Solution Sheet (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = (i) gcd (97, 157) = 1 = ,

Size: px
Start display at page:

Download "Solution Sheet (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = (i) gcd (97, 157) = 1 = ,"

Transcription

1 Solution Sheet 2 1. (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = (i) gcd (97, 157) = 1 = , (ii) gcd (527, 697) = 17 = , (iii) gcd (2323, 1679) = 23 = , (iv) gcd (4247, 2821) = 31 = (i) gcd (44517, 15691) = 71, (ii) gcd (173417, ) = (i) = 1, (ii) = 1, For (3k + 2, 5k + 3) we have 5 (3k + 2) 3 (5k + 3) = 1, 5. (i) By observation m = 3, n = 2 is a solution, so the general solution is m = 3 + 5k, n = 2 3k for k Z. (ii) Recall, if gcd (a, b) c then we can use Euclid s algorithm to solve ax + by = gcd (a, b), and then multiply through by c/ gcd (a, b) to get an integral solution to am + bn = c. The general solution is then for k Z. ( m 0 + bk gcd (a, b), n 0 ak gcd (a, b) In this example (2, 15) = 1 which divides 4. But we have no need to use Euclid s Algorithm, instead we quickly observe that 1 = So, multiplying through by c/ gcd (a, b) = 4/1 = 4, we get 4 = Thus m = 28, n = 4 is a particular solution. The general solution is m = k, n = 4 2k for k Z. Note, you might have observed immediately that 4 = 2m + 15n has a particular solution m = 2, n = 0. This leads to the general solution 1 )

2 m = l, n = 2l for l Z. This is the same set of solutions as above, map between them by l k 2. (iii) Euclid s Algorithm gives 385 = = = = = Working back we find that 1 = So a particular solution is m = 149, n = 12. The general solution is m = k, n = 12 31k for k Z. (iv) Euclid s Algorithm gives 73 = = = = = Working back we find that 1 = Multiply by 20 to get 20 = So a particular solution is m = 320, n = 180. The general solution is m = k, n = k for k Z. 2

3 (v) Divide through by 3 to get 31m + 27n = 1. We quickly find by Euclid s Algorithm that 1 = so a particular solution is m = 7, n = 8. The general solution is m = k, n = 8 31k for k Z. (vi) From Question 2(ii) we know that gcd (527, 697) = 17 and 17 13, hence the Diophantine Equation has no solutions. (vii) Euclid s Algorithm gives 533 = , 403 = , 130 = Hence gcd (533, 403) = 13. Since the equation has solutions. Working back we have 13 = Multiply through by 4 to get a particular solution of m = 12, n = 16. The general solution is m = k, n = 16 41k for k Z, where 31 = 403/13 and 41 = 533/13. (Recall that the general solution is (m 0 + bk/ gcd (a, b), n 0 ak/ gcd (a, b)) for k Z.) 6. If the number of large boxes is x and small boxes y we must have 90x + 70y = 1100 (all prices in pennies). Divide by 10 to get 9x + 7y = 110. Euclid s Algorithm will give a solution x = 6 and y = 8. The general solution is x = 6 + 7t, y = 8 9t, t Z. But note that if t > 0 we have y < 0 while if t < 0 then x < 0. Since it seems reasonable that the number of boxes should be positive the only solution to our question comes from t = 0, i.e. 6 large boxes and 8 small boxes. 7. Write 3s + 5t = v. By the hint given, 6s + 10t + 15u = 4 becomes 2v + 15u = 4. By Question 5(ii) this has a solution v = 28, u = 4. For what s, t do we have 3s + 5t = 28? From question 5(i) we know that 3 ( 3) = 1. Multiply through by 28 and we get a solution (s, t, u) = (84, 56, 4). 3

4 For a second solution start with v = 2, u = 0. Then a solution to 3s + 5t = 2 could be s = 1, t = 1. Thus we get (s, t, u) = ( 1, 1, 0). Note, you may well have found other answers, you just have to check they are correct by substituting back into the equations. 8. (i) Euclid s Algorithm gives 41 = = Working back gives 1 = Multiply through by 4 to find that 16 is a particular solution to 31x 4 mod 41. The general solution is k, k Z. (ii) Euclid s Algorithm gives 157 = = = = = = = = I leave it to the student to reverse this and derive 1 = (1) Multiplying through by 2 we see that 68 is a particular solution of 97x 2 mod 157 and the general solution is k, k Z. Actually, (1) was seen in the solution to Question 2(i). (iii) Note that 1679 and 2323 were seen earlier in Question 2(iii), where the greatest common divisor of 23 was found. Since 23 does not divide 21 the congruence 1679x 21 mod 2323 has no solutions. 4

5 (iv) Divide through by 3 to get 29x 19 mod 35. Euclid s algorithm gives 1 = Multiply through by 19 to find a particular solution of x 6 19 = mod 35. The general solution is x 26 mod 35 or, in terms of the initial modulus, x 26, 61 or 96 mod Throughout this question you could use Euclid s Algorithm as in the previous question. But sometimes there are other approaches that work. (i) Look back at Question 5(iii) to find 31 ( 149) 1 mod 385. Multiply through by 4 to find the general solution of x 4 ( 149) = mod 385. (ii) Start with 32x mod 385, which gives an even number on the right hand side and thus the possibility of cancelling a factor of 2. In fact = 432 = so we can divide both sides by 16 to get 2x 27 mod 385. Apply the same idea again, so 2x = 412 mod 385. Divide through by 2 to get x 206 mod 385. (iii) Write the equation as 13 47x (47 73) x = 26x mod 73 Divide through by 13 to get 1 2x mod 73. Perhaps now use the method from (ii) to write 2x 74 mod 73, thus x 37 mod 73 or x mod 73. (iv) Divide through by 6 to get 7x 15 mod 26. Looking at a few small x we come across mod 26. Multiplying by 3 we see that a solution to the congruence is x 9 17 mod 26. In terms of the original modulus, the solutions are x 17, 43, 69, 95, 121, 147 mod

6 10. a) Squaring, 5 2 = mod 41, 5 4 (16) 2 10 mod 41, mod 41, mod 41, mod 41, 5 64 = mod 41. b) From this list we note that mod 41, and so on dividing through by 5 4 (coprime to 41) gives mod 41. OR you might note from the list that So mod mod 41. c) Multiply both sides of 5 2 x 7 mod 41 by 5 58 to get 5 60 x i.e. x mod 41. Here 11. Squaring, = ( 4) 18 ( 16) mod mod = 9 2 mod 11, 3 4 ( 2) 2 4 mod 11, mod 11, mod 11, mod 11. So 3 40 = mod 11. Note that ( 4) 35 (4 35 ) mod 11. Also, from this list we see that mod 11 so we can read off the first few lines below from the list above mod 11, mod 11, mod 11, 4 16 ( 2) 2 4 mod 11, mod 11. 6

7 Thus ( ) (5 5 4) 10 mod 11. Finally, mod (i) Write the two congruences as x = k and x = l for integers k, l. Equate to get k = l. Thus we get a linear Diophantine equation 11k 13l = 1. Use Euclid s Algorithm to find = 1. We can thus use k = 6 to find a particular solution to the system of x = 69. The general solution is x 69 mod 143. (ii) Multiply the first congruence by 4 (since mod 7) and the second by 3 (since mod 11). So we have x 4 mod 7, x 18 7 mod 11. Write x = 4 + 7k and x = l. As before set 4 + 7k = l or 7k 11l = 3. If you look at this you should see a solution, = 3. With k = 2 we get a particular solution to the system of x = 18. The general solution is x 18 mod 77. (iii) Write x = k and x = l so 697l 527k = = 108. For this to have solutions we need gcd (697, 527) 108. Looking back to Question 2(ii), Sheet2, we see that gcd (697, 527) = Hence there are no solutions of the system. (iv) We have seen both congruences previously. From the solution to Question 8(i), Sheet 2, we can replace 31x 4 mod 41 by x 16 mod 41. From the solution to Question 9(iii), Sheet 2, we can replace 47x 13 mod 73 by x 36 mod 73. Thus x = 16+41k and x = 36+73l and so 41k 73l = 20. We have seen this Diophantine Equation in Question 5(iv), Sheet 2. A solution is k = 320, l = 180. Thus a solution of the system of Diophantine Equations is x = Hence the general solution is x mod (v) The methods from the course only work for pairs of congruences, so we first look at x 1 mod 4 x 2 mod 3. 7

8 Equating 1 + 4k = 2 + 3l we find a solution of k = 1, l = 1 and so the general solution is x 5 mod 12. Thus we get a second pair of congruences x 5 mod 12, x 3 mod 7. Equating m = 3 + 7n we find a solution of m = 1, n = 2 and thus the general solution x 17 mod (i) n n 2 mod So the only residues of squares modulo 5 are 0,1 and 4. If there is an integral solution to 30x 2 23y 2 = 1 then when we look at the equation modulo 5 we find that 23y 2 1 mod 5, i.e. 3y 2 1 mod 5 or, since mod 5, y mod 5. Impossible. Note in the table above, (5 n) 2 = n + n 2 n 2 mod 5 so we need only have taken n = 0, 1 or 2 to have found all possible residues. (ii) n n 2 mod If 5x 2 14y 2 = 1 has a solution then, looking modulo 7, we must have 5x 2 1 mod 7. Since mod 7 we get x 2 3 mod 7. Impossible. (iii) As in part (i) look at the equation modulo 5. 8

3.2 Solving linear congruences. v3

3.2 Solving linear congruences. v3 3.2 Solving linear congruences. v3 Solving equations of the form ax b (mod m), where x is an unknown integer. Example (i) Find an integer x for which 56x 1 mod 93. Solution We have already solved this

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

4. Congruence Classes

4. Congruence Classes 4 Congruence Classes Definition (p21) The congruence class mod m of a Z is Example With m = 3 we have Theorem For a b Z Proof p22 = {b Z : b a mod m} [0] 3 = { 6 3 0 3 6 } [1] 3 = { 2 1 4 7 } [2] 3 = {

More information

CHAPTER 3. Congruences. Congruence: definitions and properties

CHAPTER 3. Congruences. Congruence: definitions and properties CHAPTER 3 Congruences Part V of PJE Congruence: definitions and properties Definition. (PJE definition 19.1.1) Let m > 0 be an integer. Integers a and b are congruent modulo m if m divides a b. We write

More information

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer Solutions to Section 21 Homework Problems S F Ellermeyer 1 [13] 9 = f13; 22; 31; 40; : : :g [ f4; 5; 14; : : :g [3] 10 = f3; 13; 23; 33; : : :g [ f 7; 17; 27; : : :g [4] 11 = f4; 15; 26; : : :g [ f 7;

More information

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Crptograph Part I (Solution to Practice Set) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinit to positive infinit. The set of

More information

3.7 Non-linear Diophantine Equations

3.7 Non-linear Diophantine Equations 37 Non-linear Diophantine Equations As an example of the use of congruences we can use them to show when some Diophantine equations do not have integer solutions This is quite a negative application -

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-13 Recap Divisibility Prime Number Theorem Euclid s Lemma Fundamental Theorem of Arithmetic Euclidean Algorithm Basic Notions - Section

More information

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively 6 Prime Numbers Part VI of PJE 6.1 Fundamental Results Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively D (p) = { p 1 1 p}. Otherwise

More information

Ma/CS 6a Class 2: Congruences

Ma/CS 6a Class 2: Congruences Ma/CS 6a Class 2: Congruences 1 + 1 5 (mod 3) By Adam Sheffer Reminder: Public Key Cryptography Idea. Use a public key which is used for encryption and a private key used for decryption. Alice encrypts

More information

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635 COMP239: Mathematics for Computer Science II Prof. Chadi Assi assi@ciise.concordia.ca EV7.635 The Euclidean Algorithm The Euclidean Algorithm Finding the GCD of two numbers using prime factorization is

More information

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS Math 40 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS WARNING: Remember, it s best to rely as little as possible on my solutions. Therefore, I urge you to try the problems on your

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 7: The Euclidean Algorithm and Applications 1. Find the greatest

More information

MATH 310: Homework 7

MATH 310: Homework 7 1 MATH 310: Homework 7 Due Thursday, 12/1 in class Reading: Davenport III.1, III.2, III.3, III.4, III.5 1. Show that x is a root of unity modulo m if and only if (x, m 1. (Hint: Use Euler s theorem and

More information

ax b mod m. has a solution if and only if d b. In this case, there is one solution, call it x 0, to the equation and there are d solutions x m d

ax b mod m. has a solution if and only if d b. In this case, there is one solution, call it x 0, to the equation and there are d solutions x m d 10. Linear congruences In general we are going to be interested in the problem of solving polynomial equations modulo an integer m. Following Gauss, we can work in the ring Z m and find all solutions to

More information

Integers and Division

Integers and Division Integers and Division Notations Z: set of integers N : set of natural numbers R: set of real numbers Z + : set of positive integers Some elements of number theory are needed in: Data structures, Random

More information

Lecture 7 Number Theory Euiseong Seo

Lecture 7 Number Theory Euiseong Seo Lecture 7 Number Theory Euiseong Seo (euiseong@skku.edu) 1 Number Theory God created the integers. All else is the work of man Leopold Kronecker Study of the property of the integers Specifically, integer

More information

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have Exercise 23. (a) Solve the following congruences: (i) x 101 7 (mod 12) Answer. We have φ(12) = #{1, 5, 7, 11}. Since gcd(7, 12) = 1, we must have gcd(x, 12) = 1. So 1 12 x φ(12) = x 4. Therefore 7 12 x

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Sacred Heart University piazzan@mail.sacredheart.edu March 29, 2018 Divisibility Divisibility We say a divides b, denoted as a b, if there exists k Z such that ak = b. Example: Consider 2 6. Then k = 3

More information

7. Prime Numbers Part VI of PJE

7. Prime Numbers Part VI of PJE 7. Prime Numbers Part VI of PJE 7.1 Definition (p.277) A positive integer n is prime when n > 1 and the only divisors are ±1 and +n. That is D (n) = { n 1 1 n}. Otherwise n > 1 is said to be composite.

More information

Math 131 notes. Jason Riedy. 6 October, Linear Diophantine equations : Likely delayed 6

Math 131 notes. Jason Riedy. 6 October, Linear Diophantine equations : Likely delayed 6 Math 131 notes Jason Riedy 6 October, 2008 Contents 1 Modular arithmetic 2 2 Divisibility rules 3 3 Greatest common divisor 4 4 Least common multiple 4 5 Euclidean GCD algorithm 5 6 Linear Diophantine

More information

Elementary Properties of the Integers

Elementary Properties of the Integers Elementary Properties of the Integers 1 1. Basis Representation Theorem (Thm 1-3) 2. Euclid s Division Lemma (Thm 2-1) 3. Greatest Common Divisor 4. Properties of Prime Numbers 5. Fundamental Theorem of

More information

Lecture 7: Number Theory Steven Skiena. skiena

Lecture 7: Number Theory Steven Skiena.   skiena Lecture 7: Number Theory Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Number Theory and Divisibility G-d created

More information

Number Theory. Modular Arithmetic

Number Theory. Modular Arithmetic Number Theory The branch of mathematics that is important in IT security especially in cryptography. Deals only in integer numbers and the process can be done in a very fast manner. Modular Arithmetic

More information

7.2 Applications of Euler s and Fermat s Theorem.

7.2 Applications of Euler s and Fermat s Theorem. 7.2 Applications of Euler s and Fermat s Theorem. i) Finding and using inverses. From Fermat s Little Theorem we see that if p is prime and p a then a p 1 1 mod p, or equivalently a p 2 a 1 mod p. This

More information

Ma/CS 6a Class 2: Congruences

Ma/CS 6a Class 2: Congruences Ma/CS 6a Class 2: Congruences 1 + 1 5 (mod 3) By Adam Sheffer Reminder: Public Key Cryptography Idea. Use a public key which is used for encryption and a private key used for decryption. Alice encrypts

More information

Part V. Chapter 19. Congruence of integers

Part V. Chapter 19. Congruence of integers Part V. Chapter 19. Congruence of integers Congruence modulo m Let m be a positive integer. Definition. Integers a and b are congruent modulo m if and only if a b is divisible by m. For example, 1. 277

More information

ELEMENTS OF NUMBER THEORY

ELEMENTS OF NUMBER THEORY ELEMENTS OF NUMBER THEORY Examination corner 1 one mark question in part A 1 - two mark question in part B 1 five mark OR 3mark+2 mark question in part C 1 two or four mark question in part E concepts

More information

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have Exercise 13. Consider positive integers a, b, and c. (a) Suppose gcd(a, b) = 1. (i) Show that if a divides the product bc, then a must divide c. I give two proofs here, to illustrate the different methods.

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today?

Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today? 2 Mod math Modular arithmetic is the math you do when you talk about time on a clock. For example, if it s 9 o clock right now, then it ll be 1 o clock in 4 hours. Clearly, 9 + 4 1 in general. But on a

More information

LINEAR CONGRUENCES AND LINEAR DIOPHANTINE EQUATIONS

LINEAR CONGRUENCES AND LINEAR DIOPHANTINE EQUATIONS LINEAR CONGRUENCES AND LINEAR DIOPHANTINE EQUATIONS MATH 422, CSUSM. SPRING 2009. AITKEN This document discusses methods and results related to solving linear congruences and linear Diophantine equations.

More information

MATH 3240Q Introduction to Number Theory Homework 4

MATH 3240Q Introduction to Number Theory Homework 4 If the Sun refused to shine I don t mind I don t mind If the mountains fell in the sea Let it be it ain t me Now if six turned out to be nine Oh I don t mind I don t mind Jimi Hendrix If Six Was Nine from

More information

Math From Scratch Lesson 20: The Chinese Remainder Theorem

Math From Scratch Lesson 20: The Chinese Remainder Theorem Math From Scratch Lesson 20: The Chinese Remainder Theorem W. Blaine Dowler January 2, 2012 Contents 1 Relatively Prime Numbers 1 2 Congruence Classes 1 3 Algebraic Units 2 4 Chinese Remainder Theorem

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 8 February 1, 2012 CPSC 467b, Lecture 8 1/42 Number Theory Needed for RSA Z n : The integers mod n Modular arithmetic GCD Relatively

More information

Rings of Residues. S. F. Ellermeyer. September 18, ; [1] m

Rings of Residues. S. F. Ellermeyer. September 18, ; [1] m Rings of Residues S F Ellermeyer September 18, 2006 If m is a positive integer, then we obtain the partition C = f[0] m ; [1] m ; : : : ; [m 1] m g of Z into m congruence classes (This is discussed in

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

The Euclidean Algorithm and Multiplicative Inverses

The Euclidean Algorithm and Multiplicative Inverses 1 The Euclidean Algorithm and Multiplicative Inverses Lecture notes for Access 2009 The Euclidean Algorithm is a set of instructions for finding the greatest common divisor of any two positive integers.

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

MATH 145 Algebra, Solutions to Assignment 4

MATH 145 Algebra, Solutions to Assignment 4 MATH 145 Algebra, Solutions to Assignment 4 1: a) Find the inverse of 178 in Z 365. Solution: We find s and t so that 178s + 365t = 1, and then 178 1 = s. The Euclidean Algorithm gives 365 = 178 + 9 178

More information

a the relation arb is defined if and only if = 2 k, k

a the relation arb is defined if and only if = 2 k, k DISCRETE MATHEMATICS Past Paper Questions in Number Theory 1. Prove that 3k + 2 and 5k + 3, k are relatively prime. (Total 6 marks) 2. (a) Given that the integers m and n are such that 3 (m 2 + n 2 ),

More information

This is a recursive algorithm. The procedure is guaranteed to terminate, since the second argument decreases each time.

This is a recursive algorithm. The procedure is guaranteed to terminate, since the second argument decreases each time. 8 Modular Arithmetic We introduce an operator mod. Let d be a positive integer. For c a nonnegative integer, the value c mod d is the remainder when c is divided by d. For example, c mod d = 0 if and only

More information

12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z.

12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z. Math 3, Fall 010 Assignment 3 Solutions Exercise 1. Find all the integral solutions of the following linear diophantine equations. Be sure to justify your answers. (i) 3x + y = 7. (ii) 1x + 18y = 50. (iii)

More information

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1 MATH 4400 SOLUTIONS TO SOME EXERCISES 1.1.3. If a b and b c show that a c. 1. Chapter 1 Solution: a b means that b = na and b c that c = mb. Substituting b = na gives c = (mn)a, that is, a c. 1.2.1. Find

More information

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer.

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer. CHAPTER 2 INTRODUCTION TO NUMBER THEORY ANSWERS TO QUESTIONS 2.1 A nonzero b is a divisor of a if a = mb for some m, where a, b, and m are integers. That is, b is a divisor of a if there is no remainder

More information

3 The fundamentals: Algorithms, the integers, and matrices

3 The fundamentals: Algorithms, the integers, and matrices 3 The fundamentals: Algorithms, the integers, and matrices 3.4 The integers and division This section introduces the basics of number theory number theory is the part of mathematics involving integers

More information

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

More information

Number Theory Solutions Packet

Number Theory Solutions Packet Number Theory Solutions Pacet 1 There exist two distinct positive integers, both of which are divisors of 10 10, with sum equal to 157 What are they? Solution Suppose 157 = x + y for x and y divisors of

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 10 Page 1 of 8 Number theory (Chapter 4) Review Questions: 1. Does 5 1? Does 1 5? 2. Does (129+63) mod 10 = (129 mod 10)+(63 mod 10)? 3. Does (129+63) mod 10 = ((129 mod 10)+(63

More information

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B.

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B. Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1 Binary Relation Example:

More information

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions Warm-up Problems 1. What is a prime number? Give an example of an even prime number and an odd prime number. A prime number

More information

Chapter 4 Finite Fields

Chapter 4 Finite Fields Chapter 4 Finite Fields Introduction will now introduce finite fields of increasing importance in cryptography AES, Elliptic Curve, IDEA, Public Key concern operations on numbers what constitutes a number

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

Congruences. September 16, 2006

Congruences. September 16, 2006 Congruences September 16, 2006 1 Congruences If m is a given positive integer, then we can de ne an equivalence relation on Z (the set of all integers) by requiring that an integer a is related to an integer

More information

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

More information

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II CS 5319 Advanced Discrete Structure Lecture 9: Introduction to Number Theory II Divisibility Outline Greatest Common Divisor Fundamental Theorem of Arithmetic Modular Arithmetic Euler Phi Function RSA

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Chapter 1 A Survey of Divisibility 14

Chapter 1 A Survey of Divisibility 14 Chapter 1 A Survey of Divisibility 14 SECTION C Euclidean Algorithm By the end of this section you will be able to use properties of the greatest common divisor (gcd) obtain the gcd using the Euclidean

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

44.(ii) In this case we have that (12, 38) = 2 which does not divide 5 and so there are no solutions.

44.(ii) In this case we have that (12, 38) = 2 which does not divide 5 and so there are no solutions. Solutions to Assignment 3 5E More Properties of Congruence 40. We can factor 729 = 7 3 9 so it is enough to show that 3 728 (mod 7), 3 728 (mod 3) and 3 728 (mod 9). 3 728 =(3 3 ) 576 = (27) 576 ( ) 576

More information

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. Congruences Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same

More information

This exam contains 5 pages (including this cover page) and 4 questions. The total number of points is 100. Grade Table

This exam contains 5 pages (including this cover page) and 4 questions. The total number of points is 100. Grade Table MAT115A-21 Summer Session 2 2018 Practice Final Solutions Name: Time Limit: 1 Hour 40 Minutes Instructor: Nathaniel Gallup This exam contains 5 pages (including this cover page) and 4 questions. The total

More information

Practice Number Theory Problems

Practice Number Theory Problems Massachusetts Institute of Technology Handout 9 6.857: Network and Computer Security March 21, 2013 Professor Ron Rivest Due: N/A Problem 3-1. GCD Practice Number Theory Problems (a) Compute gcd(85, 289)

More information

4 Number Theory and Cryptography

4 Number Theory and Cryptography 4 Number Theory and Cryptography 4.1 Divisibility and Modular Arithmetic This section introduces the basics of number theory number theory is the part of mathematics involving integers and their properties.

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z:

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z: Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some z Z Notation: b Fact: for all, b, c Z:, 1, and 0 0 = 0 b and b c = c b and c = (b + c) b and b = ±b 1

More information

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z: NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

More information

Intermediate Math Circles February 26, 2014 Diophantine Equations I

Intermediate Math Circles February 26, 2014 Diophantine Equations I Intermediate Math Circles February 26, 2014 Diophantine Equations I 1. An introduction to Diophantine equations A Diophantine equation is a polynomial equation that is intended to be solved over the integers.

More information

Mathematics 228(Q1), Assignment 3 Solutions

Mathematics 228(Q1), Assignment 3 Solutions Mathematics 228(Q1), Assignment 3 Solutions Exercise 1.(10 marks)(a) If m is an odd integer, show m 2 1 mod 8. (b) Let m be an odd integer. Show m 2n 1 mod 2 n+2 for all positive natural numbers n. Solution.(a)

More information

4 PRIMITIVE ROOTS Order and Primitive Roots The Index Existence of primitive roots for prime modulus...

4 PRIMITIVE ROOTS Order and Primitive Roots The Index Existence of primitive roots for prime modulus... PREFACE These notes have been prepared by Dr Mike Canfell (with minor changes and extensions by Dr Gerd Schmalz) for use by the external students in the unit PMTH 338 Number Theory. This booklet covers

More information

MTH 346: The Chinese Remainder Theorem

MTH 346: The Chinese Remainder Theorem MTH 346: The Chinese Remainder Theorem March 3, 2014 1 Introduction In this lab we are studying the Chinese Remainder Theorem. We are going to study how to solve two congruences, find what conditions are

More information

Chapter 8. Introduction to Number Theory

Chapter 8. Introduction to Number Theory Chapter 8 Introduction to Number Theory CRYPTOGRAPHY AND NETWORK SECURITY 1 Index 1. Prime Numbers 2. Fermat`s and Euler`s Theorems 3. Testing for Primality 4. Discrete Logarithms 2 Prime Numbers 3 Prime

More information

Elementary Number Theory II

Elementary Number Theory II Elementary Number Theory II CIS002-2 Computational Alegrba and Number Theory David Goodwin david.goodwin@perisic.com 09:00, Tuesday 1 st November 2011 Contents 1 Divisibility Euclid s Algorithm & Bezout

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

More information

Definition For a set F, a polynomial over F with variable x is of the form

Definition For a set F, a polynomial over F with variable x is of the form *6. Polynomials Definition For a set F, a polynomial over F with variable x is of the form a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 1 x + a 0, where a n, a n 1,..., a 1, a 0 F. The a i, 0 i n are the

More information

Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya

Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya Resources: Kenneth Rosen,

More information

Number Theory Proof Portfolio

Number Theory Proof Portfolio Number Theory Proof Portfolio Jordan Rock May 12, 2015 This portfolio is a collection of Number Theory proofs and problems done by Jordan Rock in the Spring of 2014. The problems are organized first by

More information

Algorithms CMSC Basic algorithms in Number Theory: Euclid s algorithm and multiplicative inverse

Algorithms CMSC Basic algorithms in Number Theory: Euclid s algorithm and multiplicative inverse Algorithms CMSC-27200 Basic algorithms in Number Theory: Euclid s algorithm and multiplicative inverse Instructor: László Babai Last updated 02-14-2015. Z denotes the set of integers. All variables in

More information

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology.

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology. MATH 501 Discrete Mathematics Lecture 6: Number theory Prof. Dr. Slim Abdennadher, slim.abdennadher@guc.edu.eg German University Cairo, Department of Media Engineering and Technology 1 Number theory Number

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Sacred Heart University DigitalCommons@SHU Academic Festival Apr 20th, 9:30 AM - 10:45 AM The Chinese Remainder Theorem Nancirose Piazza Follow this and additional works at: http://digitalcommons.sacredheart.edu/acadfest

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Homework 6 Solutions to Selected Problems

Homework 6 Solutions to Selected Problems Homework 6 Solutions to Selected Problems March 16, 2012 1 Chapter 7, Problem 6 (not graded) Note that H = {bn : b Z}. That is, H is the subgroup of multiples of n. To nd cosets, we look for an integer

More information

1 Overview and revision

1 Overview and revision MTH6128 Number Theory Notes 1 Spring 2018 1 Overview and revision In this section we will meet some of the concerns of Number Theory, and have a brief revision of some of the relevant material from Introduction

More information

Elementary Number Theory. Franz Luef

Elementary Number Theory. Franz Luef Elementary Number Theory Congruences Modular Arithmetic Congruence The notion of congruence allows one to treat remainders in a systematic manner. For each positive integer greater than 1 there is an arithmetic

More information

Wilson s Theorem and Fermat s Little Theorem

Wilson s Theorem and Fermat s Little Theorem Wilson s Theorem and Fermat s Little Theorem Wilson stheorem THEOREM 1 (Wilson s Theorem): (p 1)! 1 (mod p) if and only if p is prime. EXAMPLE: We have (2 1)!+1 = 2 (3 1)!+1 = 3 (4 1)!+1 = 7 (5 1)!+1 =

More information

Some Facts from Number Theory

Some Facts from Number Theory Computer Science 52 Some Facts from Number Theory Fall Semester, 2014 These notes are adapted from a document that was prepared for a different course several years ago. They may be helpful as a summary

More information

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Warm-up Problems 1. What is a prime number? Give an example of an even prime number and an odd prime number. (a) Circle the prime

More information

Outline. Number Theory and Modular Arithmetic. p-1. Definition: Modular equivalence a b [mod n] (a mod n) = (b mod n) n (a-b)

Outline. Number Theory and Modular Arithmetic. p-1. Definition: Modular equivalence a b [mod n] (a mod n) = (b mod n) n (a-b) Great Theoretical Ideas In CS Victor Adamchik CS - Lecture Carnegie Mellon University Outline Number Theory and Modular Arithmetic p- p Working modulo integer n Definitions of Z n, Z n Fundamental lemmas

More information

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION Recall that RSA works as follows. A wants B to communicate with A, but without E understanding the transmitted message. To do so: A broadcasts RSA method,

More information

Elementary Number Theory Review. Franz Luef

Elementary Number Theory Review. Franz Luef Elementary Number Theory Review Principle of Induction Principle of Induction Suppose we have a sequence of mathematical statements P(1), P(2),... such that (a) P(1) is true. (b) If P(k) is true, then

More information

Math 312/ AMS 351 (Fall 17) Sample Questions for Final

Math 312/ AMS 351 (Fall 17) Sample Questions for Final Math 312/ AMS 351 (Fall 17) Sample Questions for Final 1. Solve the system of equations 2x 1 mod 3 x 2 mod 7 x 7 mod 8 First note that the inverse of 2 is 2 mod 3. Thus, the first equation becomes (multiply

More information

Intermediate Math Circles February 29, 2012 Linear Diophantine Equations I

Intermediate Math Circles February 29, 2012 Linear Diophantine Equations I Intermediate Math Circles February 29, 2012 Linear Diophantine Equations I Diophantine equations are equations intended to be solved in the integers. We re going to focus on Linear Diophantine Equations.

More information

Number Theory Math 420 Silverman Exam #1 February 27, 2018

Number Theory Math 420 Silverman Exam #1 February 27, 2018 Name: Number Theory Math 420 Silverman Exam #1 February 27, 2018 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name neatly at the top of this page. Write your final answer

More information

cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications

cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications n-bit unsigned integer representation Represent integer x as sum of powers of 2: If x = n 1 i=0 b i 2 i where each b i

More information

cse 311: foundations of computing Spring 2015 Lecture 12: Primes, GCD, applications

cse 311: foundations of computing Spring 2015 Lecture 12: Primes, GCD, applications cse 311: foundations of computing Spring 2015 Lecture 12: Primes, GCD, applications casting out 3s Theorem: A positive integer n is divisible by 3 if and only if the sum of its decimal digits is divisible

More information