The performance of wvrgcal The influence of self-cal

Size: px
Start display at page:

Download "The performance of wvrgcal The influence of self-cal"

Transcription

1 The performance of wvrgcal The influence of self-cal Marcel Clemens, Astrophysics Group, Cavendish Laboratory, University of Cambridge, UK 18/9/2011 Summary Here I have done a simple test on the influence of s in the reduction of datasets to which self-calibration is applied. I have used the 4 quasar experiments in band 6 ( uid A002 X X4cd.ms taken on 2011, June 13 th ) and band 9 ( uid A002 X2979fa X9f.ms taken on 2011, August 31 st ). In the initial calibration (filed 0) was used as a calibrator for band 6 and (field 3) for band 9. The reduction of these is described in my previous 2 reports. I ran the calibration and imaging script twice for each dataset, once with s and once with corrections. The script included 2 passes of self-calibration, the first correcting only the phases and the second correcting amplitude and phase. The self-cal part of the script is given in the appendix. In order to simulate a dataset with weak sources I limited both self-cal passes to have a solution interval (solint) of 10 minutes. (For bright sources one could of course reduce this very significantly and obtain better images). The difference between the two reductions is therefore that, in the case of the s, the complex gains are corrected on timescales shorter than 10 minutes via WVRGCAL, whereas for s the gains are corrected only on 10 minute timescales. The table summarises the results of these reductions and the figures compare the resulting maps for the two cases. Only for the band 9 data can any difference be discerned in the maps. Conclusions In band 6 the S/N improvements obtained by doing the wvr corrections were: , , , The improvements are modest (2-32%). At band 9 the improvements were: , 25 48, , These reflect falls in the rms values. These are big improvements (40-92%) and suggest that s are important even at band 9 where the pwv has to be very low. This is especially true for fainter sources. In fact, for the four sources in this dataset, the improvement provided by WVRGCAL was inversely proportional to the source brightness. Though the conclusion for band 9 here is based only on a single dataset, and so should be taken cautiously, it appears that for real observations, where self-cal would often be used, and S/N will often be low, s are extremely important.

2 Table 1: Stokes I image properties after self-cal with and without s. Max and min refer to the whole image, rms refers to a large background area not including the source, omin is the minimum within the background area. Flux, a, b and PA refer to the Gaussian fit to the source by imfit. wvrgcal max min rms omin max/rms imfit Gaussian parameters flux a b PA Band no wvr ± ± ± wvr ± ± ± no wvr e ± ± ± wvr e ± ± ± no wvr e ± ± ± wvr e ± ± ± no wvr e e ± 6e ± ± wvr e e ± 6e ± ± Band no wvr ± ± ± wvr ± ± ± no wvr ± ± ± wvr ± ± ± no wvr ± ± ± wvr ± ± ± no wvr ± ± ± wvr ± ± ±

3 field 0 field 0 field 1 field 1 field 2 field 2 field 3 field 3 Figure 1: Band 9.

4 Appendix Self-calibration script with image statistics. #Previous clean was run with the default calready=true. Required for subsequent self-cal. print ---- SELF-CAL ON BAND 9 DATASET WITH WVR CORRECTIONS ---- root = wvr1 #Root name to use for all cal tables and png files. split2 = X9f wvr1 split cont.ms #Name for new ms after final split that merges channels. print ---- FIRST PASS OF PHASE ONLY SELF-CALIBRATION ---- default(gaincal) caltable = self 1.pcal #Output table gaintype = T #Average polarisations to increase S/N. calmode = p #Phases only for now. solint = 10min #Might want inf. combine = #Separate solutions for each SPW. refant = DV06 minblperant = 4 minsnr = 2 gaincal() print ---- MAKING PLOTS OF PHASE VS TIME IN THE CAL TABLE ---- #Look at the resulting table: default(plotcal) caltable = self 1.pcal xaxis = time yaxis = phase spw = antenna = iteration = antenna subplot = 441 plotrange = [0,0,-120,120] figfile = self 1 phase.png plotcal() print ---- APPLYING PHASE ONLY CAL TABLE ---- default(applycal) gaintable = self 1.pcal applycal() print ---- MAKING PHASE ONLY SELF-CAL IMAGES ---- default(clean) calready = T imagermode = csclean cell = 0.1arcsec imsize = 512 niter = 200 stokes = IQUV weighting = briggs robust = 0.0 spw = mode = mfs mask = [245, 245, 267, 267]

5 interactive = F #Change if you want to interact. for field in [ 0, 1, 2, 3 ]: field = field imagename = root+ 1pcal f +field clean() #SECOND PASS of phase only self-calibration (not used here): #Don t default it. # #caltable = self 2.pcal #Output table #solint = 2min #gaincal() print ---- AMP AND PHASE SELF-CAL ---- tget(gaincal) caltable = self ap.cal gaintable = self 1.pcal #If you have just done one iteration of phase self-cal. calmode = ap solint = 10min gaincal() print ---- MAKING PLOTS OF PHASE VS TIME IN AMP & PHASE CAL TABLE ---- default(plotcal) caltable= self ap.cal xaxis = time yaxis = phase spw = iteration = antenna plotrange = [0,0,-60,60] #This range will change for different datasets. subplot=441 figfile= self ap phase.png plotcal() print ---- MAKING PLOTS OF AMP VS TIME IN AMP & PHASE CAL TABLE ---- tget(plotcal) yaxis = amp plotrange = [] figfile = self ap amp.png plotcal() print ---- APPLYING AMP & PHASE CAL TABLES TO DATA ---- default(applycal) gaintable = [ self 1.pcal, self ap.cal ] calwt = F applycal() print ---- PLOTTING AMP VS TIME FOR CORRECTED DATA ---- default(plotms) xaxis = time yaxis = amp avgchannel = #Already continuum. ydatacolumn = corrected coloraxis = spw plotfile = selfcal time.png plotms()

6 print ---- PLOTTING AMP VS UV-DIST FOR CORRECTED DATA ---- xaxis = uvdist plotfile = selfcal uvdist.png plotms() #Could flag plenty of high baselines. Don t bother flagging. print ---- MAKING FINAL AMP & PHASE SELF-CAL IMAGES ---- tget(clean) niter = 200 interactive = F #Change if you want to interact. for field in [ 0, 1, 2, 3 ]: field = field imagename = root+ apcal f +field clean() print ---- IMAGES MADE, NOW COMPUTING STATS ---- flds = [ 0, 1, 2, 3 ] for field in flds: imname = root+ apcal f +field+.image obj = imhead(imname, mode= get, hdkey= object ) st = I gstat I = imstat(imname, stokes=st) bgstat I = imstat(imname, stokes=st, box= 20,320,490,490 ) st = Q gstat Q = imstat(imname, stokes=st) bgstat Q = imstat(imname, stokes=st, box= 20,320,490,490 ) st = U gstat U = imstat(imname, stokes=st) bgstat U = imstat(imname, stokes=st, box= 20,320,490,490 ) st = V gstat V = imstat(imname, stokes=st) bgstat V = imstat(imname, stokes=st, box= 20,320,490,490 ) print str(obj[ value ])+ \n + ST MAX MIN RMS OMIN MAX/RMS\nI +str(gstat I[ max ][0])+ + str(gstat I[ min ][0])+ +str(bgstat I[ rms ][0])+ +str(bgstat I[ min ][0])+ +str(gstat I[ max ][0]/bgstat I[ rms ][0]) + \n + Q +str(gstat Q[ max ][0])+ +str(gstat Q[ min ][0])+ +str(bgstat Q[ rms ][0])+ +str(bgstat Q[ min ][0])+ +str(gstat Q[ max ][0]/bgstat Q[ rms ][0]) + \n + U +str(gstat U[ max ][0])+ +str(gstat U[ min ][0])+ +str(bgstat U[ rms ][0])+ +str(bgstat U[ min ][0])+ +str(gstat U[ max ][0]/bgstat U[ rms ][0]) + \n + V +str(gstat V[ max ][0])+ +str(gstat V[ min ][0])+ +str(bgstat V[ rms ][0])+ +str(bgstat V[ min ][0])+ +str(gstat V[ max ][0]/bgstat V[ rms ][0]) print ---- EXPORTING FITS (I,Q,U,V) IMAGES ---- default(exportfits) for field in flds: imname = root+ apcal f +field+.image exportfits(imagename=imname, fitsimage=imname+.fits ) print ---- RUNNING IMFIT ON STOKES I SELF-CAL IMAGES ---- default(imfit) for field in flds: imname = root f +field.image print imname fit vals = imfit(imname, box = 243,243,269,269, stokes = I ) flx = fit vals[ results ][ component0 ][ flux ] shp = fit vals[ results ][ component0 ][ shape ] print Flux: + str(round(flx[ value ][0],4))+ +/ +str(round(flx[ error ][0],5)) + \n +

7 Major axis FWHM: + str(round(shp[ majoraxis ][ value ],3))+ +/ +str(round(shp[ majoraxiserror ][ value ],4)) + \n + Minor axis FWHM: +str(round(shp[ minoraxis ][ value ],3))+ +/ +str(round(shp[ minoraxiserror ][ value ],4)) + \n + PA: + str(round(shp[ positionangle ][ value ],1))

A Better Interface Between Scientists and Data Reduction Software

A Better Interface Between Scientists and Data Reduction Software A Better Interface Between Scientists and Data Reduction Software B. Nikolic Astrophysics Group, Cavendish Laboratory, University of Cambridge http://www.mrao.cam.ac.uk/ bn204/ ALMA Software Development

More information

Band 4 & 8 Imaging Verification Test Report: 30 May 2014

Band 4 & 8 Imaging Verification Test Report: 30 May 2014 Band 4 & 8 Imaging Verification Test Report: 30 May 2014 ALMA Technical Note Number: 3 Status: FINAL Prepared by: Organization: Date: Takahashi Satoko JAO/NAOJ 30 May 2014 Band 4 Imaging Verification Report

More information

What is this radio interferometry business anyway? Basics of interferometry Calibration Imaging principles Detectability Using simulations

What is this radio interferometry business anyway? Basics of interferometry Calibration Imaging principles Detectability Using simulations What is this radio interferometry business anyway? Basics of interferometry Calibration Imaging principles Detectability Using simulations Interferometry Antenna locations Earth rotation aperture synthesis

More information

ALMA Development Program

ALMA Development Program ALMA Development Program Jeff Kern CASA Team Lead Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Opportunities for Software

More information

Next Generation VLA Memo. 41 Initial Imaging Tests of the Spiral Configuration. C.L. Carilli, A. Erickson March 21, 2018

Next Generation VLA Memo. 41 Initial Imaging Tests of the Spiral Configuration. C.L. Carilli, A. Erickson March 21, 2018 Next Generation VLA Memo. 41 Initial Imaging Tests of the Spiral Configuration C.L. Carilli, A. Erickson March 21, 2018 Abstract We investigate the imaging performance of the Spiral214 array in the context

More information

RFI Identification and Automatic Flagging

RFI Identification and Automatic Flagging RFI Identification and Automatic Flagging 1388MHz Momjian Urvashi Rau & Emmanuel 1756 MHz NRAO VLA Data Reduction Workshop 27 31 October 2014 1 Outline RFI at the VLA + Online Flags Automatic Flagging

More information

arxiv: v1 [astro-ph.im] 19 Oct 2012

arxiv: v1 [astro-ph.im] 19 Oct 2012 ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer arxiv:1210.5306v1 [astro-ph.im] 19 Oct 2012 Satoki Matsushita a,b, Koh-Ichiro Morita c,b, Denis Barkats b, Richard E. Hills

More information

Blazar monitoring with KAT-7: PKS a test case

Blazar monitoring with KAT-7: PKS a test case Mem. S.A.It. Vol. 86, 42 c SAIt 2015 Memorie della Blazar monitoring with KAT-7: PKS1510-089 a test case N. Oozeer 1,2,3, T. Mauch 1, and R. Booth 1 1 SKA South Africa, The Park, Park Road, Pinelands,

More information

Atmospheric phase correction for ALMA with water-vapour radiometers

Atmospheric phase correction for ALMA with water-vapour radiometers Atmospheric phase correction for ALMA with water-vapour radiometers B. Nikolic Cavendish Laboratory, University of Cambridge January 29 NA URSI, Boulder, CO B. Nikolic (University of Cambridge) WVR phase

More information

A visual calibration procedure developed by Eric Keto for the MIR software

A visual calibration procedure developed by Eric Keto for the MIR software A visual calibration procedure developed by Eric Keto for the MIR software First draft 2013 Updated November 2015 I developed the data analysis flow described in this example so that the astronomer can

More information

Status of the Solar Imaging Pipeline & Solar Data Center

Status of the Solar Imaging Pipeline & Solar Data Center Status of the Solar Imaging Pipeline & Solar Data Center Frank Breitling Gottfried Mann, Christian Vocks Leibniz-Institut für Astrophysik Potsdam (AIP) Solar Key Science Project LOFAR Status Meeting 2012,

More information

Non-Closing Offsets on the VLA. R. C. Walker National Radio Astronomy Observatory Charlottesville VA.

Non-Closing Offsets on the VLA. R. C. Walker National Radio Astronomy Observatory Charlottesville VA. VLA SCIENTIFIC MEMORANDUM NO. 152 Non-Closing Offsets on the VLA R. C. Walker National Radio Astronomy Observatory Charlottesville VA. March 1984 Recent efforts to obtain very high dynamic range in VLA

More information

1 General Considerations: Point Source Sensitivity, Surface Brightness Sensitivity, and Photometry

1 General Considerations: Point Source Sensitivity, Surface Brightness Sensitivity, and Photometry MUSTANG Sensitivities and MUSTANG-1.5 and - Sensitivity Projections Brian S. Mason (NRAO) - 6sep1 This technical note explains the current MUSTANG sensitivity and how it is calculated. The MUSTANG-1.5

More information

The in-orbit wavelength calibration of the WFC G800L grism

The in-orbit wavelength calibration of the WFC G800L grism The in-orbit wavelength calibration of the WFC G800L grism A. Pasquali, N. Pirzkal, J.R. Walsh March 5, 2003 ABSTRACT We present the G800L grism spectra of the Wolf-Rayet stars WR45 and WR96 acquired with

More information

Radio interferometry at millimetre and sub-millimetre wavelengths

Radio interferometry at millimetre and sub-millimetre wavelengths Radio interferometry at millimetre and sub-millimetre wavelengths Bojan Nikolic 1 & Frédéric Gueth 2 1 Cavendish Laboratory/Kavli Institute for Cosmology University of Cambridge 2 Institut de Radioastronomie

More information

arxiv: v1 [astro-ph.im] 11 Jan 2017

arxiv: v1 [astro-ph.im] 11 Jan 2017 Draft version January 2, 207 Preprint typeset using L A TEX style emulateapj v. 5/2/ ALMA LONG BASELINE CAMPAIGNS: PHASE CHARACTERISTICS OF ATMOSPHERE AT LONG BASELINES IN THE MILLIMETER AND SUBMILLIMETER

More information

Deconvolving Primary Beam Patterns from SKA Images

Deconvolving Primary Beam Patterns from SKA Images SKA memo 103, 14 aug 2008 Deconvolving Primary Beam Patterns from SKA Images Melvyn Wright & Stuartt Corder University of California, Berkeley, & Caltech, Pasadena, CA. ABSTRACT In this memo we present

More information

Parameter Uncertainties in IMFIT CASA Requirements Document Brian S. Mason (NRAO) March 5, 2014

Parameter Uncertainties in IMFIT CASA Requirements Document Brian S. Mason (NRAO) March 5, 2014 Parameter Uncertainties in IMFIT CASA Requirements Document Brian S. Mason (NRAO) March 5, 014 The CASA task IMFIT fits elliptical Gaussians to image data. As reported by several users in CASA tickets

More information

ASKAP Array Configurations: Options and Recommendations. Ilana Feain, Simon Johnston & Neeraj Gupta Australia Telescope National Facility, CSIRO

ASKAP Array Configurations: Options and Recommendations. Ilana Feain, Simon Johnston & Neeraj Gupta Australia Telescope National Facility, CSIRO ASKAP Array Configurations: Options and Recommendations Ilana Feain, Simon Johnston & Neeraj Gupta Australia Telescope National Facility, CSIRO August 6, 2008 Executive Summary In this discussion document

More information

ASTRONOMY AND ASTROPHYSICS. Letter to the Editor VSOP imaging of S : a close-up on plasma instabilities in the jet LETTER

ASTRONOMY AND ASTROPHYSICS. Letter to the Editor VSOP imaging of S : a close-up on plasma instabilities in the jet LETTER Astron. Astrophys. 340, L60 L64 (1998) Letter to the Editor VSOP imaging of S5 0836+710: a close-up on plasma instabilities in the jet ASTRONOMY AND ASTROPHYSICS A.P. Lobanov 1, T.P. Krichbaum 1, A. Witzel

More information

Corrections for time-dependence of ACIS gain

Corrections for time-dependence of ACIS gain Corrections for time-dependence of ACIS gain July 30, 2004 A.Vikhlinin,R.Edgar,N.Schulz Abstract There is a secular drift of the average PHA values for photons of a fixed energy E. This drift is caused

More information

Sensitivity. Bob Zavala US Naval Observatory. Outline

Sensitivity. Bob Zavala US Naval Observatory. Outline Sensitivity Bob Zavala US Naval Observatory Tenth Synthesis Imaging Summer School University of New Mexico, June 13-20, 2006 Outline 2 What is Sensitivity? Antenna Performance Measures Interferometer Sensitivity

More information

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre SPIRE Observing Strategies Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA Outline SPIRE quick overview Observing with SPIRE Astronomical Observation Templates (AOT)

More information

ALMA Water Vapour Radiometry: Tests at the SMA

ALMA Water Vapour Radiometry: Tests at the SMA ALMA Water Vapour Radiometry: Tests at the SMA P.G.Anathasubramanian 1,4, R.E.Hills 1, K.G.Isaak 1,5, B.Nikolic 1, M.Owen 1, J.S.Richer 1, H.Smith 1, A.J.Stirling 1,6, R.Williamson 1,7, V.Belitsky 2, R.Booth

More information

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF The Australia Telescope National Facility The Australia Telescope Ray Norris CSIRO ATNF Why is it a National Facility? Funded by the federal government (through CSIRO) Provides radio-astronomical facilities

More information

Continuum Observing. Continuum Emission and Single Dishes

Continuum Observing. Continuum Emission and Single Dishes July 11, 2005 NAIC/NRAO Single-dish Summer School Continuum Observing Jim Condon Continuum Emission and Single Dishes Continuum sources produce steady, broadband noise So do receiver noise and drift, atmospheric

More information

Date: Table of Contents 1 GOAL CONTEXT DESCRIPTION OF THE TEST PROCEDURE RESULTS LOAD CHOP POINTED OBSERVATIONS..

Date: Table of Contents 1 GOAL CONTEXT DESCRIPTION OF THE TEST PROCEDURE RESULTS LOAD CHOP POINTED OBSERVATIONS.. Date: 2011-01-18 Subject: Alternative Prepared by: F. Herpin, C. Risacher date: 2011-01-18 Team members: F.Herpin, C. Risacher, M. Melchior Checked by: date: date: Revised by: - date: See revision record

More information

On Calibration of ALMA s Solar Observations

On Calibration of ALMA s Solar Observations On Calibration of ALMA s Solar Observations M.A. Holdaway National Radio Astronomy Observatory 949 N. Cherry Ave. Tucson, AZ 85721-0655 email: mholdawa@nrao.edu January 4, 2007 Abstract 1 Introduction

More information

esac Release Note for the Herschel SPIRE Fourier-Transform Spectrometer Background Subtracted Spectra

esac Release Note for the Herschel SPIRE Fourier-Transform Spectrometer Background Subtracted Spectra esac European Space Astronomy Centre (ESAC) P.O. Box, 78 28691 Villanueva de la Cañada, Madrid Spain Release Note for the Herschel SPIRE Fourier-Transform Spectrometer Background Subtracted Spectra Prepared

More information

Analysis of wavelength shifts reported for X-shooter spectra

Analysis of wavelength shifts reported for X-shooter spectra Analysis of wavelength shifts reported for X-shooter spectra S. Moehler (SDP) June 15, 2015 Executive Summary I investigated the causes for wavelength offsets seen in telluric lines and sky lines of extracted

More information

Advanced Laser Technologies Homework #2

Advanced Laser Technologies Homework #2 Advanced Laser Technologies Homework #2 Chih-Han Lin student ID: r99245002 Graduate Institute of Applied Physics, National Taiwan University I. DEMONSTRATION OF MODE-LOCKING PULSES Assume that complex

More information

1. INTRODUCTION 2. SOURCE SELECTION

1. INTRODUCTION 2. SOURCE SELECTION THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 124:285È381, 1999 October ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. VLA IMAGES AT 5 GHz OF 212 SOUTHERN EXTRAGALACTIC

More information

ASKAP Commissioning Update #7 April-July Latest results from the BETA test array

ASKAP Commissioning Update #7 April-July Latest results from the BETA test array ASKAP Commissioning Update #7 April-July 2014 Welcome to the seventh edition of the ASKAP Commissioning Update. This includes all the latest results from commissioning of the six-antenna Boolardy Engineering

More information

Monte Carlo Quality Assessment (MC-QA)

Monte Carlo Quality Assessment (MC-QA) Monte Carlo Quality Assessment (MC-QA) For the Planck ERCSC Team Planck Early Results VII, 2011, A&A & Chary et al. 2004, ApJ Motivation Any data product needs to go through quality assessment At the image

More information

University of Cape Town

University of Cape Town University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is

More information

arxiv: v1 [astro-ph.im] 25 Feb 2013

arxiv: v1 [astro-ph.im] 25 Feb 2013 Astronomy & Astrophysics manuscript no. wvrpaper c ESO 8 September 9, 8 Phase Correction for ALMA with 83 GHz Water Vapour Radiometers B. Nikolic,, R. C. Bolton,, S. F. Graves,, R. E. Hills, 3, and J.

More information

VHF Dipole effects on P-Band Beam Characteristics

VHF Dipole effects on P-Band Beam Characteristics VHF Dipole effects on P-Band Beam Characteristics D. A. Mitchell, L. J. Greenhill, C. Carilli, R. A. Perley January 7, 1 Overview To investigate any adverse effects on VLA P-band performance due the presence

More information

New Results of Fully Bayesian

New Results of Fully Bayesian UCI April 3, 2012 Calibration Samples Principle Component Analysis Model Building Three source parameter sampling schemes Simulation Quasar data sets Speed Up Pragmatic Bayesian Method Frequency Analysis

More information

New calibration sources for very long baseline interferometry in the 1.4-GHz band

New calibration sources for very long baseline interferometry in the 1.4-GHz band New calibration sources for very long baseline interferometry in the 1.4-GHz band M K Hailemariam 1,2, M F Bietenholz 2, A de Witt 2, R S Booth 1 1 Department of Physics, University of Pretoria, South

More information

Polarization in Interferometry

Polarization in Interferometry Polarization in Interferometry Calibration Tutorial Ivan Martı -Vidal Onsala Space Observatory Chalmers University of Technology (Sweden) European Radio Interferometry School Dwingeloo (October 2017) TUTORIAL

More information

Pseudocontinuum Polarimetry with the GBT Brian S. Mason v.1 31may07 v.2 03sep07. Abstract

Pseudocontinuum Polarimetry with the GBT Brian S. Mason v.1 31may07 v.2 03sep07. Abstract Pseudocontinuum Polarimetry with the GBT Brian S. Mason v.1 31may07 v.2 03sep07 Abstract We outline a simple method for calibrating correlation polarimetric data from the GBT spectrometer, and describe

More information

Principles of Interferometry. Hans-Rainer Klöckner IMPRS Black Board Lectures 2014

Principles of Interferometry. Hans-Rainer Klöckner IMPRS Black Board Lectures 2014 Principles of Interferometry Hans-Rainer Klöckner IMPRS Black Board Lectures 2014 acknowledgement Mike Garrett lectures James Di Francesco crash course lectures NAASC Lecture 5 calibration image reconstruction

More information

Non-Imaging Data Analysis

Non-Imaging Data Analysis Outline 2 Non-Imaging Data Analysis Greg Taylor Based on the original lecture by T.J. Pearson Introduction Inspecting visibility data Model fitting Some applications Superluminal motion Gamma-ray bursts

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

ALMA as a Scientific Instrument. Robert Laing

ALMA as a Scientific Instrument. Robert Laing ALMA as a Scientific Instrument Outline What is ALMA? ALMA as it will be ALMA Operations Early Science Planning an ALMA observation Current status Atacama Large Millimetre/ Sub-Millimetre Array Aperture

More information

E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements

E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements e-merlin: capabilities, expectations, issues EVN/e-VLBI: capabilities, development Requirements Achieving sensitivity Dealing with bandwidth,

More information

Imaging Capability of the LWA Phase II

Imaging Capability of the LWA Phase II 1 Introduction Imaging Capability of the LWA Phase II Aaron Cohen Naval Research Laboratory, Code 7213, Washington, DC 2375 aaron.cohen@nrl.navy.mil December 2, 24 The LWA Phase I will consist of a single

More information

ESO Phase 3 Data Release Description. Data Collection ATLASGAL Release Number 1 Data Provider

ESO Phase 3 Data Release Description. Data Collection ATLASGAL Release Number 1 Data Provider ESO Phase 3 Data Release Description Data Collection ATLASGAL Release Number 1 Data Provider Frederic Schuller, K. Immer, Y. Contreras, T. Csengeri, J. S. Urquhart Date 19.01.2016 Abstract The APEX Telescope

More information

V L B A T E S T M E M O 64. Checking V L B A Polarization Using t h e Squint. Craig Walker National Radio Astronomy Observatory.

V L B A T E S T M E M O 64. Checking V L B A Polarization Using t h e Squint. Craig Walker National Radio Astronomy Observatory. V L B A T E S T M E M O 64 Checking V L B A Polarization Using t h e Squint Craig Walker National Radio Astronomy Observatory May 14, 2001 1. Background. It is possible to check almost all of the equipment

More information

Introduction to Interferometry

Introduction to Interferometry Introduction to Interferometry Ciro Pappalardo RadioNet has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 730562 Radioastronomy H.Hertz

More information

Outline. Mm-Wave Interferometry. Why do we care about mm/submm? Star-forming galaxies in the early universe. Dust emission in our Galaxy

Outline. Mm-Wave Interferometry. Why do we care about mm/submm? Star-forming galaxies in the early universe. Dust emission in our Galaxy Outline 2 Mm-Wave Interferometry Debra Shepherd & Claire Chandler Why a special lecture on mm interferometry? Everything about interferometry is more difficult at high frequencies Some problems are unique

More information

AME characterisation in the Taurus Molecular Clouds with the QUIJOTE experiment

AME characterisation in the Taurus Molecular Clouds with the QUIJOTE experiment AME characterisation in the Taurus Molecular Clouds with the QUIJOTE experiment Frédérick Poidevin Marie-Curie Individual Fellow at IAC-Tenerife, Spain With the QUIJOTE team. ESA/ESTEC, 23 June, 20156

More information

The Effective Spectral Resolution of the WFC and HRC Grism

The Effective Spectral Resolution of the WFC and HRC Grism The Effective Spectral Resolution of the WFC and HRC Grism A. Pasquali, N. Pirzkal, J.R. Walsh, R.N. Hook, W. Freudling, R. Albrecht, R.A.E. Fosbury March 7, 2001 ABSTRACT We present SLIM simulations of

More information

HERA Memo 51: System Noise from LST Di erencing March 17, 2017

HERA Memo 51: System Noise from LST Di erencing March 17, 2017 HERA Memo 51: System Noise from LST Di erencing March 17, 2017 C.L. Carilli 1,2 ccarilli@aoc.nrao.edu ABSTRACT I derive the visibility noise values (in Jy), and the system temperature for HERA, using di

More information

Attempts to Mitigate Trapping Effects in Scanned Grism Observations of Exoplanet Transits with WFC3/IR

Attempts to Mitigate Trapping Effects in Scanned Grism Observations of Exoplanet Transits with WFC3/IR SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA WFC3 Instrument Science Report 2014-14 Attempts to Mitigate Trapping Effects in Scanned Grism Observations of Exoplanet Transits with WFC3/IR

More information

High (Angular) Resolution Astronomy

High (Angular) Resolution Astronomy High (Angular) Resolution Astronomy http://www.mrao.cam.ac.uk/ bn204/ mailto:b.nikolic@mrao.cam.ac.uk Astrophysics Group, Cavendish Laboratory, University of Cambridge January 2012 Outline Science Drivers

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. VOLUME: 1 ARTICLE NUMBER: 0172 Formation of wide binaries by turbulent fragmentation Jeong-Eun Lee 1, Seokho Lee 1, Michael Dunham 2, Ken ichi Tatematsu

More information

IRAM Memo IRAM-30m EMIR time/sensitivity estimator

IRAM Memo IRAM-30m EMIR time/sensitivity estimator IRAM Memo 2009-1 J. Pety 1,2, S. Bardeau 1, E. Reynier 1 1. IRAM (Grenoble) 2. Observatoire de Paris Feb, 18th 2010 Version 1.1 Abstract This memo describes the equations used in the available in the GILDAS/ASTRO

More information

Cold gas at high redshifts. R. Srianand Inter-University Center for Astronomy & Astrophysics, Pune - India

Cold gas at high redshifts. R. Srianand Inter-University Center for Astronomy & Astrophysics, Pune - India Cold gas at high redshifts R. Srianand Inter-University Center for Astronomy & Astrophysics, Pune - India Why cold gas? Stars are formed from the cold gas. IAS, Bangalore,Nov, 2009 1 Why cold gas? Physical

More information

Long Baselines I. Olaf Wucknitz.

Long Baselines I. Olaf Wucknitz. Long Baselines I Olaf Wucknitz wucknitz@astro.uni-bonn.de GLOW Annual Meeting, Bielefeld, 18 19 June 2012 Long Baselines I status one year ago current array Crab nebula/pulsar 3C123 Jupiter O. Wucknitz

More information

THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS

THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS F. Maccagni; R. Morganti; T. Oosterloo; K. Geréb; N. Maddox, J. Allison THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS A SURVEY BEFORE THE BLIND SURVEYS During

More information

Wirtinger calibration and imaging for the extragalactic surveys

Wirtinger calibration and imaging for the extragalactic surveys Wirtinger calibration and imaging for the extragalactic surveys Cyril Tasse In collaboration with Oleg Smirnov With the help of - Martin Hardcastle - Tim Shimwell - Wendy Williams - Francesco de Gasperin

More information

Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations

Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations Mon. Not. R. Astron. Soc. 385, 2166 2174 (28) doi:10.1111/j.1365-2966.28.12984.x Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations Sk. Saiyad

More information

Radio Interferometry Fundamentals. John Conway Onsala Space Obs and Nordic ALMA ARC-node

Radio Interferometry Fundamentals. John Conway Onsala Space Obs and Nordic ALMA ARC-node Radio Interferometry Fundamentals John Conway Onsala Space Obs and Nordic ALMA ARC-node So far discussed only single dish radio/mm obs Resolution λ/d, for D=20m, is 30 at mm-wavelengths and 30 (diameter

More information

The Source and Lens of B

The Source and Lens of B The Source and Lens of B0218+357 New Polarization Radio Data to Constrain the Source Structure and H 0 with LensCLEAN Olaf Wucknitz Astrophysics Seminar Potsdam University, Germany 5 July 2004 The source

More information

ALMA Science Verification Program. Martin Zwaan ALMA Regional Centre ESO, Garching

ALMA Science Verification Program. Martin Zwaan ALMA Regional Centre ESO, Garching ALMA Science Verification Program Martin Zwaan ALMA Regional Centre ESO, Garching Science Verification The process by which ALMA demonstrates that it is capable of producing data of the required quality

More information

Central image detection with VLBI

Central image detection with VLBI Central image detection with VLBI Zhang Ming Xinjiang Astronomical Observatory, Chinese Academy of Sciences RTS meeting, Manchester, 2012.04.19 Strong lensing nomenclature Structure formation at subgalactic

More information

Study of Large-Scale Galactic Magnetic Fields at Low Frequencies. Jana Köhler - MPIfR -

Study of Large-Scale Galactic Magnetic Fields at Low Frequencies. Jana Köhler - MPIfR - Study of Large-Scale Galactic Magnetic Fields at Low Frequencies Jana Köhler - MPIfR - How to measure Magnetic Fields??? How to measure Galactic Magnetic Field? Linear Polarization of Starlight product

More information

SHELLQs-ALMA (Cycle 4)

SHELLQs-ALMA (Cycle 4) ver Mar. 23, 2017 SHELLQs-ALMA (Cycle 4) Takuma Izumi IoA/UTokyo (takumaizumi@ioa.s.u-tokyo.ac.jp) Cycle 4 Data Delivery Quasar zopt M1450 Deliver (JST) DL (Mpc) LBol (Lsun) BAL J0859+0022 6.39-23.56 Feb

More information

Determining the Specification of an Aperture Array for Cosmological Surveys

Determining the Specification of an Aperture Array for Cosmological Surveys Determining the Specification of an Aperture Array for Cosmological Surveys P. Alexander University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, UK. A. J. aulkner Jodrell Bank

More information

Reverberation Mapping in the Era of MOS and Time-Domain Surveys: from SDSS to MSE

Reverberation Mapping in the Era of MOS and Time-Domain Surveys: from SDSS to MSE Reverberation Mapping in the Era of MOS and Time-Domain Surveys: from SDSS to MSE Yue Shen Carnegie Obs -> University of Illinois at Urbana-Champaign MSE Science Team Meeting, July 29-31 2015, Big Island

More information

DISTANCES ON COSMOLOGICAL SCALES WITH VLTI. 1. Introduction

DISTANCES ON COSMOLOGICAL SCALES WITH VLTI. 1. Introduction DISTANCES ON COSMOLOGICAL SCALES WITH VLTI MARGARITA KAROVSKA, MARTIN ELVIS and MASSIMO MARENGO Harvard-Smithsonian Center for Astrophysics Abstract. We present here a new method using interferometric

More information

Data Processing in DES

Data Processing in DES Data Processing in DES Brian Yanny Oct 28, 2016 http://data.darkenergysurvey.org/fnalmisc/talk/detrend.p Basic Signal-to-Noise calculation in astronomy: Assuming a perfect atmosphere (fixed PSF of p arcsec

More information

Statistical inversion of the LOFAR Epoch of Reionization experiment data model

Statistical inversion of the LOFAR Epoch of Reionization experiment data model Statistical inversion of the LOFAR Epoch of Reionization experiment data model ASTRON, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, the Netherlands Kapteyn Astronomical Institute, Landleven 12, 9747 AD,

More information

Dual differential polarimetry. A technique to recover polarimetric information from dual-polarization observations

Dual differential polarimetry. A technique to recover polarimetric information from dual-polarization observations A&A 593, A61 (216) DOI: 1.151/4-6361/21628225 c ESO 216 Astronomy & Astrophysics Dual differential polarimetry. A technique to recover polarimetric information from dual-polarization observations I. Martí-Vidal,

More information

Customizing pgstar for your models

Customizing pgstar for your models MESA Summer School 10Aug2015 Customizing pgstar for your models Monique Windju / Frank Timmes/ Emily Leiner SI 2 SPIDER Color coded notation used throughout this lecture + lab: Things you do are in yellow,

More information

Atmospheric Phase Characteristics of ALMA Long Baseline

Atmospheric Phase Characteristics of ALMA Long Baseline Atmospheric Phase Characteristics of ALMA Long Baseline Satoki Matsushita (ASIAA) Y. Asaki, E.B. Fomalont, K.-I. Morita, D. Barkats, R.E. Hills, R. Kawabe, L.T. Maud, B. Nikolic, R.P.J. Tilanus, C. Vlahakis,

More information

Methanol masers and their environment at high resolution

Methanol masers and their environment at high resolution Mon. Not. R. Astron. Soc. 300, 1131 1157 (1998) Methanol masers and their environment at high resolution C. J. Phillips, 1 R. P. Norris, 2 S. P. Ellingsen 1 and P. M. McCulloch 1 1 Department of Physics,

More information

Next Generation Very Large Array Memo No. 1

Next Generation Very Large Array Memo No. 1 Next Generation Very Large Array Memo No. 1 Fast switching phase calibration at 3mm at the VLA site C.L. Carilli NRAO PO Box O Socorro NM USA Abstract I consider requirements and conditions for fast switching

More information

RFI Mitigation for the Parkes Galactic All-Sky Survey (GASS)

RFI Mitigation for the Parkes Galactic All-Sky Survey (GASS) RFI Mitigation for the Parkes Galactic All-Sky Survey (GASS) Peter Kalberla Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany E-mail: pkalberla@astro.uni-bonn.de The GASS is a

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

ALMA memo 515 Calculation of integration times for WVR

ALMA memo 515 Calculation of integration times for WVR ALMA memo 515 Calculation of integration times for WVR Alison Stirling, Mark Holdaway, Richard Hills, John Richer March, 005 1 Abstract In this memo we address the issue of how to apply water vapour radiometer

More information

SPIRE In-flight Performance, Status and Plans Matt Griffin on behalf of the SPIRE Consortium Herschel First Results Workshop Madrid, Dec.

SPIRE In-flight Performance, Status and Plans Matt Griffin on behalf of the SPIRE Consortium Herschel First Results Workshop Madrid, Dec. SPIRE In-flight Performance, Status and Plans Matt Griffin on behalf of the SPIRE Consortium Herschel First Results Workshop Madrid, Dec. 17 2009 1 Photometer Herschel First Results Workshop Madrid, Dec.

More information

Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar

Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Rebecca Rimai Diesing Honors Thesis Department of Physics and Astronomy Northwestern University Spring

More information

Array signal processing for radio-astronomy imaging and future radio telescopes

Array signal processing for radio-astronomy imaging and future radio telescopes Array signal processing for radio-astronomy imaging and future radio telescopes School of Engineering Bar-Ilan University Amir Leshem Faculty of EEMCS Delft University of Technology Joint wor with Alle-Jan

More information

An introduction to closure phases

An introduction to closure phases An introduction to closure phases Michelson Summer Workshop Frontiers of Interferometry: Stars, disks, terrestrial planets Pasadena, USA, July 24 th -28 th 2006 C.A.Haniff Astrophysics Group, Department

More information

HIFI webinar: News, Calibrations, and Data Processing Updates

HIFI webinar: News, Calibrations, and Data Processing Updates NHSC HIFI Webinar December 17, 2012 HIFI webinar: News, Calibrations, and Data Processing Updates Pat Morris, Adwin Boogert, Colin Borys with contributions from D. Teyssier & C. McCoey Outline 1. Observatory

More information

Dealing with Noise. Stéphane GUILLOTEAU. Laboratoire d Astrophysique de Bordeaux Observatoire Aquitain des Sciences de l Univers

Dealing with Noise. Stéphane GUILLOTEAU. Laboratoire d Astrophysique de Bordeaux Observatoire Aquitain des Sciences de l Univers Dealing with Noise Stéphane GUILLOTEAU Laboratoire d Astrophysique de Bordeaux Observatoire Aquitain des Sciences de l Univers I - Theory & Practice of noise II Low S/N analysis Outline 1. Basic Theory

More information

Wide-Field Imaging: I

Wide-Field Imaging: I Wide-Field Imaging: I S. Bhatnagar NRAO, Socorro Twelfth Synthesis Imaging Workshop 010 June 8-15 Wide-field imaging What do we mean by wide-field imaging W-Term: D Fourier transform approximation breaks

More information

Definition of Keck Interferometer Level 1 data FITS files

Definition of Keck Interferometer Level 1 data FITS files Definition of Keck Interferometer Level 1 data FITS files R. Akeson, A. Boden Michelson Science Center KIV2 L1 Version 2.1 email comments and questions to: rla@ipac.caltech.edu 1. Introduction This document

More information

SDSS Data Management and Photometric Quality Assessment

SDSS Data Management and Photometric Quality Assessment SDSS Data Management and Photometric Quality Assessment Željko Ivezić Princeton University / University of Washington (and SDSS Collaboration) Thinkshop Robotic Astronomy, Potsdam, July 12-15, 2004 1 Outline

More information

Square Kilometre Array Science Data Challenge 1

Square Kilometre Array Science Data Challenge 1 Square Kilometre Array Science Data Challenge 1 arxiv:1811.10454v1 [astro-ph.im] 26 Nov 2018 Anna Bonaldi & Robert Braun, for the SKAO Science Team SKA Organization, Jodrell Bank, Lower Withington, Macclesfield,

More information

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations Galaxies 626 Lecture 9 Metals (2) and the history of star formation from optical/uv observations Measuring metals at high redshift Metals at 6 How can we measure the ultra high z star formation? One robust

More information

Can we do this science with SKA1-mid?

Can we do this science with SKA1-mid? Can we do this science with SKA1-mid? Let s start with the baseline design SKA1-mid expected to go up to 3.05 GHz Proposed array configuration: 133 dishes in ~1km core, +64 dishes out to 4 km, +57 antennas

More information

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case!

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! X Blake D. Sherwin Einstein Fellow, LBNL Outline! I. Brief Introduction: CMB lensing + LSS as probes of growth of structure II.

More information

Measurements of the DL0SHF 8 GHz Antenna

Measurements of the DL0SHF 8 GHz Antenna Measurements of the DL0SHF 8 GHz Antenna Joachim Köppen, DF3GJ Inst.Theoret.Physik u.astrophysik, Univ. Kiel September 2015 Pointing Correction Position errors had already been determined on a few days

More information

MUDRA PHYSICAL SCIENCES

MUDRA PHYSICAL SCIENCES MUDRA PHYSICAL SCIENCES VOLUME- PART B & C MODEL QUESTION BANK FOR THE TOPICS:. Electromagnetic Theory UNIT-I UNIT-II 7 4. Quantum Physics & Application UNIT-I 8 UNIT-II 97 (MCQs) Part B & C Vol- . Electromagnetic

More information

43 and 86 GHz VLBI Polarimetry of 3C Adrienne Hunacek, MIT Mentor Jody Attridge MIT Haystack Observatory August 12 th, 2004

43 and 86 GHz VLBI Polarimetry of 3C Adrienne Hunacek, MIT Mentor Jody Attridge MIT Haystack Observatory August 12 th, 2004 43 and 86 GHz VLBI Polarimetry of 3C454.3 Adrienne Hunacek, MIT Mentor Jody Attridge MIT Haystack Observatory August 12 th, 2004 Introduction Quasars subclass subclass of Active Galactic Nuclei (AGN) Extremely

More information

Optimal resolutions for optical and NIR spectroscopy S. Villanueva Jr.* a, D.L. DePoy a, J. L. Marshall a

Optimal resolutions for optical and NIR spectroscopy S. Villanueva Jr.* a, D.L. DePoy a, J. L. Marshall a Optimal resolutions for optical and NIR spectroscopy S. Villanueva Jr.* a, D.L. DePoy a, J. L. Marshall a a Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX, USA

More information

New Approaches to the Development of GC/MS Selected Ion Monitoring Acquisition and Quantitation Methods Technique/Technology

New Approaches to the Development of GC/MS Selected Ion Monitoring Acquisition and Quantitation Methods Technique/Technology New Approaches to the Development of GC/MS Selected Ion Monitoring Acquisition and Quantitation Methods Technique/Technology Gas Chromatography/Mass Spectrometry Author Harry Prest 1601 California Avenue

More information