The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: F qe qv B

Size: px
Start display at page:

Download "The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: F qe qv B"

Transcription

1 Lorentz Forces The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: F qe qv B F qv B B F q vbsin 2/20/2018 1

2 Right Hand Rule Direction of F B is perpendicular to plane containing v & B. If q is positive, F B has the same sign as v x B. If q is negative, F B has the opposite sign of v x B. F B is never parallel to v. F B can only change the direction of the particle not the speed. 2/20/2018 2

3 More on Magnetic Force The magnetic force on a charged object that moves in a magnetic field does not do any work, because it s perpendicular to v. The magnetic force cannot change the magnitude of the velocity of a charged object, but can change the direction of motion. B = steering wheel, E = accelerator or brake pedal, so to speak The SI unit for magnetic field is tesla (T): 1 T 1 N Cm / s 1 N C/ sm 1 N Am A common unit gauss (G): 1 G = 10-4 T ~Earth s surface field! 2/20/2018 3

4 The Magnetic Force F qv B The direction of the force is: B x x x x x x x x x x x x v x x x x x x +q F B x B v +q F B (into the page) B v +q F B =0 (sin(0)=0) x x x x x x x x x x x x x x x x x x v F x x x x x x x x x x x x v x x x x x x q F 2/20/ B

5 Magnetic Force on a Current-Carrying Wire 2/20/2018 6

6 Top view of Current-Carrying Bar Sliding on two current carrying frictionless rails in a magnetic field. V + I I F B THIS IS A FORM OF ELECTRIC MOTOR, TURNING ELECTRICAL INTO MECHANICAL ENERGY I motion by reversing direction of I, by reversing V Note that this example assumes that the magnetic field caused by the currents in the rails is negligible compared to the external magnetic field B shown. The length L is the distance between the rail and B is the magnetic field. The current I flows in the green bar. 2/20/2018 8

7 Motion of a Point Charge in a Magnetic Field B cannot change v of a charged particle. B cannot change the kinetic energy of a charged particle. B can only change the direction of a particle. glow of ionized gas 2/20/2018 9

8 Motion of a Point Charge in a Magnetic Field 2/20/

9 Period of Circular Motion The period of the motion is or, the angular frequency 2/20/

10 Mass Spectrometer Ions of different masses can have the same charge q and the same velocity v. If we shoot them to a uniform magnetic field perpendicularly, question: The circular trajectories followed by the ions once they enter the B field would show: B a) The same radii (the radius has to remain the same) b) Different radii (the radius of the trajectories depend on the mass) c) One cannot tell (we need more information to decide) 2/20/

11 Mass Spectrometer (Ions with same KE) The purpose of a mass spectrometer is to separate ions by mass and measure the mass of each type of ion. If positive ions start from rest and move through a potential difference, V, the ions kinetic energy when they enter the magnetic field equals their loss in potential energy: v What kind of charge do the ions in the picture have? 2/20/

12 Mass Spectrometer (Ions with same KE) Working with both equations : First solve for thevelocity on thefirst one, Then substituteit on the kinetic energy equation A mass spectrometer can be improved if instead of having ions with the same kinetic energy entering the B field we have ions with the same velocity. 2/20/

13 Combine an Electric Field and a Magnetic Field If we shoot charged particles into a region of space that has both an electric and a magnetic field, we would end up with a net electro-magnetic force that is equal to the vector sum of the electric and magnetic forces acting on the charge: F F E F B qe qv B A very interesting effect can be achieved when we apply an electric and a magnetic force to a charged particle in such a way that these forces balance. F F F E B 0 2/20/

14 Crossed E and B Fields Question: In which direction is the magnetic force, once the positive charge reaches the region with the B field? a) Up b) Down c) into the page Question: If we would like to balance this magnetic force with an electric force, we would have to apply an electric field in which direction? a) Up b) Down c) into the page 2/20/

15 Crossed E and B Fields This device is called a Velocity Selector. CONCLUSION: There is only one particular velocity of a + charged particle that will balance the magnetic and electric forces 2/20/

16 Torque on a Current Loop We first have to define an unambiguous direction of the loop, perpendicular to the plane of the loop. nˆ We do this with our right hand (again) Curl your fingers of your right hand in the direction of the current, then your thumb should point in the direction of nˆ 2/20/

17 Rectangular Current Loop in a B Field nˆ wants to align with B : NIabBsin NIABsin wherea=ab and the formula does NOT depend on the shape of the loop, only on the area A N counts the number of turns of wire in this loop, each turn contributes. 2/20/

18 Torque on a Magnetic Dipole Flat current loop of arbitrary shape area of loop B remember an electric dipole in an E field where p E. number of turns in loop 2/20/

19 Magnetic Dipole in a Uniform B Field B Bsin When = 0 o or 180 o, = 0. However, = 180 o is unstable. When a torque is exerted through an angle, work is done. When a dipole is rotated through an angle d U ChooseU 0 dw du du ( d B sin d dw B sin d B 90 0 ) sin B cos U 0 U B cos 0 B 2/20/

20 Potential Energy of Magnetic Dipole A magnetic dipole has its highest energy when its dipole moment is anti-parallel to the magnetic field. U Bcos180 U B o A magnetic dipole has its lowest energy when its dipole moment is lined up with the magnetic field. U B Bcos 0 B 2/20/ U

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B-02.

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B-02. Lorentz = q E + q Right Hand Rule Direction of is perpendicular to plane containing &. If q is positie, has the same sign as x. If q is negatie, has the opposite sign of x. = q = q sinφ is neer parallel

More information

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Lorentz. Bar Magnets. Right Hand Rule. The Magnetic Force. v +q. x x x x x x x x x x x x B

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Lorentz. Bar Magnets. Right Hand Rule. The Magnetic Force. v +q. x x x x x x x x x x x x B ar Magnets ar magnet... two poles: and Like poles repel; Unlike poles attract. Magnetic ield lines: (defined in same way as electric field lines, direction and density) Attraction The unit for magnetic

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic

More information

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Forces and Fields What creates a magnetic field? Answer: MOVING CHARGES What is affected by a magnetic field? Answer: MOVING CHARGES We have a formula for magnetic force on a moving

More information

Lecture #4.4 Magnetic Field

Lecture #4.4 Magnetic Field Lecture #4.4 Magnetic Field During last several lectures we have been discussing electromagnetic phenomena. However, we only considered examples of electric forces and fields. We first talked about electrostatics

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

3/7/2019 N S N S. Magnetism. Magnetism

3/7/2019 N S N S. Magnetism. Magnetism Magnetism Magnetic charges Called poles Two types, North and South Like poles repel each other Opposite poles attract each other Found only in North/South pairs (Dipoles) Magnetism Magnetic poles Found

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The behavior of magnetic poles is similar to that of like and unlike electric charges. 21.1 Magnetic Fields The needle of a compass is permanent

More information

Earth as a Magnet. The strength and orientation of the earth s magnetic field varies over time and location.

Earth as a Magnet. The strength and orientation of the earth s magnetic field varies over time and location. Magnetism Magnetic charges Called poles Two types, North and South Like poles repel each other Opposite poles attract each other Found only in North/South pairs (Dipoles) N S Magnetism Magnetic poles Found

More information

Magnetic Fields Permanent Magnets

Magnetic Fields Permanent Magnets 1 Magnetic Fields Permanent Magnets Magnetic fields are continuous loops leaving a North pole and entering a South pole they point in direction that an isolated North would move Highest strength near poles

More information

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Magnetic Field Lecture 13 Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 28 Magnetic Fields In this chapter we will cover the following topics:

More information

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law. Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law Ampere-Maxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

PHY132 Lecture 13 02/24/2010. Lecture 13 1

PHY132 Lecture 13 02/24/2010. Lecture 13 1 Classical Physics II PHY132 Lecture 13 Magnetism II: Magnetic torque Lecture 13 1 Magnetic Force MAGNETISM is yet another force that has been known since a very long time. Its name stems from the mineral

More information

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13 Chapter I Electromagnetism Day 1 Magnetism Sections 20-1, 20-13 An investigation of permanent magnets shows that they only attract certain metals specifically those containing iron, or a few other materials,

More information

Magnetic field and magnetic poles

Magnetic field and magnetic poles Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and -)are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Physics H. Instructor: Dr. Alaa Mahmoud

Physics H. Instructor: Dr. Alaa Mahmoud Physics 202 1436-1437 H Instructor: Dr. Alaa Mahmoud E-mail: alaa_y_emam@hotmail.com Chapter 28 magnetic Field Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would not

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it NORTH. This end points to the South; call it SOUTH. Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law

More information

Magnets. Magnetic vs. Electric

Magnets. Magnetic vs. Electric Magnets A force is applied to the iron filings causing them to align themselves to the direction of the magnetic field. A compass needle will tell you the direction of the field. Show Fields of little

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

Some History of Magnetism

Some History of Magnetism Magnetism Some History of Magnetism The ancient Greeks were the first to observe magnetism. They studied the mineral magnetite. The poles of a magnet were observed to be south or north seeking. These properties

More information

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get

More information

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES.

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES. !! www.clutchprep.com CONCEPT: HOW MAGNETS WORK Forever ago we found metals that would attract each other. First found in island of Magnesia named. - Most common are iron (Fe), cobalt (Co), nickel (Ni),

More information

Phys102 Lecture 16/17 Magnetic fields

Phys102 Lecture 16/17 Magnetic fields Phys102 Lecture 16/17 Magnetic fields Key Points Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic

More information

7.1 THE MAGNETIC FIELD

7.1 THE MAGNETIC FIELD 7.1 THE MAGNETIC IEL - If one pours small iron particles around a permanent magnet ( natural lodestones or manmade ) an ordered pattern appears(fig.1). One can easily discern the presence of lines that

More information

Kirchhoff s rules, example

Kirchhoff s rules, example Kirchhoff s rules, example Magnets and Magnetism Poles of a magnet are the ends where objects are most strongly attracted. Two poles, called north and south Like poles repel each other and unlike poles

More information

Chapter 27: Magnetic Field and Magnetic Forces

Chapter 27: Magnetic Field and Magnetic Forces Chapter 27: Magnetic Field and Magnetic Forces Iron ore found near Magnesia Compass needles align N-S: magnetic Poles North (South) Poles attracted to geographic North (South) Like Poles repel, Opposites

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

Ch24 Page 1. Chapter 24 Magnetic Fields and Forces Thursday, March 11, :26 PM

Ch24 Page 1. Chapter 24 Magnetic Fields and Forces Thursday, March 11, :26 PM Ch24 Page 1 Chapter 24 Magnetic Fields and Forces Thursday, March 11, 2010 8:26 PM Ch24 Page 2 It seems that microscopic electric currents are the ultimate cause of magnetism. For example, each neutron

More information

Chapter 22 Magnetism

Chapter 22 Magnetism Chapter 22 Magnetism 1 Overview of Chapter 22 The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Physics 202, Lecture 11

Physics 202, Lecture 11 Physics 202, Lecture 11 Today s Topics Magnetic Fields and Forces (Ch. 27) Magnetic materials Magnetic forces on moving point charges Magnetic forces on currents, current loops Motion of charge in uniform

More information

Physics 102: Magnetic Fields

Physics 102: Magnetic Fields Physics 102: Magnetic Fields Assist. Prof. Dr. Ali Övgün EMU Physics Department www.aovgun.com Electric Field & Magnetic Field Electric forces acting at a distance through electric field. Vector field,

More information

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment Biot-Savart law Ampere s law The magnetic dipole field What is a

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 28 Magnetic Fields Copyright 28-2 What Produces a Magnetic Field? 1. Moving electrically charged particles ex: current in a wire makes an electromagnet. The current produces a magnetic field that

More information

College Physics B - PHY2054C. Magnetic Fields and Forces 09/24/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Magnetic Fields and Forces 09/24/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Motion of a d College - PHY2054C and 09/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Motion of a d 1 2 Motion of a d 3 4 5 6 Right-Hand Rule Motion of a d Point the thumb

More information

Physics Tutorial MF1 Magnetic Forces

Physics Tutorial MF1 Magnetic Forces Physics Tutorial MF1 Magnetic Forces 1 Magnetic Forces The force F on a charge q moving with velocity v in a magnetic field is: F = qv The force F on a straight conductor of length L carrying a current

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Lecture 32: MON 09 NOV Review Session A : Midterm 3

Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling Lecture 32: MON 09 NOV Review Session A : Midterm 3 EXAM 03: 6PM WED 11 NOV in Cox Auditorium The exam will cover: Ch.27.4 through Ch.30 The exam will be based on: HW08 11

More information

Force Due to Magnetic Field You will use

Force Due to Magnetic Field You will use Force Due to Magnetic Field You will use Units: 1 N = 1C(m/s) (T) A magnetic field of one tesla is very powerful magnetic field. Sometimes it may be convenient to use the gauss, which is equal to 1/10,000

More information

Certain iron containing materials have been known to attract or repel each other. Compasses align to the magnetic field of earth.

Certain iron containing materials have been known to attract or repel each other. Compasses align to the magnetic field of earth. Certain iron containing materials hae been known to attract or repel each other. Compasses align to the magnetic field of earth. Analogous to positie and negatie charges, eery magnet has a north and a

More information

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16 1 PHYS 104 2 ND semester 1439-1440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Lecture 31: MON 30 MAR Review Session : Midterm 3

Lecture 31: MON 30 MAR Review Session : Midterm 3 Physics 2113 Jonathan Dowling Lecture 31: MON 30 MAR Review Session : Midterm 3 EXAM 03: 8PM MON 30 MAR in Cox Auditorium The exam will cover: Ch.26 through Ch.29 The exam will be based on: HW07 HW10.

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 1 21.1 Magnetic Fields The phenomenon of magnetism (1) The magnetic compass In Class Demo The needle of a compass is a permanent magnet that has a north magnetic

More information

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 Name: Date: 1. A loop of current-carrying wire has a magnetic dipole moment of 5 10 4 A m 2. The moment initially is aligned

More information

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T.

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T. Magnetic fields The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T. Which pole of a magnet attracts the north pole of a compass? Which

More information

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? Magnetic Force A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? (a) left (b) right (c) zero (d) into the page (e) out of the page B

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

Magnetic Forces and Fields (Chapters 29-30)

Magnetic Forces and Fields (Chapters 29-30) Magnetic Forces and Fields (Chapters 29-30) Magnetism Magnetic Materials and Sources Magnetic Field, Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications

More information

Electrics. Electromagnetism

Electrics. Electromagnetism Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Lab 7: Magnetic fields and forces Lab Worksheet

Lab 7: Magnetic fields and forces Lab Worksheet Lab 7: Magnetic fields and forces Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete

More information

SCS 139 Applied Physics II

SCS 139 Applied Physics II SCS 139 Applied Physics II Dr. Prapun Suksompong prapun@siit.tu.ac.th www.prapun.com Office Hours: BKD 3601-7 Monday 9:20-10:20 Wednesday 9:20-10:20 1 i Course Web Site Please check the course website

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

General Physics (PHYS )

General Physics (PHYS ) General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter Magnetism

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

CH 19-1 Magnetic Field

CH 19-1 Magnetic Field CH 19-1 Magnetic Field Important Ideas A moving charged particle creates a magnetic field everywhere in space around it. If the particle has a velocity v, then the magnetic field at this instant is tangent

More information

Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam III Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

More information

Chapter 24. Magnetic Fields

Chapter 24. Magnetic Fields Chapter 24 Magnetic Fields 1 Magnetic Poles Every magnet, regardless of its shape, has two poles Called north and south poles Poles exert forces on one another Similar to the way electric charges exert

More information

PHYS Fields and Waves

PHYS Fields and Waves PHYS 41 - Fields and Waves Consider a charge moving in a magnetic field B field into plane F=ma acceleration change of direction of velocity Take F as centripetal force: 0 F qvb cos90 qvb F Centripetal

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2 First Name: Last Name: Section: n 1 March 26, 2003 Physics 202 EXAM 2 Print your name and section clearly on all five pages. (If you do not know your section number, write your TA s name.) Show all work

More information

Chapter 22: Magnetism

Chapter 22: Magnetism Chapter 22: Magnetism Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles repel, opposites attract. Brent Royuk

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Electromagnetic

More information

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University Chapter 22: Magnetism Brent Royuk Phys-112 Concordia University Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

Exam 2: Tuesday, March 21, 5:00-6:00 PM

Exam 2: Tuesday, March 21, 5:00-6:00 PM Exam 2: Tuesday, March 21, 5:00-6:00 PM Test rooms: Instructor Sections Room Dr. Hale F, H 104 Physics Dr. Kurter, N 125 CH Dr. Madison K, M 199 Toomey Dr. Parris J, L -10 ertelsmeyer* Mr. Upshaw A, C,

More information

Magnetism has been observed since roughly 800 B.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another.

Magnetism has been observed since roughly 800 B.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another. 1.1 Magnetic ields Magnetism has been obsered since roughly 800.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another. Hence the word: Magnetism. o just like

More information

Exam 2 Solutions. ε 3. ε 1. Problem 1

Exam 2 Solutions. ε 3. ε 1. Problem 1 Exam 2 Solutions Problem 1 In the circuit shown, R1=100 Ω, R2=25 Ω, and the ideal batteries have EMFs of ε1 = 6.0 V, ε2 = 3.0 V, and ε3 = 1.5 V. What is the magnitude of the current flowing through resistor

More information

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 22 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

Lorentz Force. Velocity Selector

Lorentz Force. Velocity Selector Lecture 9-1 Lorentz Force Let E and denote the electric and magnetic vector fields. The force F acting on a point charge q, moving with velocity v in the superimosed E fields is: F qe v This is called

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

Chapter 20 Lecture Notes

Chapter 20 Lecture Notes Chapter 20 Lecture Notes Physics 2424 - Strauss Formulas: B = µ 0 I/2πr B = Nµ 0 I/(2R) B = µ 0 ni Σ B l = µ 0 I F = Bqv sinθ r = mv/bq m = (er 2 /2V) B 2 F = ILB sinθ τ = NIAB sinϕ F/L = I 2 I 1 µ 0 /2πd

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Brief history of Magnetism 3/5/ Magnetic force on a current carrying wire. 1. Magnetic field history: applications:

Brief history of Magnetism 3/5/ Magnetic force on a current carrying wire. 1. Magnetic field history: applications: 1. Magnetic field history: applications: PHY 114 A General Physics II 11 AM 12:15 PM Olin 101 George Holzwarth gholz@wfu.edu Main topics today (Chapt 29): B 2. Lorentz force law for charged particles moving

More information

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2006 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)

More information

Chapter 28. The Magnetic Field

Chapter 28. The Magnetic Field Chapter 28 The Magnetic Field Magnetic Field Force Exerted by a Magnetic Field Point Charge in a Magnetic Field Torques on Current Loops MFMcGraw-PHY 2426 Ch28a-Magnetic Field - Revised 10/03/2012 2 Magnetic

More information

Lecture 25: FRI 24 OCT Magnetic Fields III

Lecture 25: FRI 24 OCT Magnetic Fields III Physics 2113 Aurora orealis Jonathan Dowling Lecture 25: FRI 24 OCT Magnetic Fields III They are not supposed to exist. Magnetic Force on a Wire. L F = i L df = i dl Magnetic Force on a Wire v d L i i

More information

Every magnet has a north pole and south pole.

Every magnet has a north pole and south pole. Magnets - Intro The lodestone is a naturally occurring mineral called magnetite. It was found to attract certain pieces of metal. o one knew why. ome early Greek philosophers thought the lodestone had

More information

Chapter 17: Magnetism

Chapter 17: Magnetism Chapter 17: Magnetism Section 17.1: The Magnetic Interaction Things You Already Know Magnets can attract or repel Magnets stick to some things, but not all things Magnets are dipoles: north and south Labels

More information

Problem Fig

Problem Fig Problem 27.15 An electron at point A has a speed of 1.41 x 10 6 m/s. Find (a) the magnitude and direction of the magnetic field that will cause the electron to follow the semicircular path from A to B,

More information

Phys 102 Lecture 12 Currents & magnetic fields

Phys 102 Lecture 12 Currents & magnetic fields Phys 102 Lecture 12 Currents & magnetic fields 1 Today we will... Learn how magnetic fields are created by currents Use specific examples Long straight wire Current loop Solenoid Apply these concepts Electromagnets

More information

Chapter 24: Magnetic Fields & Forces

Chapter 24: Magnetic Fields & Forces Chapter 24: Magnetic Fields & Forces We live in a magnetic field. The earth behaves almost as if a bar magnet were located near its center. The earth s axis of rotation and Magnetic axis are not the same

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

Magnetic Forces and Fields (Chapters 32)

Magnetic Forces and Fields (Chapters 32) Magnetic Forces and Fields (Chapters 32) Magnetism Magnetic Materials and Sources Magnetic Field, B Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications

More information

So far. Chapter 19. Today ( ) Magnets. Types of Magnetic Materials. More About Magnetism 10/2/2011

So far. Chapter 19. Today ( ) Magnets. Types of Magnetic Materials. More About Magnetism 10/2/2011 So far Chapter 19 Magnetism Electrostatics, properties of stationary charges Coulomb s law Electric field, electric potential Capacitors Ohm s law and resistance Today (19.1-19.4) Magnets Magnetism Earth

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Motion of a charged particle in an Electric Field

Motion of a charged particle in an Electric Field Motion of a charged particle in an Electric Field The electric force F that acts on a positive charge is parallel to the electric field E and causes the particle s trajectory to bend in a horizontal plane.

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information