SOLUTIONS TO PRACTICE EXAM FOR FINAL: 1/13/2002

Size: px
Start display at page:

Download "SOLUTIONS TO PRACTICE EXAM FOR FINAL: 1/13/2002"

Transcription

1 SOLUIONS O PRACICE EXAM OR INAL: 1/13/22 Math 21a Name: MW9 Sasha Braverman MW1 Ken Chung MW1 Jake Rasmussen MW1 WeiYang Qui MW1 Spiro Karigiannis MW11 Vivek Mohta MW11 Jake Rasmussen MW12 Ken Chung H1 Oliver Knill H11 Daniel Goroff Start by printing your name in the above box and check your section in the box to the left. ry to answer each question on the same page as the question is asked. If needed, use the back or next empty page for work. If you need additional paper, write your name on it. Do not detach pages from this exam packet or unstaple the packet. Please write neatly. Answers which are illegible for the grader can not be given credit. Justify your answers. No notes, books, calculators, computers or other electronic aids are allowed. You have 18 minutes time to complete your work Which section-specific problem do you choose? Check exactly one problem. Only this problem can be graded. If you don t commit yourself here, the first attempted problem will be graded. 12a 12b 12c 12d 12 1 otal: 13

2 Problem 1) questions (2 points) Circle the correct letter. No justifications are needed. he length of the curve r(t) = (sin(t), t 4 + t, cos(t)) on t [, 1] is the same as the length of the curve r(t) = (sin(t 2 ), t 8 + t 2, cos(t 2 )) on [, 1]. rue. his is a consequence of the chain rule: b a r(s(t)) dt = b a r (s(t)) s (t) dt = s(b) s(a) r (s) ds. he parametric surface r(u, v) = (5u 3v, u v 1, 5u v 7) is a plane. rue. he coordinate functions r(u, v) = (x(u, v), y(u, v), z(u, v)) are all linear. Any function u(x, y) that obeys the differential equation u xx + u x u y = 1 has no local maxima. rue. If u = (u x, u y ) = (, ), then u xx = 1 which is incompatible with a local maximum, where u xx > by the second derivative test. he scalar projection of a vector a onto a vector b is the length of the vector projection of a onto b. rue. By definition. If f(x, y) is a function such that f x f y = then f is conservative. alse. he notion of conservative applies to vector fields and not to functions. (u v) w = (u w) v for all vectors u, v, w. alse. While (u w) v and (u w) v are both equal to the volume of the parallelepiped determined by u, v and w, the sign is different. An example: for u = 1,,, v =, 1,, w =,, 1, we have (u v) w = 1 and (u w) v = 1. he equation ρ = φ/4 in spherical coordinates is half a cone. alse. he equation ρ = φ/4 defines a heart shaped rotational symmetric surface. he surface φ = c = const would define half a cone for c [, π] { x if (x, y) (, ) he function f(x, y) = x 2 +y 2 if (x, y) = (, ) every point in the plane. is continuous at 2

3 alse. aking y =, we get f(x, ) = 1/x which is discontinuous. 1 x 1 dydx = 1/2. rue. his is the area of half of the unit square. Let a and b be two vectors which are perpendicular to a given plane Σ. hen a + b is also perpendicular to Σ. rue. If v is a vector in the plane, then a v = and b v = then also (a + b) v =. If g(x, t) = f(x vt) for some function f of one variable f(z) then g satisfies the differential equation g tt v 2 g xx =. rue. Actually one could show that g(x, t) = f(x vt) + h(x + vt) is the general solution of the wave equation g tt v 2 g xx =. If f(x, y) is a continuous function on R 2 such that D f da for any region D then f(x, y) for all (x, y). rue. Assume f(a, b) < at some point (a, b), then f(x, y) < in a small neighborhood D of (a, b) and also D f da < contradicting the assumption. Assume the two functions f(x, y) and g(x, y) have both the critical point (, ) which are saddle points, then f + g has a saddle point at (, ). alse. Example f(x, y) = x 2 y 2 /2, g(x, y) = x 2 /2 + y 2 have both a saddle point at (, ) but f + g = x 2 /2 + y 2 /2 has a minimum at (, ). If f(x, y) is a function of two variables and if h(x, y) = f(g(y), g(x)), then h x (x, y) = f y (g(y), g(x))g (y). alse. he correct identity would be h x (x, y) = f y (g(y), g(x))g (x) according to the chain rule. If we rotate a line around the z axes, we obtain a cylinder. alse. he surface could also be a one-sheeted hyperboloid or a cone. he line integral of (x, y) = (x, y) along an ellipse x 2 + 2y 2 = 1 is zero. rue. he curl Q x P y of the vector field (x, y) = (P, Q) is. By Green s theorem, the 3

4 line integral is zero. An other way to see this is that is a gradient field = f with f(x, y) = (x 2 + y 2 )/2. herefore is conservative: the line integral along any closed curve in the plane is zero. If u(x, y) satisfies the transport equation u x = u y, then the vector field (x, y) = u(x, y), u(x, y) is a gradient field. rue. = (P, Q) = (u, u). rom u x = u y we get Q x = P y which implies that is a gradient field. 3 grad(f) = d f(x + t, y + t, z + t). dt alse. he left hand side is a vector field, the right hand side a function. 1 2π/11 π ρ2 sin(φ) dφdθdρ = 4π/33. rue. he region is a lemon slice which is 1/11 th of a sphere. If is a vector field in space and f is equal to the line integral of along the straight line C from (,, ) to (x, y, z), then f =. alse. his would be true if were a conservative vector field. In that case, f would be a potential. In general this is false: for example if (x, y, z) = (, x, ), then C dr = x2 /2 and f(x, y, z) = (x,, ) which is different from. 4

5 Problem 2) (1 points) Match the equations with the curves. No justifications are needed. I II III IV Enter I,II,III,IV here III I II IV Equation r(t) = (sin(t), t(2π t)) r(t) = (cos(5t), sin(7t)) r(t) = (t cos(t), sin(t)) r(t) = (cos(t), sin(6/t)) 5

6 Problem 3) (1 points) In this problem, vector fields are written as = (P, Q). We use abbreviations curl( ) = Q x P y and div( ) = P x +Q y. When stating curl( )(x, y) = we mean that curl( )(x, y) = vanishes for all (x, y). he statement curl( ) means that curl( )(x, y) does not vanish for at least one point (x, y). he same remark applies if curl is replaced by div. Check the box which match the formulas of the vectorfields with the corresponding picture I,II,III or IV. Mark also the places, indicating the vanishing or not vanishing of curl and div. In each of the four lines, you should finally have circled three boxes. No justifications are needed. Vectorfield I II III IV curl( ) = curl( ) div( ) = div( ) (x, y) = (, 5) X X X (x, y) = (y, x) X X X (x, y) = (x, y) X X X (x, y) = (2, x) X X X I II III IV 6

7 Problem 4) (1 points) a) ind the scalar projection of the vector v = (3, 4, 5) onto the vector w = (2, 2, 1). b) ind the equation of a plane which contains the vectors 1, 1, and, 1, 1 and contains the point (, 1, ). a) v w / w = ( )/3 = 19/3 b) (1, 1, ) (, 1, 1) = (1, 1, 1). he plane has the form x y + z = d and d = 1 is obtained by plugging in the point (, 1, ). he solution is x y + z = 1 Problem 5) (1 points) ind the surface area of the ellipse cut from the plane z = 2x+2y+1 by the cylinder x 2 +y 2 = 1. Parameterize the surface r(u, v) = (u, v, 2u + 2v + 1) on the disc R = {u 2 + y 2 1}. We get r u r v = 1,, 2, 1, 2 = 2, 2, 1 and r u r v = 3. he surface integral R r u r v dudv = R 3 dudv = 3 R dudv which is 3 times the area of the disc R: Solution: 3π. Problem 6) (1 points) Sketch the plane curve r(t) = (sin(t)e t, cos(t)e t ) for t [, 2π] and find its length. r (t) = cos(t)e t + sin(t)e t, sin(t)e t + cos(t)e t satisfies r (t) = 2e t so that 2π r (t) dt = 2(e 2π 1). Problem 7) (1 points) Let f(x, y, z) = 2x 2 +3xy +2y 2 +z 2 and let R denote the region in R 3, where 2x 2 +2y 2 +z 2 1. ind the maximum and minimum values of f on the region R and list all points, where said maximum and minimum values are achieved. Distinguish between local extrema in the interior and extrema on the boundary. a) Extrema in the interior of the ellipsoid 2x 2 + 2y 2 + z 2 < 1. f(x, y, z) = 4x + 3y, 3x + 4y, 2z =,, for (x, y, z) = (,, ). One has f(,, ) =. 7

8 he discriminant (also called Hessian determinant) D = f xx f yy f 2 xy at (,, ) is D = 7 > and f xx > so that (,, ) is a local minimum. b) o get the extrema on the boundary g(x, y, z) = 2x 2 +2y 2 +z 2 1 = we solve the Lagrange equations f = λ g, g =. hey are 4x + 3y = λ4x 3x + 4y = λ4y 2z = λ2z 2x 2 + 2y 2 + z 2 = 1 We obtain z =, x = ±y or z = ±1, x = y = giving 6 critical points (1/2, 1/2, ), ( 1/2, 1/2, ), (1/2, 1/2, ), ( 1/2, 1/2, ), (,, 1), (,, 1). c) Comparing the values f(,, ) =, f(1/2, 1/2, ) = f( 1/2, 1/2, ) = 7/4 and f(1/2, 1/2, ) = f( 1/2, 1/2, ) = 1/2 and f(,, ±1) = 1 shows that (1/2, 1/2, ) and ( 1/2, 1/2, ) are maxima and that (,, ) is the minimum. Problem 8) (1 points) Sketch the region of integration of the following iterated integral and then evaluate the integral: ( π π ( x ) ) sin(xy)dy dx dz. z he region is contained inside the cube [, π [, π] [, π]. It is bounded by the surfaces x = z, x = y, z =, y = π (see picture). he integral can not be solved in the given order. Using the picture as a guide, we write the integral as π x 2 x Solve the most inner integral: π x 2 sin(xy) dydzdx cos(xy) x π x 2 dzdx = (1 cos(x 2 ))/x dzdx x Now solve the z integral: 3 2 z y x = π to finally get x 2 (1 cos(x 2 ))/x dx = π x(1 cos(x 2 )) dx 1 he answer is π 2. = ( sin(x2 ) 2 + x2 2 ) π = π 2. 8

9 Problem 9) (1 points) Evaluate the line integral C dr, where = (x + e x sin(y), x + e x cos(y)) and C is the right handed loop of the lemniscate described in polar coordinates as r 2 = cos(2θ). By Green s theorem, the integral is R curl( ) da, where R is the region enclosed by C. rom = (P, Q) = (x + e x sin(y), x + e x cos(y)) we calculate curl() = Q x P y = 1 + e x cos(y) cos(y)e x = 1 so that the result is the area of R which is π/4 cos(2θ)/2 dθ = sin(2θ) 4 π/4 π/4 = 1/2. π/4 Problem 1) (1 points) Evaluate the line integral C dr, where C is the planar curve r(t) = (t 2, t/ t + 2), t [, 2] and is the vector field (x, y) = (2xy, x 2 + y). Do this in two different ways: a) by verifying that is conservative and replacing the path with a different path connecting (, ) with (4, 1), b) by finding a potential U satisfying U =. a) o verify that = (P, Q) is conservative, it is enough to verify that curl() = Q x P y =. his is actually the case. o calculate the line integral, we therefore can replace the path with a straight line γ : r(t) = (4t, t) and calculate γ dr = 1 (8t2, 16t 2 +t) (4, 1) dt = (48t 2 +t) 1 = /2. b) A potential is f(x, y) = x 2 y + y 2 /2. he value of f at (4, 1) is /2. he value of f at (, ) is. he difference between the potential values is /2 again. Problem 11) (1 points) a) ind the line integral C dr of the vector field (x, y) = (xy, x) along the unit circle C : t r(t) = (cos(t), sin(t)), t [, 2π] by doing the actual line integral. b) ind the value of the line integral obtained in a) by evaluating a double integral. 9

10 a) 2π (cos(t) sin(t), cos(t)) ( sin(t), cos(t)) dt = 2π cos 2 (t) sin 2 (t) cos(t) dt = π+sin 3 (t)/3 2π = π b) curl( ) = Q x P y = 1 x. By Green s theorem, the line integral is a double integral which we evaluate using Polar coordinates D (1 x) da = 1 (1 cos(θ)r) dθdr = 2π/2 = π. 2π SECION SPECIIC PROBLEMS Math 21a Please choose one of the following problems and register your decision on the first page of this exam. Problem 12a) (1 points) Consider the surface given by the graph of the function z = f(x, y) = 1 sin ( π 1+x 2 +y 2 8 (x2 + y 2 ) ) in the region x 2 + y he surface is pictured to the right. A magnetic field B is given by the curl of a vector potential A. hat is, B = A = curl(a) and A is a vector field too. Suppose A = ( z sin(x 3 ), x ( 1 z 2), log(1 + e x+y+z ) ). Compute the flux of the magnetic field through this surface. (he surface has an upward pointing normal vector.) he surface S is bounded by the curve γ : r(t) = (4 cos(t), 4 sin(t), ). By Stokes theorem, the flux of the curl of A through the surface S is the line integral of A along γ: γ 16π. A dr = 2π (, 4 cos(t), log(1 + e x+y )) ( 4 sin(t), 4 cos(t), ) dt = 2π 16 cos 2 (t) dt = Problem 12b) (1 points) he annual rainfall in inches in a certain region is normally distributed with µ = 4 and σ = 4. What is the probability that starting with this year, it will take over 1 years before a year 1

11 occurs having a rainfall of over 5 inches. he probability p that no rainfall over 5 inches happens in one year is p = µ,σ (5) = 5 e (x 4)2 /16 / π16 he probability that it will take more than 1 years until a rainfall over 5 inches occurs is p 1. Problem 12c) (1 points) Let S be the surface given by the equations z = x 2 y 2, x 2 + y 2 4, with the upward pointing normal. If the vector field is given by the formula (x, y, z) = x, y, x 2 + y 2, find the flux of through S. Parameterize the surface by r(u, v) = u, v, u 2 v 2. hen r u r v = 1,, 2u, 1, 2v = 2u, 2v, 1. he flux integral is ds = u, v, u 2 + v 2 2u, 2v, 1 dxdy D D = 2(u 2 + v 2 ) + u 2 + v 2 da he answer is 64π/3. = D 2π 2 (2r 2 + r)r drdθ = 2π(2 2 4 / /3) = 64π/3. Problem 12d) (1 points) he random variable X has a variance 2 and that the random variable Y has a variance 1. Both random variables have zero expectation. ind the correlation between X + Y and X Y. so that Cov[X + Y, X Y ] E[(X + Y ) E[X + Y ], (X Y ) E[X Y ] ] E[(X + Y ), (X Y ) ] = E[X 2 Y 2 ] = E[X 2 ] E[Y 2 ] E[(X E[X]) 2 ] E[(Y E[Y ]) 2 ] = Var[X] Var[Y ] = 2 1 = 1, Corr[X + Y, X Y ] Cov[X + Y, X Y ]/(σ[x]σ[y ]) 1/( 2) he solution is 1/ 2. 11

12/13/2016 FINAL EXAM Math 21a, Fall Name:

12/13/2016 FINAL EXAM Math 21a, Fall Name: 12/13/2016 FINAL EXAM Math 21a, Fall 2016 Name: MWF 9 Koji Shimizu MWF 10 Can Kozcaz MWF 10 Yifei Zhao MWF 11 Oliver Knill MWF 11 Bena Tshishiku MWF 12 Jun-Hou Fung MWF 12 Chenglong Yu TTH 10 Jameel Al-Aidroos

More information

12/19/2009, FINAL PRACTICE VII Math 21a, Fall Name:

12/19/2009, FINAL PRACTICE VII Math 21a, Fall Name: 12/19/29, FINAL PRATIE VII Math 21a, Fall 29 Name: MWF 9 Jameel Al-Aidroos MWF 1 Andrew otton-lay MWF 1 Oliver Knill MWF 1 HT Yau MWF 11 Ana araiani MWF 11 hris Phillips MWF 11 Ethan Street MWF 12 Toby

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

8/3/2017 FINAL EXAM Maths 21a, O. Knill, Summer Name:

8/3/2017 FINAL EXAM Maths 21a, O. Knill, Summer Name: 1 8/3/2017 FINAL EXAM Maths 21a, O. Knill, Summer 2017 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the back

More information

7/8/2010 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2010

7/8/2010 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2010 7/8/2010 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2010 Name: Start by writing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

7/26/2018 SECOND HOURLY Maths 21a, O.Knill, Summer Name:

7/26/2018 SECOND HOURLY Maths 21a, O.Knill, Summer Name: 7/26/218 SECOND HOURLY Maths 21a, O.Knill, Summer 218 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the back

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Points Score Total: 210. No more than 200 points may be earned on the exam. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 21 11 21 12 21 13 21 Total: 210 No more than 200

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

9/27/2017 FIRST HOURLY PRACTICE 5 Math 21a, Fall Name:

9/27/2017 FIRST HOURLY PRACTICE 5 Math 21a, Fall Name: 9/27/2017 FIRST HOURLY PRACTICE 5 Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics GROUPS Trinity Term 06 MA3: Advanced Calculus SAMPLE EXAM, Solutions DAY PLACE TIME Prof. Larry Rolen Instructions to Candidates: Attempt

More information

8/9/2018 PRACTICE EXAM III Maths 21a, O. Knill, Summer Name:

8/9/2018 PRACTICE EXAM III Maths 21a, O. Knill, Summer Name: 1 8/9/018 PRACTICE EXAM III Maths 1a, O. Knill, Summer 018 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

12/15/2017 FINAL PRACTICE II Math 21a, Fall Name:

12/15/2017 FINAL PRACTICE II Math 21a, Fall Name: 12/15/2017 FINAL PRACTICE II Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10

More information

8/4/2016 PRACTICE EXAM III Maths 21a, O. Knill, Summer 2016

8/4/2016 PRACTICE EXAM III Maths 21a, O. Knill, Summer 2016 1 8/4/2016 PRACTICE EXAM III Maths 21a, O. Knill, Summer 2016 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Answer sheet: Final exam for Math 2339, Dec 10, 2010 Answer sheet: Final exam for Math 9, ec, Problem. Let the surface be z f(x,y) ln(y + cos(πxy) + e ). (a) Find the gradient vector of f f(x,y) y + cos(πxy) + e πy sin(πxy), y πx sin(πxy) (b) Evaluate f(,

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

MATH 261 FINAL EXAM PRACTICE PROBLEMS

MATH 261 FINAL EXAM PRACTICE PROBLEMS MATH 261 FINAL EXAM PRACTICE PROBLEMS These practice problems are pulled from the final exams in previous semesters. The 2-hour final exam typically has 8-9 problems on it, with 4-5 coming from the post-exam

More information

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!!

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!! Final Exam Math 222 Spring 2011 May 11, 2011 Name: Recitation Instructor s Initials: You may not use any type of calculator whatsoever. (Cell phones off and away!) You are not allowed to have any other

More information

Practice problems **********************************************************

Practice problems ********************************************************** Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

12/15/2017 FINAL EXAM Math 21a, Fall Name:

12/15/2017 FINAL EXAM Math 21a, Fall Name: 12/15/2017 FINAL EXAM Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt Demers

More information

7/12/2018 FIRST HOURLY Practice 1 Maths 21a, O.Knill, Summer Name:

7/12/2018 FIRST HOURLY Practice 1 Maths 21a, O.Knill, Summer Name: 7/12/2018 FRST HOURLY Practice 1 Maths 21a, O.Knill, Summer 2018 Name: Start by writing your name in the above box. Try to answer each question on the same page as the question is asked. f needed, use

More information

Name: Instructor: Lecture time: TA: Section time:

Name: Instructor: Lecture time: TA: Section time: Math 222 Final May 11, 29 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 1 problems on 16 pages worth a total of 2 points. Look over your test package right

More information

10/6/2009 FIRST HOURLY PRACTICE III Math 21a, Fall Name:

10/6/2009 FIRST HOURLY PRACTICE III Math 21a, Fall Name: 10/6/2009 FIRST HOURLY PRACTICE III Math 21a, Fall 2009 Name: MWF 9 Jameel Al-Aidroos MWF 10 Andrew Cotton-Clay MWF 10 Oliver Knill MWF 10 HT Yau MWF 11 Ana Caraiani MWF 11 Chris Phillips MWF 11 Ethan

More information

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions McGill University April 4 Faculty of Science Final Examination Calculus 3 Math Tuesday April 9, 4 Solutions Problem (6 points) Let r(t) = (t, cos t, sin t). i. Find the velocity r (t) and the acceleration

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

5/14/2011: Final exam

5/14/2011: Final exam Math A: introduction to functions and calculus Oliver Knill, Spring 20 5/4/20: Final exam Your Name: Start by writing your name in the above box. Try to answer each question on the same page as the question

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018 APPM 2 Final Exam 28 points Monday December 7, 7:am am, 28 ON THE FONT OF YOU BLUEBOOK write: () your name, (2) your student ID number, () lecture section/time (4) your instructor s name, and () a grading

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Problem Points S C O R E

Problem Points S C O R E MATH 34F Final Exam March 19, 13 Name Student I # Your exam should consist of this cover sheet, followed by 7 problems. Check that you have a complete exam. Unless otherwise indicated, show all your work

More information

4/5/2012: Second midterm practice A

4/5/2012: Second midterm practice A Math 1A: introduction to functions and calculus Oliver Knill, Spring 212 4/5/212: Second midterm practice A Your Name: Problem 1) TF questions (2 points) No justifications are needed. 1) T F The formula

More information

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates. Math Show Your Work! Page of 8. () A rectangular box is to hold 6 cubic meters. The material used for the top and bottom of the box is twice as expensive per square meter than the material used for the

More information

4/8/2014: Second midterm practice C

4/8/2014: Second midterm practice C Math 1A: introduction to functions and calculus Oliver Knill, Spring 214 4/8/214: Second midterm practice C Your Name: Start by writing your name in the above box. Try to answer each question on the same

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 34 Solutions to Exam April 9th, 8 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

Math 21a Practice Final Exam (Fall 2000) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) : Total

Math 21a Practice Final Exam (Fall 2000) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) : Total Math 21a Practice Final Exam (Fall 2000) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) : Total Name: Section TF: Allcock Chen Karigiannis Knill Liu Rasmussen Rogers Taubes Winter Winters Instructions: Print your

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

9/27/2017 FIRST HOURLY Math 21a, Fall Name:

9/27/2017 FIRST HOURLY Math 21a, Fall Name: 9/27/2017 FRST HOURLY Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt Demers

More information

Vector Calculus handout

Vector Calculus handout Vector Calculus handout The Fundamental Theorem of Line Integrals Theorem 1 (The Fundamental Theorem of Line Integrals). Let C be a smooth curve given by a vector function r(t), where a t b, and let f

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 218 This exam has 7 questions, for a total of 8 points. Please print your working and answers neatly. Write your solutions in

More information

MA FINAL EXAM Form 01 May 1, 2017

MA FINAL EXAM Form 01 May 1, 2017 MA 26100 FINAL EXAM Form 01 May 1, 2017 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a #2 pencil on the scantron 2. a. Write 01 in the TEST/QUIZ NUMBER boxes and darken the appropriate

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

4/8/2014: Second midterm practice A

4/8/2014: Second midterm practice A Math 1A: introduction to functions and calculus Oliver Knill, Spring 2014 4/8/2014: Second midterm practice A Your Name: Start by writing your name in the above box. Try to answer each question on the

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00 McGill University December 214 Faculty of Science Final Examination Intermediate Calculus Math 262 Tuesday December 17, 214 Time: 14: - 17: Examiner: Dmitry Jakobson Associate Examiner: Neville Sancho

More information

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211.

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211. 1. a) Let The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211 fx, y) = x siny). If the value of x, y) changes from 0, π) to 0.1,

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

Math 53 Spring 2018 Practice Midterm 2

Math 53 Spring 2018 Practice Midterm 2 Math 53 Spring 218 Practice Midterm 2 Nikhil Srivastava 8 minutes, closed book, closed notes 1. alculate 1 y 2 (x 2 + y 2 ) 218 dxdy Solution. Since the type 2 region D = { y 1, x 1 y 2 } is a quarter

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

5/8/2012: Practice final A

5/8/2012: Practice final A Math 1A: introduction to functions and calculus Oliver Knill, Spring 2012 Problem 1) TF questions (20 points) No justifications are needed. 5/8/2012: Practice final A 1) T F The quantum exponential function

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

Practice Midterm 2 Math 2153

Practice Midterm 2 Math 2153 Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

Name: Student ID number:

Name: Student ID number: Math 20E Final Exam Name: Student ID number: Instructions: Answers without work may be given no credit at the grader s discretion. The test is out of 69 points, with 2 extra credit points possible. This

More information

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Practice problems. m zδdv. In our case, we can cancel δ and have z = Practice problems 1. Consider a right circular cone of uniform density. The height is H. Let s say the distance of the centroid to the base is d. What is the value d/h? We can create a coordinate system

More information

4/5/2012: Second midterm practice B

4/5/2012: Second midterm practice B Math A: introduction to functions and calculus Oliver Knill, Spring 22 4/5/22: Second midterm practice B Your Name: Problem ) TF questions (2 points) No justifications are needed. ) T F The formula x f

More information

Math 41 Final Exam December 9, 2013

Math 41 Final Exam December 9, 2013 Math 41 Final Exam December 9, 2013 Name: SUID#: Circle your section: Valentin Buciumas Jafar Jafarov Jesse Madnick Alexandra Musat Amy Pang 02 (1:15-2:05pm) 08 (10-10:50am) 03 (11-11:50am) 06 (9-9:50am)

More information

3/1/2012: First hourly Practice A

3/1/2012: First hourly Practice A Math 1A: Introduction to functions and calculus Oliver Knill, Spring 2012 3/1/2012: First hourly Practice A Your Name: Start by writing your name in the above box. Try to answer each question on the same

More information

3/4/2014: First Midterm Exam

3/4/2014: First Midterm Exam Math A: Introduction to functions and calculus Oliver Knill, Spring 0 //0: First Midterm Exam Your Name: Start by writing your name in the above box. Try to answer each question on the same page as the

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 2018 This exam has 7 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

5/17/2014: Final Exam Practice E

5/17/2014: Final Exam Practice E Math 1A: introduction to functions and calculus Oliver Knill, Spring 2014 5/17/2014: Final Exam Practice E Your Name: Start by writing your name in the above box. Try to answer each question on the same

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

5/8/2012: Practice final C

5/8/2012: Practice final C Math A: introduction to functions and calculus Oliver Knill, Spring 202 Problem ) TF questions (20 points) No justifications are needed. 5/8/202: Practice final C ) T F d log(cos(x)) = tan(x). dx Your

More information

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2) Math 2, Final Exam, Practice Fall 29 Problem Solution. A triangle has vertices at the points A (,,), B (, 3,4), and C (2,,3) (a) Find the cosine of the angle between the vectors AB and AC. (b) Find an

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Name: Student ID#: Section: Final Exam Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Show your work on every problem. orrect answers with no supporting work will not receive full credit. Be

More information

Math 53 Final Exam, Prof. Srivastava May 11, 2018, 11:40pm 2:30pm, 155 Dwinelle Hall.

Math 53 Final Exam, Prof. Srivastava May 11, 2018, 11:40pm 2:30pm, 155 Dwinelle Hall. Math 53 Final Exam, Prof. Srivastava May 11, 2018, 11:40pm 2:30pm, 155 Dwinelle Hall. Name: SID: GSI: Name of the student to your left: Name of the student to your right: Instructions: Write all answers

More information

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy. APPM 35 FINAL EXAM FALL 13 INSTUTIONS: Electronic devices, books, and crib sheets are not permitted. Write your name and your instructor s name on the front of your bluebook. Work all problems. Show your

More information

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4. MATH 23, FALL 2013 Text: Calculus, Early Transcendentals or Multivariable Calculus, 7th edition, Stewart, Brooks/Cole. We will cover chapters 12 through 16, so the multivariable volume will be fine. WebAssign

More information

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w. Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

More information

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

More information

3/4/2014: First Midterm Exam

3/4/2014: First Midterm Exam Math A: Introduction to functions and calculus Oliver Knill, Spring 0 //0: First Midterm Exam Your Name: Start by writing your name in the above box. Try to answer each question on the same page as the

More information

CALCULUS MATH*2080 SAMPLE FINAL EXAM

CALCULUS MATH*2080 SAMPLE FINAL EXAM CALCULUS MATH*28 SAMPLE FINAL EXAM Sample Final Exam Page of 2 Prof. R.Gentry Print Your Name Student No. SIGNATURE Mark This exam is worth 45% of your final grade. In Part I In Part II In part III In

More information

Study Guide/Practice Exam 3

Study Guide/Practice Exam 3 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material. The distribution

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11.

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information