1. Introduction - Reproducibility of a Neuron. 3. Introduction Phase Response Curve. 2. Introduction - Stochastic synchronization. θ 1. c θ.

Size: px
Start display at page:

Download "1. Introduction - Reproducibility of a Neuron. 3. Introduction Phase Response Curve. 2. Introduction - Stochastic synchronization. θ 1. c θ."

Transcription

1 . Introduction - Reproducibility of a euron Science (995 Constant stimuli led to imprecise spike trains, whereas stimuli with fluctuations produced spike trains with timing reproducible to less than millisecond. - Unreproducible - Reproducible (Synchronization Constant stimuli st trial neuron Fluctuating stimuli st trial nd trial neuron nd trial Common noisy signal may induce synchronization!. Introduction - Stochastic synchronization 3. Introduction Phase Response Curve Asymptotic phase shift of the oscillator caused by external stimuli. i introduction of the phase ii measurement of the PRC Random Signals θ θ sync! θ=.5 θ=.5 ω:const. θ= G(θ G(θ, c c θ Uncoupled limit-cycle oscillators synchronize to each other when driven by common random signals such as Gaussian white noise and Poisson random impulses. θ=.75 - Examples Stuart-Landau FitzHugh-agumo Hodgkin-Huxley What PRC shape yields the best stochastic synchronization?

2 4. Optimal phase sensitivity for stochastic synchrony If the impulse intensity c is sufficiently small, the oscillators respond linearly to c so that their PRCs can be approximated by means of the phase sensitivity function Z(θ. G(θ,c cz(θ (exponential growth rate of the phase difference Λ = λ c Z (θ dθ Common random signals always induce stochastic synchronization! J. Teramae and D. Tanaka, PRL (4 - Optimal shape of Z Optimal shape of Z for the stochastic synchronization is sinusoidal. A. Abouzeid and B. Ermentrout, PRE (9 When the nonlinear response is considered, what shape of PRC yields the best stochastic synchrony? 5. Model System - Poisson driven oscillators θ (t = ω + G(θ δ(t t n n= θ (t = ω + G(θ δ(t t n n= G(θ,c : PRC for the impulse intensity c Λ = λ { } : arrival times of impulses t n dθ dcp(cp(θln + G (θ λ : Rate of the Poisson impulses P(c : PDF of the impulse intensity P(θ : PDF of the phase right before impulses 6. Calculation of the Lyapunov exponent Λ = λ - Approximation of the phase distribution In Poisson driven case, the phase distribution can be approximated as uniform. (K. Arai and H. akao, PRE, 8 P(θ - Excitatory impulses The oscillators are driven by the constant-intensity impulses. P(c = δ(c a Λ = λ dθ ln + G (θ where G(θ := G(θ, a dθ dcp(cp(θln + G (θ 7. Optimal PRCs - Trivial optimal PRC Λ = λ dθ ln + G (θ If the impulse is sufficiently strong, optimal solution is a sawtooth. G (θ = Λ = Single impulse can synchronize oscillators! - Weak impulse limit? If the impulse is sufficiently weak so that the oscillator respond linearly to the impulse intensity, the optimal shape is a sinusoid.? What PRC shape is optimal between both limits?

3 8. Constrained Minimization Constraints on PRC - Squared amplitude J[G] = G(θ dθ B = - Overall smoothness K[G] = G (θ dθ C = Lagrange multiplier method Λ + µj + νk = L(G, G, G dθ µ,ν : Lagrange multiplier d L dθ G d L dθ G + L G = Control the amp. of PRC! Large-wavenumber PRC ot sync., but clustering! 9. Euler-Lagrange equation L(G, G, G = λ ln + G (θ + µ(g B + ν( G C νg (4 + λ G ( + G + µg = - We fix the smoothness parameter at ν = 5, which is enough large to exclude large-wavenumber solutions. - Varying the amplitude parameter µ, we look for the solutions which satisfy the periodic boundary conditions, G( = G( =, G ( = G (, G ( = G (, - For simplicity, we set the Poisson rate λ =. The optimal PRCs obey this equation!. Result - Optimal PRCs for Stochastic Synchronization νg (4 + G (+ G + µg = umerically solving the Euler-Lagrange equation with µ >, we obtained the optimal PRCs for the stochastic synchronization.. Result - Optimal PRCs for Stochastic Desynchronization νg (4 + G ( + G + µg = umerically solving the Euler-Lagrange equation with µ <, we obtained the optimal PRCs for the stochastic desynchronization. negative positive The optimal PRC mutates its shape from a sinusoidal to a sawtooth! The optimal PRC have a cusp at θ =.5 and approaches to a sawtooth!

4 . Summary - We examine the optimization problem of the PRC for stochastic synchronization and desynchronization of limit-cycle oscillators. - Minimizing (or maximizing Lyapunov exponent with constraints on the squared amplitude and the overall smoothness. - As the squared amplitude increases - The optimal PRC for stochastic synchronization mutates its shape from a sinusoidal to a sawtooth. - The optimal PRC for stochastic desynchronization have a cusp, and gradually approaches to a sawtooth. - Derivation of the Lyapunov exponent - Excitatory an Inhibitory impulses - Diffusion approx. / limit - -dependence ν This work was supported by the Grant-in-Aid for the Global COE Program "The ext Generation of Physics, Spun from Universality and Emergence" from the MEXT of Japan. Derivation of the Lyapunov exponent Δ n+ = dθ n+ Δ n dθ n = ( + G (θ n Δ n ( Δ = + G (θ n Δ n= θ(t = ω + G(θ δ(t t n n= θ n+ = θ n + G(θ n + ωτ n where τ n := t n+ t n Λ = lim log Δ Δ = lim n= log + G (θ n dθ dcp(θp(clog + G (θ n Replace the sample average by the statistical average! Excitatory and Inhibitory Impulses - Probability density of c P(c = δ(c a + δ(c + a Λ = λ dθ ln G (θ νg (4 + λ { } Assuming that G(θ, a = G(θ,a G (+ G + µg = ( G where G(θ := G(θ,a L(G, G, G = λ ln G (θ + µ(g B + ν( G C

5 umerical Result νg (4 + λ G (+ G + µg = ( G umerically solving the Euler-Lagrange equation with µ >, we obtained the optimal PRCs for the stochastic synchronization. Diffusion approx. / limit G(θ az(θ for a - Excitatory impulses νaz (4 + λ a Z (+ a Z + µaz = a νz (4 + λ Z + µz = - Excitatory and inhibitory impulses νaz (4 + λ a Z ( + a Z + µaz = ( a Z a νz (4 + λ Z + µz = negative The optimal PRC mutates its shape from a sinusoidal to a double sawtooth! Z(θ sin λ ± λ 6µν θ 4ν Consistent with the previous study! (A. Abouzeid and B. Ermentrout, 9 Dependence of the solutions on ν Euler-Lagrange equation νg (4 + λ G ( + G + µg = Rescale the phase variable θ nθ. d 4 ν d(nθ G(nθ + λ 4 d d(nθ G(nθ ( + d G(nθ d(nθ + µg(nθ = d ν d 4 n dθ G(nθ + λ G(nθ dθ 4 + d ( G(nθ n dθ + µn G(nθ = ν n G n (4 (θ + λ G n (θ ( + G n (θ + µ ng n (θ = Dependence of the solutions on ν If G(θ is a solution of the EL equation with (µ,ν, then G n (θ is a solution with (µ n,ν n. µ 4µ ν ν / 4 G n (θ = n G(nθ, µ n = n µ, ν n = ν n where G n (θ = n G(nθ, µ n = n µ, ν n = ν n

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014 Synchronization of Limit Cycle Oscillators by Telegraph Noise Denis S. Goldobin arxiv:148.135v1 [cond-mat.stat-mech] 5 Aug 214 Department of Physics, University of Potsdam, Postfach 61553, D-14415 Potsdam,

More information

Synchrony in Stochastic Pulse-coupled Neuronal Network Models

Synchrony in Stochastic Pulse-coupled Neuronal Network Models Synchrony in Stochastic Pulse-coupled Neuronal Network Models Katie Newhall Gregor Kovačič and Peter Kramer Aaditya Rangan and David Cai 2 Rensselaer Polytechnic Institute, Troy, New York 2 Courant Institute,

More information

Dynamical modelling of systems of coupled oscillators

Dynamical modelling of systems of coupled oscillators Dynamical modelling of systems of coupled oscillators Mathematical Neuroscience Network Training Workshop Edinburgh Peter Ashwin University of Exeter 22nd March 2009 Peter Ashwin (University of Exeter)

More information

Common noise vs Coupling in Oscillator Populations

Common noise vs Coupling in Oscillator Populations Common noise vs Coupling in Oscillator Populations A. Pimenova, D. Goldobin, M. Rosenblum, and A. Pikovsky Institute of Continuous Media Mechanics UB RAS, Perm, Russia Institut for Physics and Astronomy,

More information

Nonlinear Dynamics: Synchronisation

Nonlinear Dynamics: Synchronisation Nonlinear Dynamics: Synchronisation Bristol Centre for Complexity Sciences Ian Ross BRIDGE, School of Geographical Sciences, University of Bristol October 19, 2007 1 / 16 I: Introduction 2 / 16 I: Fireflies

More information

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A. NEWHALL, GREGOR KOVAČIČ, PETER R. KRAMER, DOUGLAS ZHOU, AADITYA V. RANGAN, AND DAVID CAI Abstract. Synchronous

More information

Hysteretic Transitions in the Kuramoto Model with Inertia

Hysteretic Transitions in the Kuramoto Model with Inertia Rostock 4 p. Hysteretic Transitions in the uramoto Model with Inertia A. Torcini, S. Olmi, A. Navas, S. Boccaletti http://neuro.fi.isc.cnr.it/ Istituto dei Sistemi Complessi - CNR - Firenze, Italy Istituto

More information

Neural Spike Train Analysis 1: Introduction to Point Processes

Neural Spike Train Analysis 1: Introduction to Point Processes SAMSI Summer 2015: CCNS Computational Neuroscience Summer School Neural Spike Train Analysis 1: Introduction to Point Processes Uri Eden BU Department of Mathematics and Statistics July 27, 2015 Spikes

More information

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A. NEWHALL, GREGOR KOVAČIČ, PETER R. KRAMER, DOUGLAS ZHOU, AADITYA V. RANGAN, AND DAVID CAI Abstract. Synchronous

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

STOCHASTIC NEURAL OSCILLATORS. by Aushra Abouzeid B.A., Knox College, 1994 M.S., University of Illinois at Chicago, 2003

STOCHASTIC NEURAL OSCILLATORS. by Aushra Abouzeid B.A., Knox College, 1994 M.S., University of Illinois at Chicago, 2003 STOCHASTIC NEURAL OSCILLATORS by Aushra Abouzeid B.A., Knox College, 1994 M.S., University of Illinois at Chicago, 23 Submitted to the Graduate Faculty of the Department of Mathematics in partial fulfillment

More information

Stochastic Neuroscience. Bard Ermentrout Dept of Math University of Pgh Pgh PA

Stochastic Neuroscience. Bard Ermentrout Dept of Math University of Pgh Pgh PA Stochastic Neuroscience Bard Ermentrout Dept of Math University of Pgh Pgh PA CLARENDON PRESS. OXFORD 28 1 NOISY OSCILLATORS Synchronous oscillations occur throughout the central nervous system. Recordings

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception Takashi Kanamaru Department of Mechanical Science and ngineering, School of Advanced

More information

Dedicated to the sixtieth birthday of Professor Andrew Majda

Dedicated to the sixtieth birthday of Professor Andrew Majda COMMUN. MATH. SCI. Vol. 8, No. 2, pp. 541 6 c 21 International Press DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A. NEWHALL, GREGOR KOVAČIČ, PETER R. KRAMER,

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

Phase Response Curves, Delays and Synchronization in Matlab

Phase Response Curves, Delays and Synchronization in Matlab Phase Response Curves, Delays and Synchronization in Matlab W. Govaerts and B. Sautois Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium

More information

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Jorge F. Mejias 1,2 and Joaquín J. Torres 2 1 Department of Physics and Center for

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Global Analysis of a Continuum Model. for Monotone Pulse-Coupled Oscillators

Global Analysis of a Continuum Model. for Monotone Pulse-Coupled Oscillators Global Analysis of a Continuum Model for Monotone Pulse-Coupled Oscillators Alexandre Mauroy and Rodolphe Sepulchre arxiv:2.45v4 [math.ap] 4 Aug 22 Abstract We consider a continuum of phase oscillators

More information

Control and Synchronization of Neuron. Ensembles

Control and Synchronization of Neuron. Ensembles Control and Synchronization of Neuron 1 Ensembles Jr-Shin Li, Isuru Dasanayake, and Justin Ruths arxiv:1111.6306v2 [math.oc] 4 Jan 2012 Abstract Synchronization of oscillations is a phenomenon prevalent

More information

Contents of this Document [ntc5]

Contents of this Document [ntc5] Contents of this Document [ntc5] 5. Random Variables: Applications Reconstructing probability distributions [nex14] Probability distribution with no mean value [nex95] Variances and covariances [nex20]

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Neural variability and Poisson statistics

Neural variability and Poisson statistics Neural variability and Poisson statistics January 15, 2014 1 Introduction We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is generated by ion specic

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

2.152 Course Notes Contraction Analysis MIT, 2005

2.152 Course Notes Contraction Analysis MIT, 2005 2.152 Course Notes Contraction Analysis MIT, 2005 Jean-Jacques Slotine Contraction Theory ẋ = f(x, t) If Θ(x, t) such that, uniformly x, t 0, F = ( Θ + Θ f x )Θ 1 < 0 Θ(x, t) T Θ(x, t) > 0 then all solutions

More information

Stability of the splay state in pulse-coupled networks

Stability of the splay state in pulse-coupled networks Krakow August 2013 p. Stability of the splay state in pulse-coupled networks S. Olmi, A. Politi, and A. Torcini http://neuro.fi.isc.cnr.it/ Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

A. Pikovsky. Deapartment of Physics and Astronomy, Potsdam University. URL: pikovsky

A. Pikovsky. Deapartment of Physics and Astronomy, Potsdam University. URL:   pikovsky Lyapunov exponents and all that A. Pikovsky Deapartment of Physics and Astronomy, Potsdam University URL: www.stat.physik.uni-potsdam.de/ pikovsky Alexandr Mikhailovich Lyapunov * 1857 Jaroslavl 1870 1876

More information

Computational Physics (6810): Session 8

Computational Physics (6810): Session 8 Computational Physics (6810): Session 8 Dick Furnstahl Nuclear Theory Group OSU Physics Department February 24, 2014 Differential equation solving Session 7 Preview Session 8 Stuff Solving differential

More information

Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise

Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise Journal of Mathematical Neuroscience (2011) 1:2 DOI 10.1186/2190-8567-1-2 RESEARCH OpenAccess Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise Paul C Bressloff Yi Ming

More information

Cascade-Induced Synchrony in Stochastically-Driven Neuronal Networks

Cascade-Induced Synchrony in Stochastically-Driven Neuronal Networks Cascade-Induced Synchrony in Stochastically-Driven Neuronal Networks Katherine A. Newhall, Gregor Kovačič, Peter R. Kramer, and David Cai 2,3, Mathematical Sciences Department, Rensselaer Polytechnic Institute,

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 017 Duration: and 1/ hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

Chimera states in networks of biological neurons and coupled damped pendulums

Chimera states in networks of biological neurons and coupled damped pendulums in neural models in networks of pendulum-like elements in networks of biological neurons and coupled damped pendulums J. Hizanidis 1, V. Kanas 2, A. Bezerianos 3, and T. Bountis 4 1 National Center for

More information

Synchronization in delaycoupled bipartite networks

Synchronization in delaycoupled bipartite networks Synchronization in delaycoupled bipartite networks Ram Ramaswamy School of Physical Sciences Jawaharlal Nehru University, New Delhi February 20, 2015 Outline Ø Bipartite networks and delay-coupled phase

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

MATH 723 Mathematical Neuroscience Spring 2008 Instructor: Georgi Medvedev

MATH 723 Mathematical Neuroscience Spring 2008 Instructor: Georgi Medvedev MATH 723 Mathematical Neuroscience Spring 28 Instructor: Georgi Medvedev 2 Lecture 2. Approximate systems. 2. Reduction of the HH model to a 2D system. The original HH system consists of 4 differential

More information

1 Balanced networks: Trading speed for noise

1 Balanced networks: Trading speed for noise Physics 178/278 - David leinfeld - Winter 2017 (Corrected yet incomplete notes) 1 Balanced networks: Trading speed for noise 1.1 Scaling of neuronal inputs An interesting observation is that the subthresold

More information

Synchronization and Phase Oscillators

Synchronization and Phase Oscillators 1 Synchronization and Phase Oscillators Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Synchronization

More information

Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons

Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons Christoph Börgers 1 and Nancy Kopell 2 1 Department of Mathematics, Tufts University, Medford, MA 2155 2 Department of

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 part 5: Nonlinear Integrate-and-Fire Model 4.1 From Hodgkin-Huxley to 2D Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 Recing detail: Two-dimensional neuron models Wulfram

More information

Synchrony, stability, and firing patterns in pulse-coupled oscillators

Synchrony, stability, and firing patterns in pulse-coupled oscillators Physica D 163 (2002) 191 216 Synchrony, stability, and firing patterns in pulse-coupled oscillators Pranay Goel, Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260,

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST:

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST: E & M Qualifier 1 January 11, 2017 To insure that the your work is graded correctly you MUST: 1. use only the blank answer paper provided, 2. use only the reference material supplied (Schaum s Guides),

More information

The (Fast) Fourier Transform

The (Fast) Fourier Transform The (Fast) Fourier Transform The Fourier transform (FT) is the analog, for non-periodic functions, of the Fourier series for periodic functions can be considered as a Fourier series in the limit that the

More information

Is the superposition of many random spike trains a Poisson process?

Is the superposition of many random spike trains a Poisson process? Is the superposition of many random spike trains a Poisson process? Benjamin Lindner Max-Planck-Institut für Physik komplexer Systeme, Dresden Reference: Phys. Rev. E 73, 2291 (26) Outline Point processes

More information

Neurophysiology of a VLSI spiking neural network: LANN21

Neurophysiology of a VLSI spiking neural network: LANN21 Neurophysiology of a VLSI spiking neural network: LANN21 Stefano Fusi INFN, Sezione Roma I Università di Roma La Sapienza Pza Aldo Moro 2, I-185, Roma fusi@jupiter.roma1.infn.it Paolo Del Giudice Physics

More information

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition VIII. Phase Transformations Lecture 38: Nucleation and Spinodal Decomposition MIT Student In this lecture we will study the onset of phase transformation for phases that differ only in their equilibrium

More information

arxiv:chao-dyn/ v1 30 Jan 1997

arxiv:chao-dyn/ v1 30 Jan 1997 Universal Scaling Properties in Large Assemblies of Simple Dynamical Units Driven by Long-Wave Random Forcing Yoshiki Kuramoto and Hiroya Nakao arxiv:chao-dyn/9701027v1 30 Jan 1997 Department of Physics,

More information

4.1. If the input of the system consists of the superposition of M functions, M

4.1. If the input of the system consists of the superposition of M functions, M 4. The Zero-State Response: The system state refers to all information required at a point in time in order that a unique solution for the future output can be compute from the input. In the case of LTIC

More information

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability Journal of Physics: Conference Series PAPER OPEN ACCESS Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability To cite this article: Anastasiya V Pimenova and Denis S Goldobin 2016

More information

Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics

Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics J Comput Neurosci (1) 8:7 66 DOI 1.17/s187-9 Pseudo-s and predictability of Hodgkin-Huxley neuronal network dynamics Yi Sun Douglas Zhou Aaditya V. Rangan David Cai Received: 16 May 9 / Revised: 3 November

More information

UNIVERSITY OF CALIFORNIA SANTA BARBARA. Neural Oscillator Identification via Phase-Locking Behavior. Michael J. Schaus

UNIVERSITY OF CALIFORNIA SANTA BARBARA. Neural Oscillator Identification via Phase-Locking Behavior. Michael J. Schaus UNIVERSITY OF CALIFORNIA SANTA BARBARA Neural Oscillator Identification via Phase-Locking Behavior by Michael J. Schaus A thesis submitted in partial satisfaction of the requirements for the degree of

More information

Strange Nonchaotic Spiking in the Quasiperiodically-forced Hodgkin-Huxley Neuron

Strange Nonchaotic Spiking in the Quasiperiodically-forced Hodgkin-Huxley Neuron Journal of the Korean Physical Society, Vol. 57, o. 1, July 2010, pp. 23 29 Strange onchaotic Spiking in the Quasiperiodically-forced Hodgkin-Huxley euron Woochang Lim and Sang-Yoon Kim Department of Physics,

More information

Mollifying Networks. ICLR,2017 Presenter: Arshdeep Sekhon & Be

Mollifying Networks. ICLR,2017 Presenter: Arshdeep Sekhon & Be Mollifying Networks Caglar Gulcehre 1 Marcin Moczulski 2 Francesco Visin 3 Yoshua Bengio 1 1 University of Montreal, 2 University of Oxford, 3 Politecnico di Milano ICLR,2017 Presenter: Arshdeep Sekhon

More information

Title. Author(s)Yanagita, T. CitationPhysical Review E, 76(5): Issue Date Doc URL. Rights. Type.

Title. Author(s)Yanagita, T. CitationPhysical Review E, 76(5): Issue Date Doc URL. Rights. Type. Title Input-output relation of FitzHugh-Nagumo elements ar Author(s)Yanagita, T. CitationPhysical Review E, 76(5): 5625--5625-3 Issue Date 27- Doc URL http://hdl.handle.net/25/32322 Rights Copyright 27

More information

Central Pattern Generators

Central Pattern Generators Central Pattern Generators SHARON CROOK and AVIS COHEN 8.1 Introduction Many organisms exhibit repetitive or oscillatory patterns of muscle activity that produce rhythmic movements such as locomotion,

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Stochastic Synchronization in Purkinje Cells with Feedforward Inhibition Could Be Studied with Equivalent Phase-Response Curves

Stochastic Synchronization in Purkinje Cells with Feedforward Inhibition Could Be Studied with Equivalent Phase-Response Curves Journal of Mathematical Neuroscience (2015) 5:13 DOI 10.1186/s13408-015-0025-6 RESEARCH OpenAccess Stochastic Synchronization in Purkinje Cells with Feedforward Inhibition Could Be Studied with Equivalent

More information

Entrainment and Chaos in the Hodgkin-Huxley Oscillator

Entrainment and Chaos in the Hodgkin-Huxley Oscillator Entrainment and Chaos in the Hodgkin-Huxley Oscillator Kevin K. Lin http://www.cims.nyu.edu/ klin Courant Institute, New York University Mostly Biomath - 2005.4.5 p.1/42 Overview (1) Goal: Show that the

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Fast neural network simulations with population density methods

Fast neural network simulations with population density methods Fast neural network simulations with population density methods Duane Q. Nykamp a,1 Daniel Tranchina b,a,c,2 a Courant Institute of Mathematical Science b Department of Biology c Center for Neural Science

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

On oscillating systems of interacting neurons

On oscillating systems of interacting neurons Susanne Ditlevsen Eva Löcherbach Nice, September 2016 Oscillations Most biological systems are characterized by an intrinsic periodicity : 24h for the day-night rhythm of most animals, etc... In other

More information

arxiv: v3 [q-bio.nc] 18 Feb 2015

arxiv: v3 [q-bio.nc] 18 Feb 2015 1 Inferring Synaptic Structure in presence of eural Interaction Time Scales Cristiano Capone 1,2,5,, Carla Filosa 1, Guido Gigante 2,3, Federico Ricci-Tersenghi 1,4,5, Paolo Del Giudice 2,5 arxiv:148.115v3

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Regression Problem Training data: A set of input-output

More information

On the Response of Neurons to Sinusoidal Current Stimuli: Phase Response Curves and Phase-Locking

On the Response of Neurons to Sinusoidal Current Stimuli: Phase Response Curves and Phase-Locking On the Response of Neurons to Sinusoidal Current Stimuli: Phase Response Curves and Phase-Locking Michael J. Schaus and Jeff Moehlis Abstract A powerful technique for analyzing mathematical models for

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Neighbourhoods of Randomness and Independence

Neighbourhoods of Randomness and Independence Neighbourhoods of Randomness and Independence C.T.J. Dodson School of Mathematics, Manchester University Augment information geometric measures in spaces of distributions, via explicit geometric representations

More information

Fast and exact simulation methods applied on a broad range of neuron models

Fast and exact simulation methods applied on a broad range of neuron models Fast and exact simulation methods applied on a broad range of neuron models Michiel D Haene michiel.dhaene@ugent.be Benjamin Schrauwen benjamin.schrauwen@ugent.be Ghent University, Electronics and Information

More information

CHAPTER 1 INTRODUCTION TO ACOUSTIC SATURATION

CHAPTER 1 INTRODUCTION TO ACOUSTIC SATURATION CHAPTER 1 INTRODUCTION TO ACOUSTIC SATURATION Acoustic saturation states that as the input voltage to a focused ultrasonic transducer increases, there exists a limit of the acoustic pressure at the transducer

More information

The Theory of Weakly Coupled Oscillators

The Theory of Weakly Coupled Oscillators The Theory of Weakly Coupled Oscillators Michael A. Schwemmer and Timothy J. Lewis Department of Mathematics, One Shields Ave, University of California Davis, CA 95616 1 1 Introduction 2 3 4 5 6 7 8 9

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

Event-driven simulations of nonlinear integrate-and-fire neurons

Event-driven simulations of nonlinear integrate-and-fire neurons Event-driven simulations of nonlinear integrate-and-fire neurons A. Tonnelier, H. Belmabrouk, D. Martinez Cortex Project, LORIA, Campus Scientifique, B.P. 239, 54 56 Vandoeuvre-lès-Nancy, France Abstract

More information

Synchronization Phenomena of Impulsively-Coupled

Synchronization Phenomena of Impulsively-Coupled Synchronization Phenomena of Impulsively-Coupled van der Pol Oscillators Yoko Uwate and Yoshifumi Nishio and Ruedi Stoop UNI / ETH Zurich, Switzerland Tokushima Univeristy, Japan Introduction (1) Coupled

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

Coupling in Networks of Neuronal Oscillators. Carter Johnson

Coupling in Networks of Neuronal Oscillators. Carter Johnson Coupling in Networks of Neuronal Oscillators Carter Johnson June 15, 2015 1 Introduction Oscillators are ubiquitous in nature. From the pacemaker cells that keep our hearts beating to the predator-prey

More information

Precision of pulse-coupled networks of integrate-and-fire neurons

Precision of pulse-coupled networks of integrate-and-fire neurons INSTITUTE OF PHYSICS PUBLISHING NETWORK: COMPUTATION IN NEURAL SYSTEMS Network: Comput. Neural Syst. 12 (2001) 215 233 www.iop.org/journals/ne PII: S0954-898X(01)23402-2 Precision of pulse-coupled networks

More information

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Anton Shiriaev 1,2, Leonid Freidovich 1, Sergey Gusev 3 1 Department

More information

FDSA and SPSA in Simulation-Based Optimization Stochastic approximation provides ideal framework for carrying out simulation-based optimization

FDSA and SPSA in Simulation-Based Optimization Stochastic approximation provides ideal framework for carrying out simulation-based optimization FDSA and SPSA in Simulation-Based Optimization Stochastic approximation provides ideal framework for carrying out simulation-based optimization Rigorous means for handling noisy loss information inherent

More information

Data-true Characterization Of Neuronal Models

Data-true Characterization Of Neuronal Models University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Data-true Characterization Of Neuronal Models 211 Jose Suarez University of Central Florida Find similar works

More information

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Random Averaging Eli Ben-Naim Los Alamos National Laboratory Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Talk, papers available from: http://cnls.lanl.gov/~ebn Plan I.

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle ACMAC Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse,

More information

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger Project I: Predator-Prey Equations The Lotka-Volterra Predator-Prey Model is given by: du dv = αu βuv = ρβuv

More information

Activity types in a neural mass model

Activity types in a neural mass model Master thesis Activity types in a neural mass model Jurgen Hebbink September 19, 214 Exam committee: Prof. Dr. S.A. van Gils (UT) Dr. H.G.E. Meijer (UT) Dr. G.J.M. Huiskamp (UMC Utrecht) Contents 1 Introduction

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Addendum: Lyapunov Exponent Calculation

Addendum: Lyapunov Exponent Calculation Addendum: Lyapunov Exponent Calculation Experiment CP-Ly Equations of Motion The system phase u is written in vector notation as θ u = (1) φ The equation of motion can be expressed compactly using the

More information

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut Finite Word Length Effects and Quantisation Noise 1 Finite Word Length Effects Finite register lengths and A/D converters cause errors at different levels: (i) input: Input quantisation (ii) system: Coefficient

More information

Self-organization of network structure in coupled-map systems

Self-organization of network structure in coupled-map systems Self-organization of network structure in coupled-map systems Junji Ito and Kunihiko Kaneko Abstract Coupled map models with variable connection weights between the units are studied. A generally observed

More information