorescence Spectroscopy Light can be absorbed and re-emitted by matter luminescence (photo-luminescence). There are two types of luminescence, in this discussion: fluorescence and phosphorescence. A

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

M E 320 Professor John M. Cimbala Lecture 10

M E 320 Professor John M. Cimbala Lecture 10 M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Physical chemistry advanced laboratory course Raman spectroscopy of the CCl 4 molecule

Physical chemistry advanced laboratory course Raman spectroscopy of the CCl 4 molecule Physical chemistry advanced laboratory course Raman spectroscopy of the CCl 4 molecule Tiina Kiviniemi April 11, 2008 1 Introduction The object of this excercise is to familiarize you with the basics and

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Fluorescence polarisation, anisotropy FRAP

Fluorescence polarisation, anisotropy FRAP Fluorescence polarisation, anisotropy FRAP Reminder: fluorescence spectra Definitions! a. Emission sp. b. Excitation sp. Stokes-shift The difference (measured in nm) between the peak of the excitation

More information

MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography

MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography X-ray diraction in crystallography I. Goals Crystallography is the science that studies the structure (and structure-derived properties) o crystals. Among its many tools, X-ray diraction (XRD) has had

More information

Math 1314 Lesson 23 Partial Derivatives

Math 1314 Lesson 23 Partial Derivatives Math 1314 Lesson 3 Partial Derivatives When we are asked to ind the derivative o a unction o a single variable, (x), we know exactly what to do However, when we have a unction o two variables, there is

More information

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday $ j < < < > XXX Y 928 23 Y Y 4% Y 6 -- Q 5 9 2 5 Z 48 25 )»-- [ Y Y Y & 4 j q - Y & Y 7 - -- - j \ -2 -- j j -2 - - - - [ - - / - ) ) - - / j Y 72 - ) 85 88 - / X - j ) \ 7 9 Y Y 2 3» - ««> Y 2 5 35 Y

More information

DETERMINATION OF RELATIVE FLUORESCENCE QUANTUM YIELD USING THE AGILENT CARY ECLIPSE

DETERMINATION OF RELATIVE FLUORESCENCE QUANTUM YIELD USING THE AGILENT CARY ECLIPSE FOOD ANALYSIS DETERMINATION OF RELATIVE FLUORESCENCE QUANTUM YIELD USING THE AGILENT CARY ECLIPSE Solutions for Your Analytical Business Markets and Applications Programs Authors Sangeetha Ramesan Co-Authors

More information

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

Ultrasensitive Detection of Malondialdehyde with Surface Enhanced Raman Spectroscopy

Ultrasensitive Detection of Malondialdehyde with Surface Enhanced Raman Spectroscopy 1 Analytical and Bioanalytical Chemistry Electronic Supplementary Material Ultrasensitive Detection of Malondialdehyde with Surface Enhanced Raman Spectroscopy Dongmao Zhang, Rukshani Haputhanthri, Siyam

More information

LABORATORY OF ELEMENTARY BIOPHYSICS

LABORATORY OF ELEMENTARY BIOPHYSICS LABORATORY OF ELEMENTARY BIOPHYSICS Experimental exercises for III year of the First cycle studies Field: Applications of physics in biology and medicine Specialization: Molecular Biophysics Fluorescence

More information

Alignment characterization of single-wall carbon nanotubes by Raman scattering

Alignment characterization of single-wall carbon nanotubes by Raman scattering Physics Letters A 313 (2003) 302 306 www.elsevier.com/locate/pla Alignment characterization of single-wall carbon nanotubes by Raman scattering Pijun Liu, Liyue Liu, Yafei Zhang Key Laboratory for Thin

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2018 Supporting Information Highly Photoluminescent Carbon Dots Derived from

More information

and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in

and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in 5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\

More information

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Guigen Zhang Department of Bioengineering Department of Electrical and Computer Engineering Institute for Biological Interfaces of Engineering

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic half-space is presented. The elastic media is

More information

From micro to nano - fundamentals and recent developments of Raman spectroscopy

From micro to nano - fundamentals and recent developments of Raman spectroscopy From micro to nano - fundamentals and recent developments of Raman spectroscopy Dr. Matthias Krause, Nanocomposite materials group, Helmholtz-Zentrum Dresden-Rossendorf, Germany Introduction into Raman

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling: Supplementary Information PER

Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling: Supplementary Information PER Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling: Supplementary Information Wen Xiong, Chia Wei Hsu, Yaron Bromberg, 2 Jose Enrique Antonio-Lopez, 3 Rodrigo Amezcua

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

13, Applications of molecular symmetry and group theory

13, Applications of molecular symmetry and group theory Subject Paper No and Title Module No and Title Module Tag Chemistry 13, Applications of molecular symmetry and group theory 27, Group theory and vibrational spectroscopy: Part-IV(Selection rules for IR

More information

Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence.

Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence. Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence. a To determine the luminescence intensity in each transition

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Measurements of Liquid Scintillator Light Yield for Future Neutrino Experiments

Measurements of Liquid Scintillator Light Yield for Future Neutrino Experiments Measurements of Liquid Scintillator Light Yield for Future Neutrino Experiments Athena Ierokomos University of California, Berkeley 2013 University of California, Los Angeles REU Program Abstract Neutrinoless

More information

[Electronic Supplementary Information]

[Electronic Supplementary Information] [Electronic Supplementary Information] Tuning the Interparticle Distance in Nanoparticle Assemblies in Suspension via DNA-Triplex Formation: Correlation Between Plasmonic and Surface-enhanced Raman Scattering

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a) Chapter 6 Chapter 6 opener A. B. C. D. 6 E. 5 F. 8 G. H. I. J.. 7. 8 5. 6 6. 7. y 8. n 9. w z. 5cd.. xy z 5r s t. (x y). (a b) 5. (a) (x y) = x (y) = x 6y x 6y = x (y) = (x y) 6. (a) a (5 a+ b) = a (5

More information

Supplement To: Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

Supplement To: Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background Supplement To: Search or Tensor, Vector, and Scalar Polarizations in the Stochastic GravitationalWave Background B. P. Abbott et al. (LIGO Scientiic Collaboration & Virgo Collaboration) This documents

More information

Self-assembled Nanoscale DNA-porphyrin Complex for. Artificial Light-harvesting

Self-assembled Nanoscale DNA-porphyrin Complex for. Artificial Light-harvesting Supporting Information for Self-assembled Nanoscale DNA-porphyrin Complex for Artificial Light-harvesting Jakob G. Woller, Jonas K. Hannestad, and Bo Albinsson Department of Chemical and Biological Engineering/Physical

More information

A Determination of DNA-DAPI Binding using Fluorescence Spectroscopy

A Determination of DNA-DAPI Binding using Fluorescence Spectroscopy CHEM 311L Revision 1.2 A Determination of DNA-DAPI Binding using Fluorescence Spectroscopy In this Laboratory Exercise, we will determine the binding constant K f for complex formation between 4'-6-diamidino-2-phenylindole

More information

Time-Dependent Perturbation Theory. Absorption and Emission of Radiation. Band Shapes and Convolution

Time-Dependent Perturbation Theory. Absorption and Emission of Radiation. Band Shapes and Convolution Lecture 1 Perturbation Theory Lecture 2 Time-Dependent Perturbation Theory Lecture 3 Absorption and Emission of Radiation Lecture 4 Raman Scattering Workshop Band Shapes and Convolution Lecture 1 Perturbation

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : SPECTROSCOPY Light interacting with matter as an analytical tool III Pharm.D Department of Pharmaceutical Analysis SRM College Of Pharmacy,Katankulathur Electronic Excitation by UV/Vis Spectroscopy : X-ray:

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Quantum yield, polarized light, dipole moment, photoselection, dipole radiation, polarization and anisotropy

More information

Chem 310 rd. 3 Homework Set Answers

Chem 310 rd. 3 Homework Set Answers -1- Chem 310 rd 3 Homework Set Answers 1. A double line labeled S 0 represents the _ground electronic_ state and the _ground vibrational_ state of a molecule in an excitation state diagram. Light absorption

More information

Fluorescence Resonance Energy Transfer (FRET) Microscopy

Fluorescence Resonance Energy Transfer (FRET) Microscopy Fluorescence Resonance Energy Transfer () Microscopy Mike Lorenz Optical Technology Development mlorenz@mpi-cbg.de -FLM course, May 2009 What is fluorescence? Stoke s shift Fluorescence light is always

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

Application of Wavelet Transform Modulus Maxima in Raman Distributed Temperature Sensors

Application of Wavelet Transform Modulus Maxima in Raman Distributed Temperature Sensors PHOTONIC SENSORS / Vol. 4, No. 2, 2014: 142 146 Application o Wavelet Transorm Modulus Maxima in Raman Distributed Temperature Sensors Zongliang WANG, Jun CHANG *, Sasa ZHANG, Sha LUO, Cuanwu JIA, Boning

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems. Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1

More information

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction . ETA EVALUATIONS USING WEBER FUNCTIONS Introduction So ar we have seen some o the methods or providing eta evaluations that appear in the literature and we have seen some o the interesting properties

More information

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

Highly efficient SERS test strips

Highly efficient SERS test strips Electronic Supplementary Information (ESI) for Highly efficient SERS test strips 5 Ran Zhang, a Bin-Bin Xu, a Xue-Qing Liu, a Yong-Lai Zhang, a Ying Xu, a Qi-Dai Chen, * a and Hong-Bo Sun* a,b 5 10 Experimental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Electromagnetic Properties of Materials Part 2

Electromagnetic Properties of Materials Part 2 ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #3 Electromagnetic Properties of Materials Part 2 Nonlinear

More information

Raman: it s not just for noodles anymore

Raman: it s not just for noodles anymore Raman: it s not just for noodles anymore Mario Affatigato Physics Department Coe College Outline - Lecture 1 1. Introduction 2. Theory Role of polarizability; mathematical models Depolarization ratio Temperature

More information

27-1 (a) Resonance fluorescence is observed when excited atoms emit radiation of the same

27-1 (a) Resonance fluorescence is observed when excited atoms emit radiation of the same Chapter 27 27-1 (a) Resonance fluorescence is observed when excited atoms emit radiation of the same wavelength as that used to excite them. (b) Vibrational relaxation occurs when excited species collide

More information

A Guide to Recording Fluorescence Quantum Yields

A Guide to Recording Fluorescence Quantum Yields Oa~äëíçåd~êÇÉåëIpí~åãçêÉIjáÇÇäÉëÉñe^TN_nIrh A Guide to Recording Fluorescence Quantum Yields Introduction: When a fluorophore absorbs a photon of light, an energetically excited state is formed. The fate

More information

Supporting Information. for

Supporting Information. for Supporting Information for Near-Infrared Fluorescent Turn-On Probe with a Remarkable Large Stokes Shift for Imaging Selenocysteine in Living Cells and Animals Weiyong Feng, Meixing Li, Yao Sun, and Guoqiang

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Absorption photometry

Absorption photometry The light Absorption photometry Szilvia Barkó University of Pécs, Faculty of Medicines, Dept. Biophysics February 2011 Transversal wave E Electromagnetic wave electric gradient vector wavelength The dual

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

ANALYSIS OF p-norm REGULARIZED SUBPROBLEM MINIMIZATION FOR SPARSE PHOTON-LIMITED IMAGE RECOVERY

ANALYSIS OF p-norm REGULARIZED SUBPROBLEM MINIMIZATION FOR SPARSE PHOTON-LIMITED IMAGE RECOVERY ANALYSIS OF p-norm REGULARIZED SUBPROBLEM MINIMIZATION FOR SPARSE PHOTON-LIMITED IMAGE RECOVERY Aramayis Orkusyan, Lasith Adhikari, Joanna Valenzuela, and Roummel F. Marcia Department o Mathematics, Caliornia

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S,

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, Group, Rings, and Fields Rahul Pandharipande I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012 Symmetry and Group Theory for Computational Chemistry Applications Chemistry 5325/5326 Angelo R. Rossi Department of Chemistry The University of Connecticut angelo.rossi@uconn.edu January 17-24, 2012 Infrared

More information

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy)

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy) Light matter interaction Hydrogen atom Ground state spherical electron cloud Excited state : 4 quantum numbers n principal (energy) L angular momentum, 2,3... L L z projection of angular momentum S z projection

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Implementation of 3D model for generation of simulated EQE spectra

Implementation of 3D model for generation of simulated EQE spectra Supporting information Implementation of 3D model for generation of simulated EQE spectra The EQE can be simulated from EQE R taking into account the filtering of photons through ZnSe and the collection

More information

Properties of the stress tensor

Properties of the stress tensor Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201 Midterm Summary Fall 8 Yao Wang Polytechnic University, Brooklyn, NY 2 Components in Digital Image Processing Output are images Input Image Color Color image image processing Image Image restoration Image

More information

Fluorescence Polarization Anisotropy FPA

Fluorescence Polarization Anisotropy FPA Fluorescence Polarization Anisotropy FPA Optics study of light Spectroscopy = light interacts the study of the interaction between matter & electro-magnetic radiation matter Spectroscopy Atomic Spectroscopy

More information

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2 EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter

More information

DEVELOPMENT OF NANO PARTICLE SIZING SYSTEM USING FLUORESCENCE POLARIZATION

DEVELOPMENT OF NANO PARTICLE SIZING SYSTEM USING FLUORESCENCE POLARIZATION XX IMEKO World Congress Metrology for Green Growth September 9 14, 2012, Busan, Republic of Korea DEVELOPMENT OF NANO PARTICLE SIZING SYSTEM USING FLUORESCENCE POLARIZATION Terutake Hayashi, Masaki Michihata,

More information

Steady-State Fluorescence Anisotropy Studies of Molecularly Imprinted Polymer Sensors

Steady-State Fluorescence Anisotropy Studies of Molecularly Imprinted Polymer Sensors Steady-State Fluorescence Anisotropy Studies of Molecularly Imprinted Polymer Sensors Yin-Chu Chen a, Zheming Wang b, Mingdi Yan c, and Scott A. Prahl a a Biomedical Engineering Department, Oregon Health

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

How could you express algebraically, the total amount of money he earned for the three days?

How could you express algebraically, the total amount of money he earned for the three days? UNIT 4 POLYNOMIALS Math 11 Unit 4 Introduction p. 1 of 1 A. Algebraic Skills Unit 4 Polynomials Introduction Problem: Derrek has a part time job changing tires. He gets paid the same amount for each tire

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

UV-Vis optical fiber assisted spectroscopy in thin films and solutions

UV-Vis optical fiber assisted spectroscopy in thin films and solutions UV-Vis optical fiber assisted spectroscopy in thin films and solutions Description UV-Visible absorption and transmission spectra provide fundamental information for all experiments related to the attenuation

More information

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

r/lt.i Ml s. ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died. $ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

Hilbert s Metric and Gromov Hyperbolicity

Hilbert s Metric and Gromov Hyperbolicity Hilbert s Metric and Gromov Hyperbolicity Andrew Altman May 13, 2014 1 1 HILBERT METRIC 2 1 Hilbert Metric The Hilbert metric is a distance function defined on a convex bounded subset of the n-dimensional

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y-

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information