Equilibrium and transport in Tokamaks

Size: px
Start display at page:

Download "Equilibrium and transport in Tokamaks"

Transcription

1 Equilibrium and transport in Tokamaks Jacques Blum Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis Parc Valrose Nice Cedex 02, France 08 septembre 2008 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

2 Outline 1 MHD equations 2 Mathematical modelling of axisymmetric equilibrium 3 The inverse equilibrium problem 4 The transport system Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

3 Magnetohydrodynamic (MHD) equations Derivation of the fluid equations from the kinetic equations f α t + (v. x)f α + F α m α. v f α = C α fα (x, v, t) : distribution function (α = e : electrons, α = i : ions) Fα : force on the particle m α : mass of the particle C α : collision operator Density of particles : n α (x, t) = f α (x, v, t)dv Fluid velocity : u α (x, t) = 1 n α f α (x, v, t)vdv Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

4 Pressure tensor P α (x, t) = m α f α (x, v, t)(v u α )(v u α )dv Isotropic case p α (x, t) = m α 3 f α (x, v, t)(v u α ) 2 dv First moment n α t +. f α vdv 1 Fα m α v f αdv = 0 F α v = 0 for the electromagnetic forces n α t +.(n αu α ) = 0 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

5 Second moment m α t (n αu α ) + m α x. f α vvdv v.(f α.v)f α dv = m α vc α dv v = (v u α ) + u α with the equation of conservation of density, we obtain m α n α ( u α t + u α. u α ) =.P α + n α F α + R α with F α = Ze(E + u α B) Third moment : Energy equation + closure by some assumption on the heat flux vector (transport model) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

6 Magnetohydrodynamic equations - One fluid model Mass density ρ = m e n e + m i n i = m e Zn i + m i n i m i n i Flow velocity Current density u = m en e u e + m i n i u i ρ u i j = en e u e + Zen i u i = en e (u i u e ) Scalar pressure p = n e kt e + n i kt i where k is the Boltzmann constant Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

7 Single fluid resistive magnetohydrodynamic equations ρ t +.(ρu) = s ( Conservation of particles) ρ( u + u. u) + p = j B (Conservation of momentum) t 3 2 ( p t + u. p) + 5 p.u + Q = s (Conservation of particle energy) 2 E = B (Faraday s law) t.b = 0 (Conservation of B) E + u B = ηj (Ohm s law) H = j (Ampere s law) B = µh (Magnetic permeability) p = nkt (Law of perfect gases) T : temperature, Q : heat flux, η : resistivity tensor, s and s : source terms and k : Boltzmann constant Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

8 Characteristic time constants of the plasma Alfven time constant : τ A = a(µ 0m i n i ) 1/2 B 0 Diffusion time constant of the particle density n τ n = a2 D where D is the particle diffusion coefficient. Time constants for diffusion of heat of the electrons and of the ions τ e = n ea 2 K e τ i = n ia 2 K i Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

9 Characteristic time constants of the plasma Resistive time constant for the diffusion of the current density and magnetic field in the plasma τ r = µ 0a 2 η Global time constant for plasma diffusion On the diffusion time-scale τ p τ p = inf(τ n, τ e, τ i, τ r ) ρ( u t τ A τ p. + u u) p Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

10 Mathematical modelling of the equilibrium Momentum equation : ρ du dt = j B p At the slow resistive diffusion time scale ρ du can be neglected dt Equilibrium equations : p = j B consequence : B = 0 B = µj p B = 0 p j = 0 => Field lines and current lines are on isobaric surfaces (p = cst) = magnetic surfaces Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

11 Magnetic surfaces Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

12 Axisymmetric configuration Cylindrical coordinates (r, z, φ) B independent of φ B = B p + B t B p = (B r, B z ) = ( 1 r B t = f r e φ ψ z, 1 ψ r r ) = 1 r Ψ ψ(r, z) : poloidal flux f = f (ψ) : diamagnetic function From Ampere s theorem : j = j p + j φ j p = 1 r [ ( f µ ) e φ] j φ = ( ψ)e φ Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

13 Tokamak Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

14 Grad-Shafranov Equation Equilibrium equation : with In the plasma : In the vacuum : p = ψ ψ f r µ 0 r 2 f = r ( 1 µ 0 r r ) + z ( 1 µ 0 r z ) ψ = rp (ψ) + 1 µ 0 r (ff )(ψ) ψ = 0 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

15 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

16 Definition of the free plasma boundary Two cases : magnetic separatrix : hyperbolic line with an X-point (left) outermost flux line inside the limiter (right) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

17 Equation for Ψ(r, z) inside the vacuum vessel where { ψ = λ[ra( ψ) + 1 r B( ψ)]χ Ωp in Ω ψ = h on Ω p ( ψ) = λa( ψ) 1 (ff )( ψ) = λb( ψ), µ 0 ψ max ψ ψ Ω = ψ b max ψ [0, 1] in Ω p Ω χ Ωp is the characteristic function of Ω p Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

18 The inverse equilibrium problem : experimental measurements magnetic measurements interferometry and polarimetry ψ(m i ) = g i on Γ 1 ψ r n (N j) = h j n e (ψ)dl = α m C m n e (ψ) ψ C m r n dl = β m kinetic pressure p(r, 0) = p d (r) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

19 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

20 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

21 Statement of the inverse problem State equation ψ = g on Γ Least square minimization ψ = λ[ r R 0 A( ψ) + R 0 r B( ψ)]1 Ωp J(A, B, n e ) = J 0 + K 1 J 1 + K 2 J 2 + J ɛ with J 0 = j (1 r J 1 = i ( J 2 = i ( ψ n (N j) h j ) 2 C i n e r ψ n dl α i) 2 C i n e dl β i ) 2 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

22 Tikhonoff regularization Find A 0, B 0, n e0 such that : J ɛ = ɛ ( 2 A ψ 2 )2 d ψ 1 +ɛ 2 ( 2 B ψ 2 )2 d ψ 0 1 +ɛ 3 ( 2 n e ψ 2 )2 d ψ 0 J(A 0, B 0, n e0 ) = inf J(A, B, n e ) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

23 Numerical identification Finite element resolution 1 ψ vdx = λ[ r A( Ω µ 0 r Ω p R ψ) + R 0 B( ψ)]vdx 0 r with Fixed point A(ψ) = i a iφ i (ψ), u = (a i, b i ) where K stiffness matrix u coefficients of j P g Dirichlet boundary condition Kψ = D(ψ)u + g ψ = K 1 [D(ψ n )u + g] B(ψ) = i b iφ i (ψ) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

24 Least-square minimization k : experimental measurements Λ : regularization terms J(u) = C(ψ)ψ k 2 + u T Λu Approximation J(u) = C(ψ n )ψ k 2 + u T Λu, with ψ = K 1 [D(ψ n )u + g] J(u) = C(ψ n )K 1 D(ψ n )u + C(ψ n )K 1 g k 2 + u T Λu = E n u F n 2 + u T Λu Normal equation (E nt E n + Λ)u = E nt F n Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

25 Available basis for A, B and n e Piecewise linear Cubic B-splines Scaling functions (Average Interpolating wavelets) Fig.: Bsplines (left), Scaling functions (right) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

26 Numerical Results : Tore Supra and JET characteristics ToreSupra Finite element mesh JET Number of triangles Number of nodes functions A and B Basis type Bspline Bspline Number of basis func. 7 7 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

27 References : IDENT : J. Blum, E. Lazzaro and al, Problems and methods of self-consistent reconstruction of tokamak equilibrium profiles from magnetic and polarimetric measurements, Nuclear fusion, 30, 1990, p 1475 EQUINOX : J. Blum, C. Boulbe and B. Faugeras, Real-time equilibrium reconstruction in a Tokamak, Burning Plasma Diagnostics, AIP Conference Proceedings, 988, 2008, p 420 Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

28 Examples on Jet and Tore Supra Jet with magnetics. Tore Supra with magnetics, polarimetry and interferometry. Fig.: Jet (left), Tore Supra (right) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

29 The transport system At the resistive diffusion time scale τ r = µ 0a 2, the plasma follows a η sequence of equilibrium states, linked by the transport processes. Evolution of p(ψ, t), f (Ψ, t) : p = n e kt e + n i kt i diffusion velocity parallel to the magnetic surfaces perpendicular diffusion velocity n e = n e (Ψ, t) T e = T e (Ψ, t) n i = n i (Ψ, t) T i = T i (Ψ, t) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

30 The averaging technique (H. Grad and al) χ : arbitrary coordinate that labels the magnetic surface S (Example : χ = Ψ) A = AdV = 1 AdS V V χ, with V V = V χ = S S ds χ. where V is the volume enclosed inside the magnetic surface S. We are now going to average the transport equations, so as to obtain a set of 1-D diffusion equations with respect to the space variable χ. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

31 Properties of the average.w = W. V, W, V t (V A ) = V Ȧ + χ Au χ. V, A where Ȧ denotes the time-derivative at a fixed point (r, z), whereas t denotes the time-derivative at fixed χ. The vector u χ is the velocity of the constant-χ surface, defined by It can be deduced that χ + u χ. χ = 0. V t = χ u χ. V. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

32 The equation of conservation of electrons n e +.(n e u e ) = S 1, where S 1 is a source term. After averaging and multiplying by V t ( n e V ) + χ n e(u e u χ ). V = S 1 V. Γ e : flux particle relative to a constant-χ surface : Neutrality of the plasma n i Γ e = n e (u e u χ ). χ t (n ev ) + χ (Γ ev ) = S 1 V Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

33 The energy equations Electrons : Neglecting the viscosity terms 3 2 p e +.(Q e p eu e ) = j.e Q u i. p i + S 2, where p e and p i are, respectively, the electron and ion pressure, Q e the electron heat flux, Q = 3m e m i n e t e (T e T i ), u i the ion flow velocity and S 2 a source term. After averaging 3 2(V ) 2/3 t [ p e (V ) 5/3 ] + χ [(q e kt eγ e )V ] = [ j.e u χ. p e u i. p i Q + S 2 ]V, with q e = Q e. χ. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

34 Ions : Ion energy balance equation : 3 2 p i +.(Q i p iu i ) = Q + u i. p i + S 3, where Q i is the ion heat flux and S 3 a source term. After averaging 3 2(V ) 2/3 t (p i(v ) 5/3 ) + χ [(q i with q i = Q i. χ. kt i Γ e Z )V ] Γ e p i n e χ V = Q V + S 3 V, Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

35 Flux equations Poloidal flux Ψ Velocity u Ψ of a constant-ψ surface : Ψ + u Ψ. Ψ = 0. Velocity of the constant-χ surface : We have χ + u χ. χ = 0. Ψ = Ψ t + Ψ χ χ. hence the evolution equation for the poloidal flux Ψ is Ψ t = (u χ u Ψ ). Ψ. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

36 Toroidal flux Φ : Φ = Safety factor q V B t 2πr dv q = 1 Φ 2π Ψ. (number of toroidal turns necessary to make one poloidal turn) Hence q = 1 V 4π 2 Ψ r 2 f. Moreover, we have From Faraday s law Φ t = Φ t Ψ 2πq Ψ t. Φ t Ψ = 1 V 2π Ψ E.B. Evolution equation for the toroidal flux Φ, Φ t = 1 V 2π Ψ [f r 2 (u χ u Ψ ). Ψ + E.B ]. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

37 Choice of the flux surface label χ As Φ t = 0, one has χ = ( Φ πb 0 ) 1/2 (u χ u Ψ ). Ψ = E.B f r 2. Hence From Ohm s law, it can be deduced that where η is Spitzer s resistivity. Ψ t = E.B f r 2. E + u B = ηj E.B = η j.b, Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

38 Moreover, one can deduce with j.b = f 2 µ 0 V χ (C 2 Ψ f χ ), C 2 = V r 2 2 χ. Therefore the diffusion resistive equation becomes Ψ t ηf µ 0 C 3 χ (C 2 f with C 3 = V r 2. By differentiation with respect to χ Ψ t 1 µ 0 χ [ηf C 3 χ (C 2Ψ )] = 0. f Ψ ) = 0, (4.1) χ Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

39 From the definitions of Φ and χ, the following relation for f can be obtained f = 4π2 B 0 χ C 3. Equation for Ψ can be written Ψ t 1 µ 0 χ [ ηχ C3 2 χ (C 2C 3 χ Ψ )] = 0. It is a parabolic 1-D equation which characterizes the resistive diffusion of the poloidal flux with respect to the toroidal one. Ψ is related to the safety factor q by Ψ = B 0χ q. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

40 Electron energy equation One has j.e = j φ/r E.B f r 2 + u χ. p, with j φ /r = 1 (C 2 Ψ ) µ 0 V χ. Let us define σ e by σ e = p e (V ) 5/3 3 σ e 2(V ) 2/3 t + χ [(q e kt eγ e )V ] = Γ ev n e p i χ + ηχ µ 2 0 C 3 2 Q V + S 2 V. χ (C 2Ψ ) χ (C 2C 3 χ Ψ ) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

41 Ion energy equation 3 2(V ) 2/3 t σ i + χ [(q i with q i = Q i. χ and σ i = p i (V ) 5/3 Density equation kt i Γ e Z )V ] Γ e p i n e χ V = Q V + S 3 V, t N e + χ (Γ ev ) = S 1 V. with N e = n e V To close the system in the neoclassical theory, Γ e, q e and q i are expressed as quasi-linear combinations of n e / χ, p e / χ, p i / χ, and E.B. The adiabatic case : N e, σ e, σ i and Ψ are kept constant during adiabatic evolutions. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

42 Diagonal model Assume that n e (u e u χ ) = D n e, Q e = K e T e, Q i = K i T i, where D is the electronic diffusion coefficient, and K e and K i are the electronic and ionic thermal conductivities, respectively. Hence Γ e = D 2 χ n e χ, q e = K e 2 χ T e χ, q i = K i 2 χ T i χ Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

43 Density, electron and ion energy equations become N e t χ (DC n e 1 χ ) = S 1 V, 3 σ e 2(V ) 2/3 t χ (K T e ec 1 χ ) 5k 2 ηχ χ (DC n e 1T e χ ) χ (C 2Ψ ) χ (C 2C 3 χ Ψ ) + DC 1 n e = µ 2 0 C 3 2 Q V + S 2 V, p i n e χ χ 3 2(V ) 2/3 σ i t χ (K ic 1 T i χ 5k 2 with C 1 = V 2 χ. χ (DC 1T i n e Z χ ) + DC 1 n e p i n e χ χ = Q V + S 3 V Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

44 The averaged equilibrium equation The Grad-Shafranov equilibrium equation can be written 1 p.( Ψ) = µ 0 r 2 Ψ + 1 f 2 2µ 0 r 2 Ψ The average of this equation over a magnetic surface leads to Ψ χ (C 2Ψ ) = µ 0 V p χ C f 2 3 χ. As p = σ e + σ i (V, this equation enable us to determine the functions ) 5/3 f (χ), if the profiles Ψ (χ), σ e (χ), σ i (χ) and the geometric coefficients r 2 2 χ and r 2 have been previously calculated. The integration of this averaged equation over the plasma gives I p = C 2(χ max )Ψ (χ max ) 2πµ 0 where I p is the total plasma current and χ max the value of χ at the plasma boundary. Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

45 Coupling of the equilibrium and the diffusion system 2 χ, r 2 2 χ, r 2 Equilibrium system for Ψ(r, z) Transport system + averaged G.S equation p(χ), f (χ), Ψ (χ) Finite elements + Newton-Raphson iterations Finite differences + θ-method Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

46 Boundary conditions n e (χ max ) = n 0 e, T e (χ max ) = T 0 e, T i (χ max ) = T 0 i, f (χ max ) = R 0 B 0, and I p Ψ (χ max ) = 2πµ 0 C 2 (χ max ) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

47 Conclusion The coupling between the 2D Grad-Shafranov equilibrium equation and the 1D transport equations, that depend on the geometry of the flux lines, is usually called a 1 1/2 D transport model and enables us to follow the quasi-static evolution of the equilibrium at the transport time- scale. The resolution of the transport equations requires the computation of the source terms due to the additional heating (neutral beam injection, RF heating) and of the current generated by the RF system in the modified Ohm s law (example : CHRONOS Software) Jacques Blum (Université de Nice) Equilibrium and transport in Tokamaks 08 septembre / 47

Un problème inverse: l identification du profil de courant dans un Tokamak

Un problème inverse: l identification du profil de courant dans un Tokamak Un problème inverse: l identification du profil de courant dans un Tokamak Blaise Faugeras en collaboration avec J. Blum et C. Boulbe Université de Nice Sophia Antipolis Laboratoire J.-A. Dieudonné Nice,

More information

Assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction

Assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction Assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction Blaise Faugeras CASTOR Team-Project INRIA and Laboratoire J.A. Dieudonné CNRS UMR 7351 Université

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Ideal MHD Equilibria

Ideal MHD Equilibria CapSel Equil - 01 Ideal MHD Equilibria keppens@rijnh.nl steady state ( t = 0) smoothly varying solutions to MHD equations solutions without discontinuities conservative or non-conservative formulation

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

arxiv: v3 [math.na] 17 Mar 2011

arxiv: v3 [math.na] 17 Mar 2011 arxiv:99.4474v3 [math.na] 7 Mar Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time J. Blum a, C. Boulbe a, B. Faugeras a a Laboratoire

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

MHD Linear Stability Analysis Using a Full Wave Code

MHD Linear Stability Analysis Using a Full Wave Code US-Japan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Finite Volume for Fusion Simulations

Finite Volume for Fusion Simulations Finite Volume for Fusion Simulations Elise Estibals, Hervé Guillard, Afeintou Sangam To cite this version: Elise Estibals, Hervé Guillard, Afeintou Sangam. Finite Volume for Fusion Simulations. Jorek Meeting

More information

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D)

More information

Sawteeth in Tokamaks and their relation to other Two-Fluid Reconnection Phenomena

Sawteeth in Tokamaks and their relation to other Two-Fluid Reconnection Phenomena Sawteeth in Tokamaks and their relation to other Two-Fluid Reconnection Phenomena S. C. Jardin 1, N. Ferraro 2, J. Chen 1, et al 1 Princeton Plasma Physics Laboratory 2 General Atomics Supported by the

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

EMAFF: MAgnetic Equations with FreeFem++

EMAFF: MAgnetic Equations with FreeFem++ EMAFF: MAgnetic Equations with FreeFem++ The Grad-Shafranov equation & The Current Hole Erwan DERIAZ Bruno DESPRÉS Gloria FACCANONI š Kirill Pichon GOSTAF Lise-Marie IMBERT-GÉRARD Georges SADAKA Remy

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

12. MHD Approximation.

12. MHD Approximation. Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169-183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal

More information

The Linear Theory of Tearing Modes in periodic, cyindrical plasmas. Cary Forest University of Wisconsin

The Linear Theory of Tearing Modes in periodic, cyindrical plasmas. Cary Forest University of Wisconsin The Linear Theory of Tearing Modes in periodic, cyindrical plasmas Cary Forest University of Wisconsin 1 Resistive MHD E + v B = ηj (no energy principle) Role of resistivity No frozen flux, B can tear

More information

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B Chapter 2 Basic Plasma Properties 2.1 First Principles 2.1.1 Maxwell s Equations In general magnetic and electric fields are determined by Maxwell s equations, corresponding boundary conditions and the

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Magnetic Diagnostics Basics

Magnetic Diagnostics Basics Abstract We report measurement of the equilibrium plasma current profiles in the Levitated Dipole Experiment (LDX) that exhibit a peak beta in excess of 10 percent. The beta of an LDX plasma is calculated

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

Physic-based Preconditioning and B-Splines finite elements method for Tokamak MHD

Physic-based Preconditioning and B-Splines finite elements method for Tokamak MHD Physic-based Preconditioning and B-Splines finite elements method for Tokamak MHD E. Franck 1, M. Gaja 2, M. Mazza 2, A. Ratnani 2, S. Serra Capizzano 3, E. Sonnendrücker 2 ECCOMAS Congress 2016, 5-10

More information

Fluid models of plasma. Alec Johnson

Fluid models of plasma. Alec Johnson Fluid models of plasma Alec Johnson Centre for mathematical Plasma Astrophysics Mathematics Department KU Leuven Nov 29, 2012 1 Presentation of plasma models 2 Derivation of plasma models Kinetic Two-fluid

More information

Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University

Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Email: cerfon@cims.nyu.edu SULI Introductory Course in Plasma Physics, June 6, 2016 PART I: DESCRIBING

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Fundamentals of Magnetohydrodynamics (MHD)

Fundamentals of Magnetohydrodynamics (MHD) Fundamentals of Magnetohydrodynamics (MHD) Thomas Neukirch School of Mathematics and Statistics University of St. Andrews STFC Advanced School U Dundee 2014 p.1/46 Motivation Solar Corona in EUV Want to

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

NIMEQ: MHD Equilibrium Solver for NIMROD

NIMEQ: MHD Equilibrium Solver for NIMROD NIMEQ: MHD Equilibrium Solver for NIMOD E.C.Howell, C..Sovinec University of Wisconsin-Madison 5 th Annual Meeting of Division of Plasma Physics Dallas, Texas, Nov. 17-Nov. 1,8 1 Abstract A Grad-Shafranov

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

Sensors Plasma Diagnostics

Sensors Plasma Diagnostics Sensors Plasma Diagnostics Ken Gentle Physics Department Kenneth Gentle RLM 12.330 k.gentle@mail.utexas.edu NRL Formulary MIT Formulary www.psfc.mit.edu/library1/catalog/ reports/2010/11rr/11rr013/11rr013_full.pdf

More information

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program University of Washington IEEE International Conference

More information

Neoclassical transport

Neoclassical transport Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices

More information

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN,

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN, Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN, 14.10.2015 Paula Sirén VTT Technical Research Centre of Finland, P.O Box 1000, 02044

More information

Guiding Center Orbit Studies in a Tokamak Edge Geometry Employing Boozer and Cartesian Coordinates

Guiding Center Orbit Studies in a Tokamak Edge Geometry Employing Boozer and Cartesian Coordinates Contrib. Plasma Phys. 48, No. -3, 4 8 (8) / DOI./ctpp.839 Guiding Center Orbit Studies in a Tokamak Edge Geometry Employing Boozer and Cartesian Coordinates Y. Nishimura,Y.Xiao,and Z. Lin Department of

More information

Edge Momentum Transport by Neutrals

Edge Momentum Transport by Neutrals 1 TH/P3-18 Edge Momentum Transport by Neutrals J.T. Omotani 1, S.L. Newton 1,2, I. Pusztai 1 and T. Fülöp 1 1 Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 CCFE,

More information

MAGNETOHYDRODYNAMICS

MAGNETOHYDRODYNAMICS Chapter 6 MAGNETOHYDRODYNAMICS 6.1 Introduction Magnetohydrodynamics is a branch of plasma physics dealing with dc or low frequency effects in fully ionized magnetized plasma. In this chapter we will study

More information

Issues in Neoclassical Tearing Mode Theory

Issues in Neoclassical Tearing Mode Theory Issues in Neoclassical Tearing Mode Theory Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Austin, TX Tearing Mode Stability in Tokamaks According to standard (single-fluid)

More information

Implicit kinetic relaxation schemes. Application to the plasma physic

Implicit kinetic relaxation schemes. Application to the plasma physic Implicit kinetic relaxation schemes. Application to the plasma physic D. Coulette 5, E. Franck 12, P. Helluy 12, C. Courtes 2, L. Navoret 2, L. Mendoza 2, F. Drui 2 ABPDE II, Lille, August 2018 1 Inria

More information

Kinetic, Fluid & MHD Theories

Kinetic, Fluid & MHD Theories Lecture 2 Kinetic, Fluid & MHD Theories The Vlasov equations are introduced as a starting point for both kinetic theory and fluid theory in a plasma. The equations of fluid theory are derived by taking

More information

Modeling of ELM Dynamics for ITER

Modeling of ELM Dynamics for ITER Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015

More information

Innovative Concepts Workshop Austin, Texas February 13-15, 2006

Innovative Concepts Workshop Austin, Texas February 13-15, 2006 Don Spong Oak Ridge National Laboratory Acknowledgements: Jeff Harris, Hideo Sugama, Shin Nishimura, Andrew Ware, Steve Hirshman, Wayne Houlberg, Jim Lyon Innovative Concepts Workshop Austin, Texas February

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model

Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model 9th IAEA TM on H-mode Physics and Transport Barriers Catamaran Resort Hotel, San Diego 3-9-5 Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model A. Fukuyama, M. Uchida and

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING V.S. Chan, S.C. Chiu, Y.A. Omelchenko General Atomics, San Diego, CA, U.S.A. 43rd Annual APS Division of Plasma Physics Meeting

More information

Simulation of alpha particle current drive and heating in spherical tokamaks

Simulation of alpha particle current drive and heating in spherical tokamaks Simulation of alpha particle current drive and heating in spherical tokamaks R. Farengo 1, M. Zarco 1, H. E. Ferrari 1, 1 Centro Atómico Bariloche and Instituto Balseiro, Argentina. Consejo Nacional de

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Real Plasma with n, T ~ p Equilibrium: p = j B

Real Plasma with n, T ~ p Equilibrium: p = j B Real Plasma with n, T ~ p Equilibrium: p = j B B lines must lie in isobaric surfaces. Since B = 0, only possible if isobaric surfaces are topological tori. Magnetic field lines must form nested tori. Equilibrium

More information

3D Modelling of Turbulence in a Magnetically Confined Toroidal Plasma

3D Modelling of Turbulence in a Magnetically Confined Toroidal Plasma U N I V E R S I T Y O F C O P E N H A G E N F A C U L T Y O F S C I E N C E 3D Modelling of Turbulence in a Magnetically Confined Toroidal Plasma Master Thesis Aske Anguasak Busk Olsen Niels Bohr Institute

More information

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions R. Farengo, H. E. Ferrari,2, M.-C. Firpo 3, P. L. Garcia-Martinez 2,3, A. F. Lifschitz

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic

More information

Electromagnetism - Lecture 10. Magnetic Materials

Electromagnetism - Lecture 10. Magnetic Materials Electromagnetism - Lecture 10 Magnetic Materials Magnetization Vector M Magnetic Field Vectors B and H Magnetic Susceptibility & Relative Permeability Diamagnetism Paramagnetism Effects of Magnetic Materials

More information

Nonlinear MHD effects on TAE evolution and TAE bursts

Nonlinear MHD effects on TAE evolution and TAE bursts Nonlinear MHD effects on TAE evolution and TAE bursts Y. Todo (NIFS) collaborating with H. L. Berk and B. N. Breizman (IFS, Univ. Texas) GSEP 3rd Annual Meeting (remote participation / Aug. 9-10, 2010)

More information

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory. SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

Models for Global Plasma Dynamics

Models for Global Plasma Dynamics Models for Global Plasma Dynamics F.L. Waelbroeck Institute for Fusion Studies, The University of Texas at Austin International ITER Summer School June 2010 Outline 1 Models for Long-Wavelength Plasma

More information

Turbulence in Tokamak Plasmas

Turbulence in Tokamak Plasmas ASDEX Upgrade Turbulence in Tokamak Plasmas basic properties and typical results B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Uni Innsbruck, Nov 2011 Basics

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED SEMESTER, 015 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Overview of FRC-related modeling (July 2014-present)

Overview of FRC-related modeling (July 2014-present) Overview of FRC-related modeling (July 2014-present) Artan Qerushi AFRL-UCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

Fundamentals of Magnetic Island Theory in Tokamaks

Fundamentals of Magnetic Island Theory in Tokamaks Fundamentals of Magnetic Island Theory in Tokamaks Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Austin, TX, USA Talk available at http://farside.ph.utexas.edu/talks/talks.html

More information

Radiation Integrals and Auxiliary Potential Functions

Radiation Integrals and Auxiliary Potential Functions Radiation Integrals and Auxiliary Potential Functions Ranga Rodrigo June 23, 2010 Lecture notes are fully based on Balanis [?]. Some diagrams and text are directly from the books. Contents 1 The Vector

More information

Accurate simulation of fast magnetic reconnection calls for higher-moment fluid models. E. Alec Johnson

Accurate simulation of fast magnetic reconnection calls for higher-moment fluid models. E. Alec Johnson Accurate simulation of fast magnetic reconnection calls for higher-moment fluid models. E. Alec Johnson Centre for mathematical Plasma Astrophysics Mathematics Department KU Leuven Oct 30, 2012 Abstract:

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges

Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome

More information

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 92186-5608 P.O. APS Annual APS Meeting of the Division of Plasma Physics

More information

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations PHYSICS OF PLASMAS 12, 072513 2005 Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations J. N. Talmadge and S. P. Gerhardt a HSX Plasma Laboratory, University

More information

On existence of resistive magnetohydrodynamic equilibria

On existence of resistive magnetohydrodynamic equilibria arxiv:physics/0503077v1 [physics.plasm-ph] 9 Mar 2005 On existence of resistive magnetohydrodynamic equilibria H. Tasso, G. N. Throumoulopoulos Max-Planck-Institut für Plasmaphysik Euratom Association

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

arxiv: v1 [physics.plasm-ph] 11 Mar 2016

arxiv: v1 [physics.plasm-ph] 11 Mar 2016 1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Hybrid Kinetic-MHD simulations with NIMROD

Hybrid Kinetic-MHD simulations with NIMROD in NIMROD simulations with NIMROD Charlson C. Kim 1 Dylan P. Brennan 2 Yasushi Todo 3 and the NIMROD Team 1 University of Washington, Seattle 2 University of Tulsa 3 NIFS, Toki-Japan December 2&3, 2011

More information

Chapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current

Chapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current Chapter 5 MAGNETIZED PLASMAS 5.1 Introduction We are now in a position to study the behaviour of plasma in a magnetic field. In the first instance we will re-examine particle diffusion and mobility with

More information

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), X-Z. Tang 2) 1) Massachusetts Institute of Technology,

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

Improved Analytical Flux Surface Representation and Calculation Models for Poloidal Asymmetries. T. G. Collart, W. M. Stacey

Improved Analytical Flux Surface Representation and Calculation Models for Poloidal Asymmetries. T. G. Collart, W. M. Stacey Improved Analytical Flux Surface Representation and Calculation Models for Poloidal Asymmetries T. G. Collart, W. M. Stacey Georgia Institute of Technology Atlanta, GA 3332 USA December, 215 Abstract An

More information

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università

More information

MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY OF PLASMA

MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY OF PLASMA University of Ljubljana Faculty of Mathematics and Physics Seminar 1 b -1st year, II. cycle MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY OF PLASMA Author: Lino alamon Advisor: prof. dr. Tomaº Gyergyek

More information

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37 Plasma instabilities Dr Ben Dudson, University of York 1 / 37 Previously... Plasma configurations and equilibrium Linear machines, and Stellarators Ideal MHD and the Grad-Shafranov equation Collisional

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Denis Bytschkow. Investigation of MHD mode rotation in the tokamak ASDEX Upgrade

Denis Bytschkow. Investigation of MHD mode rotation in the tokamak ASDEX Upgrade Denis Bytschkow Investigation of MHD mode rotation in the tokamak ASDEX Upgrade IPP 1/341 September, 2010 P H Y S I K - D E P A R T M E N T TECHNISCHE UNIVERSITÄT MÜNCHEN Investigation of MHD mode rotation

More information

FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES!

FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES! FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES! Dalton D. Schnack April 18, 2006 1 Introduction You are now all experts in MHD. As you know, ideal MHD describes the dynamics

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Current Holes and other Structures in Motional Stark Effect Measurements

Current Holes and other Structures in Motional Stark Effect Measurements Max-Planck-Institut für Plasmaphysik Garching ASDEX Upgrade Current Holes and other Structures in Motional Stark Effect Measurements Dissertation von Doris Merkl Technische Universität München ii Technische

More information

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are.

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are. Maxwell s Equations Introduction In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are D = ρ () E = 0 (2) B = 0 (3) H = J (4) In the integral

More information

14. Energy transport.

14. Energy transport. Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. Chapman-Enskog theory. ([8], p.51-75) We derive macroscopic properties of plasma by calculating moments of the kinetic equation

More information

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the

More information

Magnetohydrodynamic waves in a plasma

Magnetohydrodynamic waves in a plasma Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.

More information

Radiative & Magnetohydrodynamic Shocks

Radiative & Magnetohydrodynamic Shocks Chapter 4 Radiative & Magnetohydrodynamic Shocks I have been dealing, so far, with non-radiative shocks. Since, as we have seen, a shock raises the density and temperature of the gas, it is quite likely,

More information

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid 3st EPS Conference on Plasma Physics 28th June 2nd July, 24, Imperial College, London Plasma Breakdown Analysis in without the Use of Center Solenoid H. Tsutsui, S. Tsuji-Iio, R. Shimada, M. Sato, K. Tsuzuki,

More information

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016 Beyond Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 8, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics by

More information